THE DESIGN and FABRICATION of an OPTICAL PERISCOPE for CORE VIEWING of FAST BREEDER TEST REACTOR (FBTR) by N C Das, San|Iva Kumar

Total Page:16

File Type:pdf, Size:1020Kb

THE DESIGN and FABRICATION of an OPTICAL PERISCOPE for CORE VIEWING of FAST BREEDER TEST REACTOR (FBTR) by N C Das, San|Iva Kumar B A RC/2004/E/017 5 THE DESIGN AND FABRICATION OF AN OPTICAL PERISCOPE FOR CORE VIEWING OF FAST BREEDER TEST REACTOR (FBTR) by N C Das, San|iva Kumar. O.V Udupa and R P Shukla Spectroscopy Division and AM Kadu and R.K.Modi Division of Remote Handling and Robotics IN0501613 ÏTTTïï VWT Government of India «mur mmuj 3TJWIR Bhabha Atomic Research Centre ggf Mumbai - 400 085, wrw India 2004 BAR C/2004/E/017 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION THE DESIGN AND FABRICATION OF AN OPTICAL PERISCOPE FOR CORE VIEWING OF FAST BREEDER TEST REACTOR (FBTR) by N.C. Das, Sanjiva Kumar, D.V. Udupaand R.P. Shukla Spectroscopy Division and A.M. Kadu and R. K Modi Division of Remote Handling and Robotics BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2004 BARC72OO4/E/0I7 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (•9 per IS : 9400 - 19H0) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2004/E/017 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : The design and fabrication of an optical periscope for core viewing of fast breeder test reactor (FBTR) I! Collation : 37 p., 13 figs. 13 Project No. 20 Personal author(s) : 1 ) N.C. Das; Sanjiva Kumar; D.V. Udupa; R.P Shukla 2) A.M. Kadu; R.K Modi 21 Affiliation of author(s) : 1 ) Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 2) Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai-400 085 23 Originating unit : Spectroscopy Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type Government Contd... BAR(72004/H/O17 10 Date of submission July 2004 31 Publication/Issue date August 2004 40 publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No. of references : 10 refs. 53 Gives data on : 60 Abstract A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/video recording the objects in the reactor core The jn-t iscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and ;m eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system lor obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi-field angle of 3° for the objective tens of focal length of 250 mm and 4° for the objective ni focal length of 100 mm. Two prisms of 45° -90° -45° types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110°. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pcchan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled 1 and II. The arm 1 is used for visual inspection, while the arm 11 is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, Kalpakkam. 70. Keywords/Descriptors PERISCOPES; KALPAKKAM LMFBR REACTOR; SPECIFICATIONS; REACTOR CORES; INSPECTION; SHIELDING; IMAGE SCANNERS; IN-SERVICE INSPECTION 71 INIS Subject Category : S21 99 Supplementary elements : ère fti^W (FBTR) ^^^BF^^ UKKH W fo^ZT (FBTR) % ^ ^ptf ^ ^ 3ÄT tg W MIWÏÏ ^T «IWW 3ÄT foW ftF^ÎT W ft I W <H«wl«H ^ ^Tëft ßr^T H'dWdl, ^T TOTTöt ç^T fepr sfa ^Rpn ^ ^ ^ ^ ^ ^-^eepr £ ft^r i ' ^r i^TTcfi^ tforft^rfr # ^feïï^ft 100 mm 3 250 mmc^ftpRî? fc ^ftl^uj -3R u^i iu tft 10 mm ^ 25 mm «l«ci<1l £ 1250 mm 3ÄT 100 % MÎV^ %feïïT aré-tf^^mSWT: 3°3ft7 4°fr l ^aiïtîT feïï ^ 45°-90°-45° îRFiïT % firt ^r îrôïï feiï no0 «ït ^«bdi 11M^ mwhfer^^kïïfr MIO^T%^Hwh-i^«fafervffnrrlt' i^rr^r £ 2.5 ^ f^RT ^ % fi^ W 4<H»W «BT Mïï 0.7 mm WTOT fr i ^r $ $ t fa^t gnm: I n foïï "W £ I *pT I àpi" ^ ^ ïïïïtïï fà^iï ^ïïïï $ I srafc^r ndI^Itoi/4ifa4>«m!>^ïï^RTà<ftft ïïWt ^TT^ (IGCAR), ^ TOe îft^f fe fc^er (FBTR) % fi^tr XT^> 3RTT - ^Tïïïïtïï^ ^ll^ft l The Design and Fabrication of an Optical Periscope for Core Viewing of Fast Breeder Test Reactor (FBTR) N.C. Das, Sanjiva Kumar, D. V. Udupa, R P. Shukla, A.M. Kadu and R. K. Modi ABSTRACT A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/ video recording the objects in the reactor core. The periscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and an eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system for obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi-field angle of 3° for the objective lens of focal length of 250 mm and 4° for the objective of focal length of 100 mm. Two prisms of 45°-90o-45° types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110°. