Russian Capsule Carrying 3 Docks with Space Station (Update) 21 July 2019

Total Page:16

File Type:pdf, Size:1020Kb

Russian Capsule Carrying 3 Docks with Space Station (Update) 21 July 2019 Russian capsule carrying 3 docks with space station (Update) 21 July 2019 been aboard since March. The crew patch for the expedition echoes the one from Apollo 11's 1969 lunar mission. Italian astronaut Luca Parmitano, member of the main crew of the expedition to the International Space Station (ISS), gestures to his relatives from a bus prior the launch of Soyuz MS-13 space ship at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/, Pool) Italian astronaut Luca Parmitano, member of the main crew of the expedition to the International Space Station (ISS), gestures to his relatives from a bus prior the launch of Soyuz MS-13 space ship at the Russian leased A Russian space capsule with three astronauts Baikonur cosmodrome, Kazakhstan, Saturday, July 20, aboard has docked with the International Space 2019. (AP Photo/, Pool) Station after a fast-track trip to the orbiting laboratory. The Soyuz capsule docked at 22:48 GMT Saturday, just six hours and 20 minutes after blasting off from Russia's launch complex in Baikonur, Kazakhstan. The launch took place on the 50th anniversary of the day U.S. astronauts landed on the moon. The capsule is carrying Andrew Morgan of the United States on his first spaceflight, Russian Alexander Skvortsov on his third mission to the space station and Italian Luca Parmitano. They will join Russian Alexey Ovchinin and Americans Nick Hague and Christina Koch have From left: U.S. astronaut Andrew Morgan, Russian 1 / 5 cosmonaut Alexander Skvortsov and Italian astronaut crew of the expedition to the International Space Station Luca Parmitano, members of the main crew of the (ISS), gestures, prior to the launch of Soyuz MS-13 expedition to the International Space Station (ISS), walk space ship at the Russian leased Baikonur cosmodrome, prior the launch of Soyuz MS-13 space ship at the Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Russian leased Baikonur cosmodrome, Kazakhstan, Lovetsky) Saturday, July 20, 2019. (AP Photo/Yuri Kochetkov, Pool) U.S. astronaut Andrew Morgan, member of the main crew of the expedition to the International Space Station U.S. astronaut Andrew Morgan, Russian cosmonaut (ISS), gestures to his relatives from a bus prior the Alexander Skvortsov Italian astronaut Luca Parmitano, launch of Soyuz MS-13 space ship at the Russian leased member of the main crew of the expedition to the Baikonur cosmodrome, Kazakhstan, Saturday, July 20, International Space Station (ISS), wave to their relatives 2019. (AP Photo/, Pool) boarding to a bus prior the launch of Soyuz MS-13 space ship at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Yuri Kochetkov, Pool) From left: U.S. astronaut Andrew Morgan, Russian cosmonaut Alexander Skvortsov and Italian astronaut Luca Parmitano, members of the main crew of the expedition to the International Space Station (ISS), report to head or Russian space agency Dmitry Rogozin prior Italian astronaut Luca Parmitano, member of the main the launch of Soyuz MS-13 space ship at the Russian 2 / 5 leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Kirill Kudryavtsev, Pool) Italian astronaut Luca Parmitano, member of the main crew of the expedition to the International Space Station (ISS), gestures prior to the launch of Soyuz MS-13 space ship at the Russian leased Baikonur cosmodrome, U.S. astronaut Andrew Morgan, left, and Russian Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri cosmonaut Alexander Skvortsov speak prior to the Lovetsky) launch of Soyuz-FG rocket at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Lovetsky) U.S. astronaut Andrew Morgan, speaks with his relatives through the safety glass prior the launch of Soyuz-FG rocket at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Italian astronaut Luca Parmitano, member of the main Lovetsky) crew of the expedition to the International Space Station (ISS), gestures prior the launch of Soyuz MS-13 space ship at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Lovetsky) 3 / 5 Russian Space Agency experts help U.S. astronaut Italian astronaut Luca Parmitano, member of the main Andrew Morgan, member of the main crew of the crew of the expedition to the International Space Station expedition to the International Space Station (ISS), to (ISS), gestures prior to the launch of Soyuz MS-13 space stand up after inspecting his space suit prior the launch ship at the Russian