Optical Theory Simplified: 9 Fundamentals to Becoming an Optical Genius APPLICATION NOTES

Total Page:16

File Type:pdf, Size:1020Kb

Optical Theory Simplified: 9 Fundamentals to Becoming an Optical Genius APPLICATION NOTES LEARNING – UNDERSTANDING – INTRODUCING – APPLYING Optical Theory Simplified: 9 Fundamentals To Becoming An Optical Genius APPLICATION NOTES Optics Application Examples Introduction To Prisms Understanding Optical Specifications Optical Cage System Design Examples All About Aspheric Lenses Optical Glass Optical Filters An Introduction to Optical Coatings Why Use An Achromatic Lens www.edmundoptics.com OPTICS APPLICATION EXAMPLES APPLICATION 1: DETECTOR SYSTEMS Every optical system requires some sort of preliminary design. system will help establish an initial plan. The following ques- Getting started with the design is often the most intimidating tions will illustrate the process of designing a simple detector step, but identifying several important specifications of the or emitter system. GOAL: WHERE WILL THE LIGHT GO? Although simple lenses are often used in imaging applications, such as a plano-convex (PCX) lens or double-convex (DCX) in many cases their goal is to project light from one point to lens, can be used. another within a system. Nearly all emitters, detectors, lasers, and fiber optics require a lens for this type of light manipula- Figure 1 shows a PCX lens, along with several important speci- tion. Before determining which type of system to design, an fications: Diameter of the lens (D1) and Focal Length (f). Figure important question to answer is “Where will the light go?” If 1 also illustrates how the diameter of the detector limits the the goal of the design is to get all incident light to fill a detector, Field of View (FOV) of the system, as shown by the approxi- with as few aberrations as possible, then a simple singlet lens, mation for Full Field of View (FFOV): (1.1) D Figure 1: 1 D θ PCX Lens as FOV Limit FF0V = 2 β in Detector Application ƒ Detector (D ) 2 or, by the exact equation: (1.2) / Field of View (β) -1 D FF0V = 2 tan ( 2 ) f 2ƒ For detectors used in scanning systems, the important mea- sure is the Instantaneous Field of View (IFOV), which is the angle subtended by the detector at any instant during scan- ning. (1.3) Pixel Size IF0V = ƒ Continue www.edmundoptics.com GOAL: WHERE WILL THE LIGHT GO? (CONT.) D Figure 2: 1 Figure 3: θ Instantaneous FOV β PCX Lens as FOV Limit in Emitter Emitter (D ) FFOV IFOV Detector (D2) 2 Application / Field of View (β) (radians) f Considered in reverse, Figure 1 can also represent an emitting setup will be the premise of the application example. system (Figure 3), with the lens used to collimate the light. This LIGHT TRANSMISSION: HOW MUCH LIGHT EXISTS INITIALLY? Knowing where the light will go is only the first step in design- Correspondingly, this relationship can be mathematically ex- ing a light-projecting system; it is just as important to know pressed according to Equation 1.5. It is important to note that how much light is transmitted from the object, or the source. the larger the Diameter, the smaller the F/#; this allows more The efficiency is based on how much light is received by the light to enter the system. To create the most efficient system, detector, thereby answering the question “How much light it is best to match the emitted cone of light from the source to exists initially?” The Numerical Aperture (NA) and F-number the acceptance cone of the lens, as this avoids over or under (F/#) of a lens measure the amount of light it can collect filling the lens area. based on f, D, index of refraction (n), and Acceptance Angle (θ). Figure 4 illustrates the relationship between F/# and NA. Figure 4: (1.4) DCX Lens Showing F/# and ƒ NA F/# = ( D ) F D (1.5) 1 NA = ( 2(F/#) ) f (1.6) NA =n sinθ ≈nθ OPTICAL THROUGHPUT: HOW MUCH LIGHT GETS THROUGH THE SYSTEM? When using a lens as a tool to transfer light from an emitter affects TP even when the ratio between