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pechan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled I and II. The arm I is used for visual inspection, while the arm II is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, KaJpakkam. The Design and Fabrication of an Optical Periscope for Core Viewing of Fast Breeder Test Reactor (FBTR) 1. Introduction Periscopes are quite well known optical device for military f I ] and nuclear reactor applications. It is just a telescope having a bent optical path and a limited field of view [2]. These two things make the periscope a complicated optical instrument from the design point of view. Moreover, the final image formed by the periscope must be erect and non-reversed. The periscope may be defined as an instrument in which the general direction of the rays is not in a straight line but is deflected one or more times with the purpose of providing the observer a view from a position in which he cannot put his head. Thus the instrument has a decided offset between the line of sight and viewing (eyepiece) axis. By reason of this offset, observation can be done from confined locations, e.g., from the interiors of armored vehicles, submarine or aircraft. The simplest form of the periscope would be a one or more mirror. The requirements of brightness, image orientation, field of view, and maneuverability have led the periscope to consist of several image-forming optical components. A periscope is supposed to contain a number of lenses in the straight line but they are equipped with a movable prism or mirror mounted in front of the objective lens. By rotating the entire periscope on its optical axis and also moving the prism or mirror, the operator can survey a large volume of space. The periscope under the current project is an in-service inspection instrument and is to be used for visual examination of FBTR (Fast Breeder Test Reactor) main vessel internals in the cover gas space. Inspection of the main vessel is carried out in shutdown condition, in the presence of cover gas, Argon. The periscope has three main parts as objective sub- 1 assembly, main tube sub-assembly and eyepiece module; Main tube sub-assembly contains an image canal to transfer the image of the target area under inspection, to the eyepiece for viewing by the operator. The periscope is provided with two arms, axial and rotational movement system to cover the area of interest for visual examination. Z Design Parameters for the Optical Layout of the Periscope For designing a periscope for viewing in the irradiated or unreachable areas, following requirements [3] must be satisfied: (1) The periscope must move the eye to the other side of a radiation shield.
Recommended publications
  • Multiphysics Modeling, Sensitivity Analysis, and Optical Performance Optimization for Optical Laser Head in Additive Manufacturing
    applied sciences Article Multiphysics Modeling, Sensitivity Analysis, and Optical Performance Optimization for Optical Laser Head in Additive Manufacturing Jiaping Yang 1, Xiling Yao 1,* , Yuxin Cai 1,2 and Guijun Bi 1,* 1 Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, Singapore 637662, Singapore; [email protected] (J.Y.); [email protected] (Y.C.) 2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore * Correspondence: [email protected] (X.Y.); [email protected] (G.B.) Abstract: Optical laser head is a key component used to shape the laser beam and to deliver higher power laser irradiation onto workpieces for material processing. A focused laser beam size and optical intensity need to be controlled to avoid decreasing beam quality and loss of intensity in laser material processing. This paper reports the multiphysics modeling of an in-house developed laser head for laser-aided additive manufacturing (LAAM) applications. The design of computer experiments (DoCE) combined with the response surface model was used as an efficient design approach to optimize the optical performance of a high power LAAM head. A coupled structural- thermal-optical-performance (STOP) model was developed to evaluate the influence of thermal effects on the optical performance. A number of experiments with different laser powers, laser beam focal plane positions, and environmental settings were designed and simulated using the STOP model for sensitivity analysis. The response models of the optical performance were constructed using DoCE and regression analysis. Based on the response models, optimal design settings were predicted and validated with the simulations.