leased Baikonur cosmodrome, of Soyuz MS-13 space ship at the Russian leased Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Baikonur cosmodrome, Kazakhstan, Saturday, July 20, Lovetsky) 2019. (AP Photo/Dmitri Lovetsky, Pool) © 2019 The Associated Press. All rights reserved. U.S. astronaut Andrew Morgan, crew member of the mission to the International Space Station, ISS, waves as he boards prior to the launch of Soyuz-FG rocket at the Russian leased Baikonur cosmodrome, Kazakhstan, Saturday, July 20, 2019. (AP Photo/Dmitri Lovetsky, Pool) 4 / 5 APA citation: Russian capsule carrying 3 docks with space station (Update) (2019, July 21) retrieved 25 September 2021 from https://phys.org/news/2019-07-american-italian-russian-blast-iss.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 5 / 5 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • NASA Astronaut Describes Close Call Following Failed Launch 16 October 2018, by Marcia Dunn
    NASA astronaut describes close call following failed launch 16 October 2018, by Marcia Dunn It was the first aborted launch for the Russians in 35 years and only the third in history. Like each one before, the rocket's safety system kept the crew alive. Hague—the first American to experience a launch abort like this—communicated in Russian throughout the more than half-hour ordeal. "All of my instincts and reflexes inside the capsule are to speak Russian," said Hague, who had two years of training in Russia. "We knew that if we wanted to be successful, we In this frame from video from NASA TV, NASA astronaut needed to stay calm and we needed to execute the Nick Hague, who survived the Oct. 11, 2018, failed procedures in front of us as smoothly and efficiently launch and emergency landing, speaks Tuesday, Oct. as we could," Hague told The Associated Press 16, 2018, from the NASA Johnson Space Center in from Houston. Houston. Hague and Russian Alexei Ovchinin were two minutes into their flight last Thursday from Kazakhstan to the International Space Station when the Soyuz rocket The astronauts experienced a few moments of failed. (NASA TV via AP) weightlessness after their Soyuz capsule catapulted away from the rocket. Hague, making his first launch, saw the curvature of Earth and the blackness of space. The NASA astronaut who survived last week's failed launch and emergency landing knew he Between the abort and touchdown, Hague looked needed to stay calm. out the window to make sure the capsule's systems were operating properly and to check their landing.
    [Show full text]
  • Rex D. Hall and David J. Shayler
    Rex D. Hall and David J. Shayler Soyuz A Universal Spacecraft ruuiiMicPublishedu 11in1 aaaundiiuiassociationi witwimh ^^ • Springer Praxis Publishing PRHB Chichester, UK "^UF Table of contents Foreword xvii Authors' preface xix Acknowledgements xxi List of illustrations and tables xxiii Prologue xxix ORIGINS 1 Soviet manned spaceflight after Vostok 1 Design requirements 1 Sever and the 1L: the genesis of Soyuz 3 The Vostok 7/1L Soyuz Complex 4 The mission sequence of the early Soyuz Complex 6 The Soyuz 7K complex 7 Soyuz 7K (Soyuz A) design features 8 The American General Electric concept 10 Soyuz 9K and Soyuz 1 IK 11 The Soyuz Complex mission profile 12 Contracts, funding and schedules 13 Soyuz to the Moon 14 A redirection for Soyuz 14 The N1/L3 lunar landing mission profile 15 Exploring the potential of Soyuz 16 Soyuz 7K-P: a piloted anti-satellite interceptor 16 Soyuz 7K-R: a piloted reconnaissance space station 17 Soyuz VI: the military research spacecraft Zvezda 18 Adapting Soyuz for lunar missions 20 Spacecraft design changes 21 Crewing for circumlunar missions 22 The Zond missions 23 The end of the Soviet lunar programme 33 The lunar orbit module (7K-LOK) 33 viii Table of contents A change of direction 35 References 35 MISSION HARDWARE AND SUPPORT 39 Hardware and systems 39 Crew positions 40 The spacecraft 41 The Propulsion Module (PM) 41 The Descent Module (DM) 41 The Orbital Module (OM) 44 Pyrotechnic devices 45 Spacecraft sub-systems 46 Rendezvous, docking and transfer 47 Electrical power 53 Thermal control 54 Life support 54
    [Show full text]
  • Biographical Data