Diameter and Focal to a detector, it is important to consider Throughput (TP), a Length (specified by F/#) remains constant. quantitative measurement of transmitted light energy. In other words, answering the question “How much light gets through Figure 5 shows the basic definition of throughput (TP) as ex- the system?” dictates the geometry of the lens used and the pressed in Equation 1.7, where A is the Area of the object, configuration of the system. Because emitters and detectors (light source), Ω is the Solid Angle, and z is the Object Distance are areas of light and not point sources, the diameter of a lens (with their conjugates in image space as A’, Ω’, and z’). (1.7) Figure 5: Ω’ 2 DCX Lens Illustrating Through- TP = n AΩ putz Ω A A’ z z’ Need Help? Our team is ready to assist you! www.edmundoptics.com/contactContinue www.edmundoptics.com OPTICAL THROUGHPUT: HOW MUCH LIGHT GETS THROUGH THE SYSTEM? Solid angle is defined as Ω = A/r2, with the area of the lens within the system due to lens aperture limitations. However, surface and the radius (r) being the distance from the lens to some systems benefit from intentional vignetting, as it can the object (z) or image plane (z’), for Ω or Ω’, respectively. eliminate stray light that would negatively affect the quality of the image. It is important to note that properly aligning the The amount of light reaching the detector can be reduced by system reduces stray light and unintentional vignetting. vignetting, which is the result of light being physically blocked ABERRATIONS: HOW DOES THE IMAGE LOOK? Determining how much light passes through the system is im- performance with cost is an important decision for any de- portant, but aberrations within the system also play a major signer. Several basic aberrations, such as coma (variation in role. Answering “How does the image look?” can lead to im- magnification or image size with aperture), spherical (light rays proving the system’s design in order to reduce aberrations and focusing in front of or behind paraxial focus), and astigmatism improve image quality. Aberrations are errors inherent with (having one focus point for horizontal rays and another for ver- any optical system, regardless of fabrication or alignment. tical) can be reduced by a large F/#, as shown in the following Since every optical system contains aberrations, balancing relations. (1.8) (1.10) 1 1 Spherical ∝ (F/#)3 Astigmatism ∝ (F/#) (1.9) 1 Coma ∝ (F/#)2 APPLICATION EXAMPLE: DETECTOR SYSTEM As an example, consider a system in which light is emitted from ●Calculated Parameters a 1/4” diameter fiber optic light guide, as shown in Figure 3. F- Number (F/#) ●Initial Parameters (1.11) NA of Light Guide = 0.55 1 Diameter of Source (Emitter) = 6.35mm NA = 2(F/#) Index of Refraction of Air = 1 1 0.55 = 2(F/#) F/# = 0.9 A PCX lens of F/1, meaning the F/# is 1, would be ideal to place in front of the light guide in order to collimate as much light as possible. According to Equation 1.4, if the F/# is 1, then the diameter and focal length of a lens are equal. In other words, if we consider a lens with a diameter of 12mm, then the focal length is also 12mm. Continue www.edmundoptics.com APPLICATION EXAMPLE: DETECTOR SYSTEM Full Field of View (FFOV) (1.12) 6.35mm D2 Dsource FFOV = = = = 12mm = 0.529 radians ƒ Flens Throughput (TP) (1.13) (1.15) 2 2 6.35mm 2 2 Arealens 113.097mm π ( ) = 31.669mm 2 = 0.7854 steradians Asource = π r = 2 Ω = Radius = (12mm)2 (1.14) 2 π ( 12mm )2 = 113.097mm2 Alens = π r = 2 Steradians correspond to a 2-dimensional angle in 3-dimen- In order to calculate Throughput (TP) of this system, we need sional space, as the angle from the edge to edge of the lens to first calculate the Area of the Source (Equation 1.11), the is in two dimensions. A higher value in steradians is given by Area of the Lens (Equation 1.12) and the Solid Angle (Equa- a shorter distance from emitter to lens, or a larger diameter tion 1.13). As a rule of thumb for collimating light from a di- of