    [Show full text]
  • 502-13 Magnifiers and Telescopes
    13-1 I and Instrumentation Design Optical OPTI-502 © Copyright 2019 John E. Greivenkamp E. John 2019 © Copyright Section 13 Magnifiers and Telescopes 13-2 I and Instrumentation Design Optical OPTI-502 Visual Magnification Greivenkamp E. John 2019 © Copyright All optical systems that are used with the eye are characterized by a visual magnification or a visual magnifying power. While the details of the definitions of this quantity differ from instrument to instrument and for different applications, the underlying principle remains the same: How much bigger does an object appear to be when viewed through the instrument? The size change is measured as the change in angular subtense of the image produced by the instrument compared to the angular subtense of the object. The angular subtense of the object is measured when the object is placed at the optimum viewing condition. 13-3 I and Instrumentation Design Optical OPTI-502 Magnifiers Greivenkamp E. John 2019 © Copyright As an object is brought closer to the eye, the size of the image on the retina increases and the object appears larger. The largest image magnification possible with the unaided eye occurs when the object is placed at the near point of the eye, by convention 250 mm or 10 in from the eye. A magnifier is a single lens that provides an enlarged erect virtual image of a nearby object for visual observation. The object must be placed inside the front focal point of the magnifier. f h uM h F z z s The magnifying power MP is defined as (stop at the eye): Angular size of the image (with lens) MP Angular size of the object at the near point uM MP d NP 250 mm uU 13-4 I and Instrumentation Design Optical OPTI-502 Magnifiers – Magnifying Power Greivenkamp E.
    [Show full text]
  • Lab 11: the Compound Microscope
    OPTI 202L - Geometrical and Instrumental Optics Lab 9-1 LAB 9: THE COMPOUND MICROSCOPE The microscope is a widely used optical instrument. In its simplest form, it consists of two lenses Fig. 9.1. An objective forms a real inverted image of an object, which is a finite distance in front of the lens. This image in turn becomes the object for the ocular, or eyepiece. The eyepiece forms the final image which is virtual, and magnified. The overall magnification is the product of the individual magnifications of the objective and the eyepiece. Figure 9.1. Images in a compound microscope. To illustrate the concept, use a 38 mm focal length lens (KPX079) as the objective, and a 50 mm focal length lens (KBX052) as the eyepiece. Set them up on the optical rail and adjust them until you see an inverted and magnified image of an illuminated object. Note the intermediate real image by inserting a piece of paper between the lenses. Q1 ● Can you demonstrate the final image by holding a piece of paper behind the eyepiece? Why or why not? The eyepiece functions as a magnifying glass, or simple magnifier. In effect, your eye looks into the eyepiece, and in turn the eyepiece looks into the optical system--be it a compound microscope, a spotting scope, telescope, or binocular. In all cases, the eyepiece doesn't view an actual object, but rather some intermediate image formed by the "front" part of the optical system. With telescopes, this intermediate image may be real or virtual. With the compound microscope, this intermediate image is real, formed by the objective lens.
    [Show full text]
  • Smartphone-Based Endoscope System for Advanced Point-Of-Care Diagnostics: Feasibility Study
    JMIR MHEALTH AND UHEALTH Bae et al Original Paper Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study Jung Kweon Bae1, MEng (Biomed Eng); Andrey Vavilin1, PhD; Joon S You1, PhD; Hyeongeun Kim1, BE; Seon Young Ryu2, PhD; Jeong Hun Jang3, MD; Woonggyu Jung1, PhD 1Ulsan National Institute of Science and Technology, Department of Biomedical Engineering, Ulsan, Republic Of Korea 2Pohang University of Science and Technology, Creative IT Engineering, Pohang, Republic Of Korea 3Ajou University Hospital, Department of Otorhinolaryngology, Suwon, Republic Of Korea Corresponding Author: Woonggyu Jung, PhD Ulsan National Institute of Science and Technology Department of Biomedical Engineering 110dong, 709ho, 50 Unist gil Ulsan, 44919 Republic Of Korea Phone: 82 1084640110 Fax: 82 1084640110 Email: [email protected] Abstract Background: Endoscopic technique is often applied for the diagnosis of diseases affecting internal organs and image-guidance of surgical procedures. Although the endoscope has become an indispensable tool in the clinic, its utility has been limited to medical offices or operating rooms because of the large size of its ancillary devices. In addition, the basic design and imaging capability of the system have remained relatively unchanged for decades. Objective: The objective of this study was to develop a smartphone-based endoscope system capable of advanced endoscopic functionalities in a compact size and at an affordable cost and to demonstrate its feasibility of point-of-care through human subject imaging. Methods: We developed and designed to set up a smartphone-based endoscope system, incorporating a portable light source, relay-lens, custom adapter, and homebuilt Android app. We attached three different types of existing rigid or flexible endoscopic probes to our system and captured the endoscopic images using the homebuilt app.