    Biographical Data Lyndon B. Johnson Space Center National Aeronautics and Houston, Texas 77058 Space Administration February 2016 SCOTT J. KELLY (CAPTAIN, USN, RET.) NASA ASTRONAUT Pronunciation: SKOT KEH-lee Follow Scott on Twitter Follow Scott on Instagram Follow Scott on Facebook PERSONAL DATA: Born February 21, 1964 in Orange, New Jersey. He has two children. EDUCATION: Graduated from Mountain High School, West Orange, New Jersey, in 1982; received a Bachelor of Science degree in Electrical Engineering from the State University of New York Maritime College in 1987 and a Master of Science degree in Aviation Systems from the University of Tennessee, Knoxville, in 1996. Click photo for downloadable high-res version ORGANIZATIONS: Associate Fellow, Society of Experimental Test Pilots; Member, Association of Space Explorers SPECIAL HONORS: Two Defense Superior Service Medals, Legion of Merit, Distinguished Flying Cross, Navy Commendation Medal, Navy Achievement Medal, two Navy Unit Commendations, National Defense Service Medal, Southwest Asia Service Medal, Kuwait Liberation Medal, Sea Service Deployment Ribbon, NASA Distinguished Service Medal, NASA Exceptional Service Medal, NASA Outstanding Leadership Medal, three NASA Space Flight Medals, Russian Federation Medal for merit in Space Exploration. Korolev Diploma from the Federation Aeronautique Internationale, 1999. Honorary Doctorate of Science degree from the State University of New York, 2008. EXPERIENCE: Kelly received his commission from the State University of New York Maritime College in May 1987 and was designated a naval aviator in July 1989 at Naval Air Station (NAS) in Beeville, Texas. He then reported to Fighter Squadron 101 at NAS Oceana, Virginia Beach, Virginia, for initial F-14 Tomcat training.
    [Show full text]
  • Building and Maintaining the International Space Station (ISS)
    / Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance
    [Show full text]
  • NASA-TV-Schedule-For-Week-Of 4-5-2021
    NASA TV Daily Program Schedule Monday - 4/5/2021 Eastern Daylight Time 12 a.m. Automatic Collision Avoidance Technology 12 a.m. 12:30 a.m. Astrobiology in the Field 12:30 a.m. 1 a.m. Tech On Deck 1 a.m. 1:30 a.m. Bridge to Space 1:30 a.m. 2 a.m. First Light - Chandra 2 a.m. 2:30 a.m. Hubble - Eye in the Sky miniseries 2:30 a.m. 3 a.m. KORUS AQ 3 a.m. 3:30 a.m. Mercury Control Center 3:30 a.m. 4 a.m. Automatic Collision Avoidance Technology 4 a.m. 4:30 a.m. Astrobiology in the Field 4:30 a.m. 5 a.m. Tech On Deck 5 a.m. 5:30 a.m. Bridge to Space 5:30 a.m. 6 a.m. 6 a.m. 6:30 a.m. Coverage of the Relocation of the SpaceX Crew Dragon “Resilience” from the ISS Harmony 6:30 a.m. 7 a.m. forward port to the Harmony zenith port 7 a.m. 7:30 a.m. 7:30 a.m. 8 a.m. 8 a.m. The von Karman Lecture Series - Helicopters in Space 8:30 a.m. 8:30 a.m. 9 a.m. NASA STEM Stars: Program Manager for Webb Space Telescope 9 a.m. 9:30 a.m. STS-41-C Mission Highlights 9:30 a.m. 10 a.m. Automatic Collision Avoidance Technology 10 a.m. 10:30 a.m. Astrobiology in the Field 10:30 a.m. 11 a.m.
    [Show full text]
  • US-Russian Crew Blasts Off to International Space Station 14 March 2019, by Vladimir Isachenkov and Dmitry Lovetsky
    US-Russian crew blasts off to International Space Station 14 March 2019, by Vladimir Isachenkov And Dmitry Lovetsky On Oct. 11, a Soyuz that Hague and Ovchinin were riding in failed two minutes into its flight, activating a rescue system that allowed their capsule to land safely. That accident was the first aborted crew launch for the Russian space program since 1983, when two Soviet cosmonauts safely jettisoned after a launch pad explosion. NASA Administrator Jim Bridenstine congratulated the crew on a successful launch. "So proud of Nick Hague for persevering through last October's launch that didn't go as planned," he tweeted. Speaking at a pre-launch news conference at Baikonur, the crew said they trusted the rocket and U.S. astronauts Christina Hammock Koch, centre, Nick fully believed in the success of their mission. Hague, above, and Russian cosmonaut Alexey Ovchinin, crew members of the mission to the International Space Station, ISS, wave as they board to the rocket prior the launch of Soyuz-FG rocket at the Russian leased Baikonur cosmodrome, Kazakhstan, Thursday, March 14, 2019. (AP Photo/Kyrill Kudryavtsev, Pool) A Russian-American crew of three blasted off to the International Space Station early Friday, making a second attempt to reach the outpost after October's aborted launch. A Russian Soyuz rocket carrying NASA astronauts U.S. astronauts Christina Hammock Koch, left, Nick Nick Hague and Christina Koch along with Hague, right, and Russian cosmonaut Alexey Ovchinin, Roscosmos' Alexei Ovchinin lifted off as planned members of the main crew to the International Space from the Baikonur cosmodrome in Kazakhstan at Station (ISS), pose near a bus prior to the launch of the 12:14 a.m.