the lens. The largest value a solid angle can have is 4π, or vergent source (i.e. the light guide in this example), place the about 12.57, as this would be equivalent to the solid angle of lens a distance equal to one focal length away from the source. all space. (1.16) 2 2 2 TP = n AΩ = (1)(31.669mm )(0.7854steradians) = 24.873mm steradians Since the system is in free space, where n is approximated as 1, n2 does not factor into the final calculation. APPLICATION 2: SELECTING THE RIGHT LENS High image quality is synonymous with low aberrations. As a Figures 6a - 6e compare a variety of lens systems for a relay result, designers often utilize two or more lens elements in or- lens, or 1:1 imaging, application. In this specific example, out- der to obtain higher image quality compared to a single lens lined in the following series of comparisons, it is easy to see solution. Many factors contribute to selecting the right lens for how image quality is affected by the inherent geometry and an application: type of source, space constraints, cost, etc. optical properties of the lenses chosen. Figure 6a: Figure 6b: DCX Lens Relay System: PCX Lens Relay System: 25mm EFL x 20mm En- 50mm EFL x 20mm En- trance Pupil Diameter trance Pupil Diameter (Left is Color and Right (Left is Color and Right is Monochromatic) is Monochromatic) Connect With Us! www.facebook.com/edmundoptics Tech Tuesday, Geeky Friday and More!Continue www.edmundoptics.com APPLICATION 2: SELECTING THE RIGHT LENS (CONT.) Figure 6c: Figure 6d: Achromatic Lens Relay Aspherized Achromatic System: 50mm EFL x Lens Relay System: 20mm Entrance Pupil 50mm EFL x 50mm En- Diameter (Left is Color trance Pupil Diameter and Right is Monochro- (Left is Color and Right matic) is Monochromatic) Figure 6e: Aspheric Lens Relay System: 50mm EFL x 40mm Entrance Pupil Diameter (Left is Color and Right is Monochro- matic) APPLICATION EXAMPLE: SINGLE ELEMENT LENS SYSTEM A double-convex (DCX) lens is regarded as the best single ele- For applications that only need one lens, with the object or ment for 1:1 imaging because of its symmetrical shape, as both source at infinity, a better shape factor can be found, to reduce sides of the lens have equal power, instead of one side bending whichever aberration is most detrimental to the system.
Recommended publications
  • Thermal Shock
    TEACHER INSTRUCTIONS Thermal Shock Objective: To illustrate thermal expansion and thermal shock. Background Information: In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids, the amount of expansion will normally vary depending on the material’s coefficient of thermal expansion. When materials contract, tensile forces are created. When things expand, compressive forces are created. Thermal shock is the name given to cracking as a result of rapid temperature change. From the laboratory standpoint, there are three main types of glass used today: borosilicate, quartz, and soda lime or flint glass. Borosilicate glass is made to withstand thermal shock better than most other glass through a combination of reduced expansion coefficient and greater strength, though fused quartz outperforms it in both respects. Some glass-ceramic materials include a controlled proportion of material with a negative expansion coefficient, so that the overall coefficient can be reduced to almost exactly zero over a reasonably wide range of temperatures. Improving the shock resistance of glass and ceramics can be achieved by improving the strength of the materials or by reducing its tendency to uneven expansion. One example of success in this area is Pyrex, the brand name that is well known to most consumers as cookware, but which is also used to manufacture laboratory glassware. Pyrex traditionally is made with a borosilicate glass with the addition of boron, which prevents shock by reducing the tendency of glass to expand. Demo description: Three different types of glass rods will be heated so that students can observe the amount of thermal shock that occurs.