    [Show full text]
  • Optical Calibration System of NIPR for Aurora and Airglow Observations 1
    1 Optical calibration system of NIPR for aurora and airglow observations 2 3 Y. Ogawa1,2,3, A. Kadokura1,2,3, and M. K. Ejiri1,2 4 5 1 National Institute of Polar Research, Japan 6 2 The Graduate University for Advanced Studies (SOKENDAI), Japan 7 3 Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 8 Japan 9 10 11 Abstract 12 13 Calibration of optical instruments is important for accurate measurement of the absolute emission intensity 14 of aurora and airglow. The National Institute of Polar Research (NIPR), Japan, has been operating a facility 15 for the optical calibration which consists of three independent calibration systems to share it with 16 collaborating researchers. This paper introduces an outline of the facility and specifications of each system, 17 calibration procedures, and examples of calibration results. With this facility, we can obtain the calibration 18 data for the absolute sensitivity of optical instruments with an accuracy of about 2% within the wavelength 19 range between 420 and 1050 nm. In addition, it is possible to obtain wavelength characteristics of optical 20 filters and detectors used for aurora and airglow observations. Current facility, upgraded in 2012 has been 21 used by many researchers to calibrate their various optical instruments. 22 23 24 1. Background 25 26 Aurora and airglow phenomena have been studied for a long time. Since their emission intensity is often 27 very weak, it is important that instruments for their observations should have enough sensitivity even for 28 such a weak emission, and they should be calibrated to assure their sensitivity before the observations.
    [Show full text]
  • 1 METAMATERIAL LENS DESIGN by Ralph Hamilton Shepard III
    Metamaterial Lens Design Item Type text; Electronic Dissertation Authors Shepard III, Ralph Hamilton Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 22:36:57 Link to Item http://hdl.handle.net/10150/194734 1 METAMATERIAL LENS DESIGN by Ralph Hamilton Shepard III ____________________________ Copyright © Ralph Hamilton Shepard III 2009 A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Ralph Hamilton Shepard III entitled Metamaterial Lens Design and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ____________________________________________________________Date: 04/23/09 Jose Sasian ____________________________________________________________Date: 04/23/09 John Greivenkamp ____________________________________________________________Date: 04/23/09 Stanley Pau Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final
    [Show full text]
  • Research and Development in Applied Optics and Optical Glass at The
    ' Research and Development in Applied Optics and Optical Glass at the National Bureau of Standards A Review and Bibliography United States Department of Commerce National Bureau of Standards Miscellaneous Publication 194 UNITED STATES DEPARTMENT OF COMMERCE • Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS • E. U. Condon, Director Research and Development in Applied Optics and Opt Glass at the National Bureau of Standards A Review and Bibliography By Irvine C. Gardner and C. H. Hahner National Bureau of Standards Miscellaneous Publication 194 Issued July 15, 1949 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 15 cents Contents Page I. Introduction 1 II. Optical instruments and optical systems 2 1. Refractometry 2 2. Range finders 4 3. Lens design 5 4. Photographic lenses 5 5. Optical shop 7 6. Testing of optical instruments and systems 9 7. Services as consultant 10 III. Optical glass 10 1. Slip-casting of clay melting pots 10 2. Effect of composition on the optical properties of glass 11 3. Annealing of optical glass 12 4. Measiu-ement of physical and optical properties of glasses 12 5. Chemical analysis of glass 13 6. Chemical durability of glasses 13 7. Defects in glass 14 8. Transmission of radiant energy 14 9. Consulting and advisory services 15 10. Testing and specifications 15 IV. Bibliography of Bureau publications 15 1. Optical instruments and optical systems 16 (a) Photogrammetry 1 16 (b) Photographic objectives 16 (c) Design and construction of optical instruments 16 (d) Testing and use of optical instruments 16 (e) Miscellaneous papers on optical instruments - 17 (f) Refractometry 17 2.