    [Show full text]
  • Please Type Your Paper Title Here In
    Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway.
    [Show full text]
  • Expedition 59
    INTERNATIONAL SPACE STATION EXPEDITION 59 Soyuz MS-11 Launch: December 3, 2018 Soyuz MS-12 Launch: March, 2019 Landing: June, 2019 Landing: September, 2019 ANN McCLAIN (NASA) CHRISTINA KOCH (NASA) Flight Engineer Flight Engineer Born: Spokane, Washington Born: Grand Rapids, Michigan Interests: Weightlifting, rugby, golf, Interests: Backpacking, rock biking, fitness training and running climbing, paddling and sailing Spaceflights: First flight Spaceflights: First Flight Bio: https://go.nasa.gov/2s8ryrB Bio: https://go.nasa.gov/2QCRHbX Twitter: @AstroAnnimal Twitter: @Astro_Christina DAVID SAINT-JACQUES (CSA) NICK HAGUE (NASA) Flight Engineer Flight Engineer Born: Saint-Lambert, Quebec Born: Belleville, Kansas Interests: Mountaineering, cycling, Interests: Exercise, flying, snow skiing skiing and sailing and scuba Spaceflights: First flight Spaceflights: Soyuz MS-10 Bio: https://go.nasa.gov/2VBcqAu Bio: https://go.nasa.gov/2Qz3qZ1 Twitter: @Astro_DavidS Twitter: @AstroHague OLEG KONONENKO (Roscosmos) ALEXEY OVCHININ (Roscosmos) Commander Flight Engineer Born: Türkmenabat, Turkmenistan Born: Rybinsk, Russia Spaceflights: Exp. 17, 30/31, 44/45 Spaceflights: Exp 47/48 Bio: https://go.nasa.gov/2QviZ3S Bio: https://go.nasa.gov/2QAQBgu Twitter: Text EXPEDITION Expedition 59 began in March 2019 and ends in June 2019. This expedition will include research investigations and technology demonstrations not possible on Earth to advance scientific knowledge of 59 Earth, space, physical and biological sciences. During Expedition 59, researchers will use tissue chips to study changes in the human body caused by microgravity, conduct research on regolith simulants in the Hermes research facility, test free-flying robots inside the station and study the complex dynamics of the Earth’s atmospheric carbon cycle using the Orbiting Carbon Observatory 3 space instrument.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • SPACENEWS Soyuz MS-02 Article
    Soyuz capsule suffered partial depressurization during April landing - SpaceNews.com Soyuz capsule sufered partial depressurization during April landing by Jeff Foust — October 17, 2017 The Soyuz MS-02 capsule descends under its main parachute prior to landing in Kazakhstan in April 2017. An issue with the parachute's deployment caused a partial loss of pressurization inside the capsule. Credit: NASA/Bill Ingalls WASHINGTON — A Soyuz spacecraft returning three people to Earth in April experienced a partial loss of pressure during the fnal stages of its descent, but did not put the crew’s lives in danger. The incident, revealed during an Oct. 16 meeting of NASA’s International Space Station Advisory Committee, is one of a series of events that have raised questions about the reliability of Russian vehicles supporting the station. During the committee meeting, chairman Thomas Staford, a former astronaut, said the incidentPrivacy took - Terms https://spacenews.com/soyuz-capsule-suffered-partial-depressurization-during-april-landing/[7/18/2019 4:23:09 PM] Soyuz capsule suffered partial depressurization during April landing - SpaceNews.com place when the main parachute of the Soyuz spacecraft deployed about eight kilometers above the landing site in Kazakhstan. A buckle that is part of the parachute system struck the capsule. “The buckle struck a welding seam and, as a result, there was a depressurizing event that resulted in some air escaping the capsule,” he said. Staford didn’t identify the specifc mission where this took place, other than to say that it happened in April of this year. The only Soyuz spacecraft to return to Earth that month was Soyuz MS-02, which landed April 10.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]