    [Show full text]
  • Introduction to CODE V: Optics
    Introduction to CODE V Training: Day 1 “Optics 101” Digital Camera Design Study User Interface and Customization 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: [email protected] World Wide Web: http://www.opticalres.com Copyright © 2009 Optical Research Associates Section 1 Optics 101 (on a Budget) Introduction to CODE V Optics 101 • 1-1 Copyright © 2009 Optical Research Associates Goals and “Not Goals” •Goals: – Brief overview of basic imaging concepts – Introduce some lingo of lens designers – Provide resources for quick reference or further study •Not Goals: – Derivation of equations – Explain all there is to know about optical design – Explain how CODE V works Introduction to CODE V Training, “Optics 101,” Slide 1-3 Sign Conventions • Distances: positive to right t >0 t < 0 • Curvatures: positive if center of curvature lies to right of vertex VC C V c = 1/r > 0 c = 1/r < 0 • Angles: positive measured counterclockwise θ > 0 θ < 0 • Heights: positive above the axis Introduction to CODE V Training, “Optics 101,” Slide 1-4 Introduction to CODE V Optics 101 • 1-2 Copyright © 2009 Optical Research Associates Light from Physics 102 • Light travels in straight lines (homogeneous media) • Snell’s Law: n sin θ = n’ sin θ’ • Paraxial approximation: –Small angles:sin θ~ tan θ ~ θ; and cos θ ~ 1 – Optical surfaces represented by tangent plane at vertex • Ignore sag in computing ray height • Thickness is always center thickness – Power of a spherical refracting surface: 1/f = φ = (n’-n)*c
    [Show full text]
  • The Walman Optical Perspective on High Index Lenses
    Optical Perspective of Polycarbonate Material JP Wei, Ph. D. November 2011 Introduction Among the materials developed for eyeglasses, polycarbonate is one that has a number of very unique properties and provides real benefits to eyeglass wearers. Polycarbonate lenses are not only cosmetically thinner, lighter, and provide superior impact-resistance, but also produce sharp optical clarity for both central and peripheral vision. It is well-known that as the index of refraction increases dispersion also increases. In other words, the higher the refractive index, the low the ABBE value. An increase in dispersion will cause an increase in chromatic aberration. Therefore, one of the concerns in the use of lens materials such as polycarbonate is: will chromatic aberration negatively affect patient adaption? MID 1.70 LENS MATERIAL CR39 TRIVEX INDEX POLYCARBONATE 1.67 INDEX INDEX REFRACTIVE INDEX 1.499 1.529 1.558 1.586 1.661 1.700 ABBE VALUES 58 45 37 30 32 36 The refractive index of a material is often abbreviated “n.” Except for air, which has a refractive index of approximately 1, the refractive index of most substances is greater than 1 (n > 1). Water, for instance, has a refractive index of 1.333. The higher the refractive index of a lens material, the slower the light will travel through it. While it is commonly recognized that high index materials will have greater chromatic aberration than CR-39 or low refractive index lenses, there has been no quantification of the amount of visual acuity loss that results from chromatic aberration. The purpose of this paper is to review the optical properties of polycarbonate material, its advantages over other lens materials, and the impact of chromatic aberration caused by the relative low ABBE value of the material on vision and clinical significance.
    [Show full text]
  • Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers Maxime Droques, Benoit Barviau, Alexandre Kudlinski, Géraud Bouwmans and Arnaud Mussot
    Simple Method for Measuring the Zero-Dispersion Wavelength in Optical Fibers Maxime Droques, Benoit Barviau, Alexandre Kudlinski, Géraud Bouwmans and Arnaud Mussot Abstract— We propose a very simple method for measuring the zero-dispersion wavelength of an optical fiber as well as the ratio between the third- and fourth-order dispersion terms. The method is based on the four wave mixing process when pumping the fiber in the normal dispersion region, and only requires the measurement of two spectra, provided that a source tunable near the zero- dispersion wavelength is available. We provide an experimental demonstration of the method in a photonic crystal fiber and we show that the measured zero-dispersion wavelength is in good agreement with a low-coherence interferometry measurement. Index Terms— Photonic crystal fiber, four-wave-mixing, chromatic dispersion, zero-dispersion wavelength. I. INTRODUCTION Group velocity dispersion (GVD) is one of the key characteristics of optical fibers. It is thus important to be able to accurately measure this parameter. The techniques developed to reach this goal can be divided into two main categories: the ones based on linear processes, such as time-of-flight, phase-shift or interferometric measurements [1-4]; and the ones based on nonlinear effects, such as four wave mixing (FWM), mainly [5-8]. The main advantage of these last ones is that the GVD measurement can be made in fiber samples ranging from a few meters up to hundred of meters long, while linear techniques are restricted to either very short samples (in the meter range) or to very long ones (in the kilometer range).