    [Show full text]
  • Chapter 2 Afocal Systems
    CHAPTER 2 AFOCAL SYSTEMS William B . Wetherell Optical Research Associates Framingham , Massachusetts 2. 1 GLOSSARY BFL back focal length D pupil diameter ER c p eye relief common pupil position ER k eye relief keplerian e exit pupil ; eye space F , F 9 focal points FFL front focal length h , h 9 object and image heights l , l 9 object and image distances M angular magnification m linear , lateral magnification n refractive index OR object relief o entrance pupil ; object space P , P 9 principal points R radius TTL total length tan a slope x , y , z cartesian coordinates D z axial separation 2. 2 INTRODUCTION If collimated (parallel) light rays from an infinitely distant point source fall incident on the input end of a lens system , rays exiting from the output end will show one of three characteristics : (1) they will converge to a real point focus outside the lens system , (2) they will appear to diverge from a virtual point focus within the lens system , or (3) they will 2 .1 2 .2 OPTICAL ELEMENTS emerge as collimated rays that may dif fer in some characteristics from the incident collimated rays . In cases 1 and 2 , the paraxial imaging properties of the lens system can be modeled accurately by a characteristic focal length and a set of fixed principal surfaces . Such lens systems might be called focusing or focal lenses , but are usually referred to simply as lenses . In case 3 , a single finite focal length cannot model the paraxial characteristics of the lens system ; in ef fect , the focal length is infinite , with the output focal point an infinite distance behind the lens , and the associated principal surface an infinite distance in front of the lens .
    [Show full text]
  • Trade Marks Journal No: 1828 , 18/12/2017 Class 33
    Trade Marks Journal No: 1828 , 18/12/2017 Class 33 3680348 09/06/2017 [International Registration No. : 1375145] BODEGAS VEGA SICILIA, S.A. Carretera Valladolid-Soria, km. 40 E-47359 VALBUENA DE DUERO (Valladolid) Spain Proposed to be Used IR DIVISION Alcoholic beverages (except beers). 7501 Trade Marks Journal No: 1828 , 18/12/2017 Class 34 3677099 18/08/2017 [International Registration No. : 1374519] DONGGUAN LAIFU LICHUANG TRADING CO. , LTD. Suite 1408, No.2 BuiIding, Xinghui Plaza, Hengjiangxia Village, Changping Town, Dongguan City Guangdong China Proposed to be Used IR DIVISION Cigarette tips; cigar cutters; lighters for smokers; tobacco pipes; cigar cases; cigarette cases; cigarette holders; tobacco jars; ashtrays for smokers; matchboxes. 7502 Trade Marks Journal No: 1828 , 18/12/2017 Class 35 Priority claimed from 27/07/2016; Application No. : 87118016 ;United States of America 3529086 17/01/2017 [International Registration No. : 1311963] Powerplay LLC 5331 SW Macadam Avenue, Suite 258, PMB 210 Portland OR 97239 United States of America Proposed to be Used IR DIVISION Providing assessment services for business purposes, namely, preparation of reports about and analysis of individuals pertaining to professional competencies, attributes, and behavioral tendencies. 7503 Trade Marks Journal No: 1828 , 18/12/2017 Class 35 3688536 13/06/2017 [International Registration No. : 1376924] NIHON DENKEI KABUSHIKI KAISHA (NIHON DENKEI Co., Ltd.) 14-12, Ueno 5 chome, Taito-ku Tokyo 110-0005 Japan Proposed to be Used IR DIVISION Commercial intermediation
    [Show full text]
  • A Complete Optical Measurement and Testing System
    ® POWERED BY OPTEST 7 SOFTWARE A Complete Optical Measurement and Testing System ® OpTest System for VIS through LWIR, up to 600mm diameter, for any application LensCheck™ Instrument offered for smaller diameter lenses, low-volume production Understanding Lens and Image Quality Optical design and fabrication engineers understand that lens elements and optical systems are seldom perfect. Despite the presence of the most sophisticated design and manufacturing techniques, lenses can still vary considerably in quality. Optikos is a leader and pioneer in lens and image testing and our products and systems are based on over thirty- five years of experience and innovations in optical engineering. The result is that our customers are able to use the most advanced metrology tools for performing accurate and efficient lens and camera system measurements and improve their product quality and performance. Our flagship lens testing products include the OpTest® Lens Measurement System with a complete range of hardware options, and the LensCheck™ VIS and LWIR instruments—compact systems that are portable and easy-to-use for smaller lenses. Both are powered by OpTest® 7, Optikos® proprietary software. ® WHATEVER YOU DESIGN, YOU CAN MEASURE WITH OPTEST SYSTEMS The OpTest Lens Measurement System includes the latest technologies and innovations in optical and opto- mechanical engineering. Other products on the market typically manufacture their systems around general purpose off-the-shelf lab components, while every step of an Optikos solution is a custom one. OpTest systems are composed of custom optics, mechanics, and electronics designed by Optikos engineers solely for the purpose of lens testing. Optikos offers the most comprehensive product line for lens testing.
