Acoustic Impedance of Classical and Modern Flutes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flutes, Festivities, and Fragmented Tradition: a Study of the Meaning of Music in Otavalo
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2012 Flutes, Festivities, and Fragmented Tradition: A Study of the Meaning of Music in Otavalo Brenna C. Halpin Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Ethnomusicology Commons Recommended Citation Halpin, Brenna C., "Flutes, Festivities, and Fragmented Tradition: A Study of the Meaning of Music in Otavalo" (2012). Master's Theses. 50. https://scholarworks.wmich.edu/masters_theses/50 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. (/AV%\ C FLUTES, FESTIVITIES, AND FRAGMENTED TRADITION: A STUDY OF THE MEANING OF MUSIC IN OTAVALO by: Brenna C. Halpin A Thesis Submitted to the Faculty ofThe Graduate College in partial fulfillment ofthe requirements for the Degree ofMaster ofArts School ofMusic Advisor: Matthew Steel, Ph.D. Western Michigan University Kalamazoo, Michigan April 2012 THE GRADUATE COLLEGE WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN Date February 29th, 2012 WE HEREBY APPROVE THE THESIS SUBMITTED BY Brenna C. Halpin ENTITLED Flutes, Festivities, and Fragmented Tradition: A Study of the Meaning of Music in Otavalo AS PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE Master of Arts DEGREE OF _rf (7,-0 School of Music (Department) Matthew Steel, Ph.D. Thesis Committee Chair Music (Program) Martha Councell-Vargas, D.M.A. Thesis Committee Member Ann Miles, Ph.D. Thesis Committee Member APPROVED Date .,hp\ Too* Dean of The Graduate College FLUTES, FESTIVITIES, AND FRAGMENTED TRADITION: A STUDY OF THE MEANING OF MUSIC IN OTAVALO Brenna C. -
A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner
A Comparison Study of Normal-Incidence Acoustic Impedance Measurements of a Perforate Liner Todd Schultz1 The Mathworks, Inc, Natick, MA 01760 Fei Liu,2 Louis Cattafesta, Mark Sheplak3 University of Florida, Gainesville, FL 32611 and Michael Jones4 NASA Langley Research Center, Hampton, VA 23681 The eduction of the acoustic impedance for liner configurations is fundamental to the reduction of noise from modern jet engines. Ultimately, this property must be measured accurately for use in analytical and numerical propagation models of aircraft engine noise. Thus any standardized measurement techniques must be validated by providing reliable and consistent results for different facilities and sample sizes. This paper compares normal- incidence acoustic impedance measurements using the two-microphone method of ten nominally identical individual liner samples from two facilities, namely 50.8 mm and 25.4 mm square waveguides at NASA Langley Research Center and the University of Florida, respectively. The liner chosen for this investigation is a simple single-degree-of-freedom perforate liner with resonance and anti-resonance frequencies near 1.1 kHz and 2.2 kHz, respectively. The results show that the ten measurements have the most variation around the anti-resonance frequency, where statistically significant differences exist between the averaged results from the two facilities. However, the sample-to-sample variation is comparable in magnitude to the predicted cross-sectional area-dependent cavity dissipation differences between facilities, providing evidence that the size of the present samples does not significantly influence the results away from anti-resonance. I. Introduction ODERN turbofan engines rely on acoustic liners to suppress engine noise and meet community noise Mstandards. -
Physics of Ultrasound TI Precision Labs – Ultrasonic Sensing
Physics of Ultrasound TI Precision Labs – Ultrasonic Sensing Presented by Akeem Whitehead Prepared by Akeem Whitehead Definition of Ultrasound Sound Frequency Spectrum Ultrasound is defined as: • sound waves with a frequency above the upper limit of human hearing at -destructive testing EarthquakeVolcano Human hearing Animal hearingAutomotiveWater park level assist sensingLiquid IdentificationMedical diagnosticsNon Acoustic microscopy 20kHz. • having physical properties that are 0 20 200 2k 20k 200k 2M 20M 200M identical to audible sound. • a frequency some animals use for Infrasound Audible Ultrasound navigation and echo location. This content will focus on ultrasonic systems that use transducers operating between 20kHz up to several GHz. >20kHz 2 Acoustics of Ultrasound When ultrasound is a stimulus: When ultrasound is a sensation: Generates and Emits Ultrasound Wave Detects and Responds to Ultrasound Wave 3 Sound Propagation Ultrasound propagates as: • longitudinal waves in air, water, plasma Particles at Rest • transverse waves in solids The transducer’s vibrating diaphragm is the source of the ultrasonic wave. As the source vibrates, the vibrations propagate away at the speed of sound to Longitudinal Wave form a measureable ultrasonic wave. Direction of Particle Motion Direction of The particles of the medium only transport the vibration is Parallel Wave Propagation of the ultrasonic wave, but do not travel with the wave. The medium can cause waves to be reflected, refracted, or attenuated over time. Transverse Wave An ultrasonic wave cannot travel through a vacuum. Direction of Particle Motion λ is Perpendicular 4 Acoustic Properties 100 90 Ultrasonic propagation is affected by: 80 1. Relationship between density, pressure, and temperature 70 to determine the speed of sound. -