    [Show full text]
  • Determination of Focal Length of a Converging Lens and Mirror
    Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and mirror. Apparatus: Biconvex glass lens, spherical concave mirror, meter ruler, optical bench, lens holder, self-illuminated object (generally a vertical arrow), screen. Background In class you have studied the physics of thin lenses and spherical mirrors. In today's lab, we will analyze several physical configurations using both biconvex lenses and concave mirrors. The components of the experiment, that is, the optics device (lens or mirror), object and image screen, will be placed on a meter stick and may be repositioned easily. The meter stick is used to determine the position of each component. For our object, we will make use of a light source with some distinguishing marking, such as an arrow or visible filament. Light from the object passes through the lens and the resulting image is focused onto a white screen. One characteristic feature of all thin lenses and concave mirrors is the focal length, f, and is defined as the image distance of an object that is positioned infinitely far way. The focal lengths of a biconvex lens and a concave mirror are shown in Figures 1 and 2, respectively. Notice the incoming light rays from the object are parallel, indicating the object is very far away. The point, C, in Figure 2 marks the center of curvature of the mirror. The distance from C to any point on the mirror is known as the radius of curvature, R.
    [Show full text]
  • Tauc-Lorentz Dispersion Formula
    TN11 Tauc-Lorentz Dispersion Formula Spectroscopic ellipsometry (SE) is a technique based on the measurement of the relative phase change of re- flected and polarized light in order to characterize thin film optical functions and other properties. The meas- ured SE data are used to describe a model where layers refer to given materials. The model uses mathematical relations called dispersion formulae that help to evaluate the material’s optical properties by adjusting specific fit parameters. This technical note deals with Tauc-Lorentz dispersion formula. Theoretical model The real part εr,TL of the dielectric function is derived from the expression of εi using the Kramers-Kronig integration. Jellison and Modine developed this model (1996) using Then, it comes the following expression for εi: the Tauc joint density of states and the Lorentz oscillator. The complex dielectric function is : 2 ∞ ξ ⋅ε ()ξ ε ()E = ε ()∞ + ⋅ P ⋅ i dξ ()5 ~ε =ε + i ⋅ε =ε + i ⋅(ε × ε ) (1) r r π ∫ ξ 2 − E 2 TL r,TL i,TL r,TL i,T i, L Eg Here the imaginary part εi,TL of the dielectric function is where P is the Cauchy principal value containing the resi- given by the product of imaginary part of Tauc’s (1966) dues of the integral at poles located on lower half of the dielectric εi,T function with Lorentz one εi,L. In the approx- complex plane and along the real axis. imation of parabolic bands, Tauc’s dielectric function de- According to Jellison and Modine (Ref. 1), the derivation scribes inter-band transitions above the band edge as : of the previous integral yields : E − E 2 ⎛ g ⎞ 2 2 εi,T ()E > Eg = AT ⋅⎜ ⎟ ()2 A⋅C ⋅a ⎡ E + E + α ⋅ E ⎤ ⎜ E ⎟ ln 0 g g ⎝ ⎠ εr,TL ()E = ε∞ + 4 ⋅ln⎢ 2 2 ⎥ where : 2⋅π ⋅ζ ⋅α ⋅ E0 ⎣⎢ E0 + Eg − α ⋅ Eg ⎦⎥ -A is the Tauc coefficient T A a ⎡ ⎛ 2⋅ E + α ⎞ - E is the photon energy − ⋅ a tan ⋅ π − arctan⎜ g ⎟ + 4 ⎢ ⎜ ⎟ K -Eg is the optical band gap π ζ ⋅ E0 ⎣ ⎝ C ⎠ The imaginary part of Tauc’s dielectric function gives the ⎛ α − 2⋅ E ⎞⎤ response of the material caused by inter-band mecha- g + arctan⎜ ⎟⎥ nisms only : thus εi, T (E ≤ Eg) = 0.