    [Show full text]
  • Thin Lenses and Optical Instruments
    1 Thin Lenses and Optical Instruments Equipment 1 meter optical bench with 5 moveable mounts, lighted test object, 3 lens holders, screen, 2 short focal length double convex lenses (L1, E1), 2 medium focal length double convex lenses (L2 and L3), 1 long focal length double convex lens (L4), 1 double concave lens (L5), diopter gauge, meter stick, ruler, flashlight. Purpose To observe the operation of thin lenses and gain experience with the placement and alignment of optical components. To examine and measure real and virtual images in simple optical systems. To measure the focal lengths of double convex and double concave lenses. To understand the operation of simple optical instruments and to construct a simple microscope and telescope. Theory An understanding of lenses as converging or diverging and a classification of their surfaces as concave, convex, or planar is needed for this experiment. The relationship between object distance so , image distance si , and lens focal length, f, is used in several parts of the experiment. The formula relating these quantities is the thin lens equation: 1 1 1 + = . (1) si so f A second formula that is used in parts of this experiment is the magnification of an image. For an object height, y , and an image height, y , the magnification, M, is given by o i y s M = i = i . (2) yo so A significant portion of the experiment involves measuring the focal lengths of different lenses. An instrument commonly used for this purpose is the diopter gauge. The principle of operation of the diopter gauge is based on the lensmaker equation (2).
    [Show full text]
  • Optical Theory Simplified: 9 Fundamentals to Becoming an Optical Genius APPLICATION NOTES
    LEARNING – UNDERSTANDING – INTRODUCING – APPLYING Optical Theory Simplified: 9 Fundamentals To Becoming An Optical Genius APPLICATION NOTES Optics Application Examples Introduction To Prisms Understanding Optical Specifications Optical Cage System Design Examples All About Aspheric Lenses Optical Glass Optical Filters An Introduction to Optical Coatings Why Use An Achromatic Lens www.edmundoptics.com OPTICS APPLICATION EXAMPLES APPLICATION 1: DETECTOR SYSTEMS Every optical system requires some sort of preliminary design. system will help establish an initial plan. The following ques- Getting started with the design is often the most intimidating tions will illustrate the process of designing a simple detector step, but identifying several important specifications of the or emitter system. GOAL: WHERE WILL THE LIGHT GO? Although simple lenses are often used in imaging applications, such as a plano-convex (PCX) lens or double-convex (DCX) in many cases their goal is to project light from one point to lens, can be used. another within a system. Nearly all emitters, detectors, lasers, and fiber optics require a lens for this type of light manipula- Figure 1 shows a PCX lens, along with several important speci- tion. Before determining which type of system to design, an fications: Diameter of the lens (D1) and Focal Length (f). Figure important question to answer is “Where will the light go?” If 1 also illustrates how the diameter of the detector limits the the goal of the design is to get all incident light to fill a detector, Field of View (FOV) of the system, as shown by the approxi- with as few aberrations as possible, then a simple singlet lens, mation for Full Field of View (FFOV): (1.1) D Figure 1: 1 D θ PCX Lens as FOV Limit FF0V = 2 β in Detector Application ƒ Detector (D ) 2 or, by the exact equation: (1.2) / Field of View (β) -1 D FF0V = 2 tan ( 2 ) f 2ƒ For detectors used in scanning systems, the important mea- sure is the Instantaneous Field of View (IFOV), which is the angle subtended by the detector at any instant during scan- ning.
    [Show full text]