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • The American Ceramic Society 25Th International Congress On
    The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings.
    [Show full text]
  • How Does the Light Adjustable Lens Work? What Should I Expect in The
    How does the Light Adjustable Lens work? The unique feature of the Light Adjustable Lens is that the shape and focusing characteristics can be changed after implantation in the eye using an office-based UV light source called a Light Delivery Device or LDD. The Light Adjustable Lens itself has special particles (called macromers), which are distributed throughout the lens. When ultraviolet (UV) light from the LDD is directed to a specific area of the lens, the particles in the path of the light connect with other particles (forming polymers). The remaining unconnected particles then move to the exposed area. This movement causes a highly predictable change in the curvature of the lens. The new shape of the lens will match the prescription you selected during your eye exam. What should I expect in the period after cataract surgery? Please follow all instructions provided to you by your eye doctor and staff, including wearing of the UV-blocking glasses that will be provided to you. As with any cataract surgery, your vision may not be perfect after surgery. While your eye doctor selected the lens he or she anticipated would give you the best possible vision, it was only an estimate. Fortunately, you have selected the Light Adjustable Lens! In the next weeks, you and your eye doctor will work together to optimize your vision. Please make sure to pay close attention to your vision and be prepared to discuss preferences with your eye doctor. Why do I have to wear UV-blocking glasses? The UV-blocking glasses you are provided with protect the Light Adjustable Lens from UV light sources other than the LDD that your doctor will use to optimize your vision.
    [Show full text]
  • Chapter 22 Reflection and Refraction of Light
    Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501.
    [Show full text]
  • Subwavelength Resolution Fourier Ptychography with Hemispherical Digital Condensers
    Subwavelength resolution Fourier ptychography with hemispherical digital condensers AN PAN,1,2 YAN ZHANG,1,2 KAI WEN,1,3 MAOSEN LI,4 MEILING ZHOU,1,2 JUNWEI MIN,1 MING LEI,1 AND BAOLI YAO1,* 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710071, China 4Xidian University, Xi’an 710071, China *[email protected] Abstract: Fourier ptychography (FP) is a promising computational imaging technique that overcomes the physical space-bandwidth product (SBP) limit of a conventional microscope by applying angular diversity illuminations. However, to date, the effective imaging numerical aperture (NA) achievable with a commercial LED board is still limited to the range of 0.3−0.7 with a 4×/0.1NA objective due to the constraint of planar geometry with weak illumination brightness and attenuated signal-to-noise ratio (SNR). Thus the highest achievable half-pitch resolution is usually constrained between 500−1000 nm, which cannot fulfill some needs of high-resolution biomedical imaging applications. Although it is possible to improve the resolution by using a higher magnification objective with larger NA instead of enlarging the illumination NA, the SBP is suppressed to some extent, making the FP technique less appealing, since the reduction of field-of-view (FOV) is much larger than the improvement of resolution in this FP platform. Herein, in this paper, we initially present a subwavelength resolution Fourier ptychography (SRFP) platform with a hemispherical digital condenser to provide high-angle programmable plane-wave illuminations of 0.95NA, attaining a 4×/0.1NA objective with the final effective imaging performance of 1.05NA at a half-pitch resolution of 244 nm with a wavelength of 465 nm across a wide FOV of 14.60 mm2, corresponding to an SBP of 245 megapixels.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]