2018 Available in Carbon Fibre
NFAc_Obsession_18_Ad_1.pdf 1 6/4/18 3:56 PM Brannen & LaFIn Come see how fast your obsession can begin. C M Y CM MY CY CMY K Booth 301 · brannenutes.com Brannen Brothers Flutemakers, Inc. HANDMADE CUSTOM 18K ROSE GOLD TRY ONE TODAY AT BOOTH #515 #WEAREVQPOWELL POWELLFLUTES.COM Wiseman Flute Cases Compact. Strong. Comfortable. Stylish. And Guaranteed for life. All Wiseman cases are hand- crafted in England from the Visit us at finest materials. booth 408 in All instrument combinations the exhibit hall, supplied – choose from a range of lining colours. Now also NFA 2018 available in Carbon Fibre. Orlando! 00 44 (0)20 8778 0752 [email protected] www.wisemanlondon.com MAKE YOUR MUSIC MATTER Longy has created one of the most outstanding flute departments in the country! Seize the opportunity to study with our world-class faculty including: Cobus du Toit, Antero Winds Clint Foreman, Boston Symphony Orchestra Vanessa Breault Mulvey, Body Mapping Expert Sergio Pallottelli, Flute Faculty at the Zodiac Music Festival Continue your journey towards a meaningful life in music at Longy.edu/apply TABLE OF CONTENTS Letter from the President ................................................................... 11 Officers, Directors, Staff, Convention Volunteers, and Competition Committees ................................................................ 14 From the Convention Program Chair ................................................. 21 2018 Lifetime Achievement and Distinguished Service Awards ........ 22 Previous Lifetime Achievement and Distinguished -
Musical Origins and the Stone Age Evolution of Flutes
Musical Origins and the Stone Age Evolution of Flutes When we, modern humans, emerged from Africa and colonized Europe Jelle Atema 45,000 years ago, did we have flutes in fist and melodies in mind? Email: [email protected] Introduction Music is an intensely emotional subject and the origins of music have fascinated Postal: people for millennia, going back to early historic records. An excellent review can Boston University be found in “Dolmetsch Online” (http://www.dolmetsch.com/musictheory35. Biology Department htm). Intense debates in the late 19th and early 20th century revolved around the 5 Cummington Street origins of speech and music and which came first. Biologist Charles Darwin, befit- Boston, MA 02215 ting his important recognition of evolution by sexual selection, considered that music evolved as a courtship display similar to bird song; he also felt that speech derived from music. Musicologist Spencer posited that music derived from the emotional content of human speech. The Darwin–Spencer debate (Kivy, 1959) continues unresolved. During the same period the eminent physicist Helmholtz- following Aristotle-studied harmonics of sound and felt that music distinguished itself from speech by its “fixed degree in the scale” (Scala = stairs, i.e. discrete steps) as opposed to the sliding pitches (“glissando”) typical of human speech. As we will see, this may not be such a good distinction when analyzing very early musi- cal instruments with our contemporary bias toward scales. More recent symposia include “The origins of music” (Wallin et al., 2000) and “The music of nature and the nature of music” (Gray et al., 2001). -
Some Acoustic Characteristics of the Tin Whistle
Proceedings of the Institute of Acoustics SOME ACOUSTIC CHARACTERISTICS OF THE TIN WHISTLE POAL Davies ISVR, University of Southampton, Southampton, UK J Pinho ISVR, Southampton University, Southampton, UK EJ English ISVR, Southampton University, Southampton, UK 1 INTRODUCTION The sustained excitation of a tuned resonator by shed vorticity in a separating shear layer 1 or the whistling produced by the impingement of thin fluid jets on an edge 2 have both been exploited by the makers of musical instruments from time immemorial. Familiar examples include panpipes, recorders, flutes, organ flue pipes 13 , and so on. Over the centuries, the acquisition of the necessary knowledge and skill for their successful production must have been laboriously accomplished by much trial and error. A more physically explicit understanding of the basic controlling mechanisms began to emerge during the great upsurge in scientific observation and discovery from the mid19th century, as this was also accompanied by the relevant developments in physics, acoustics and fluid mechanics. These mechanisms can take several forms, depending on subtle differences in local and overall geometric detail and its relation to the magnitude, direction and distribution of any flow that is generating sound. One such form includes many examples of reverberant systems, where separating shear layers 3,4 provide the conditions where this coupled flow acoustic behaviour may occur. It is well known 14 that whenever a flow leaves a downstream facing edge it separates, forming a thin shear layer or vortex sheet. Such sheets, which involve high transverse velocity gradients, are very unstable and rapidly develop waves 14 . -
Resonance Modes of a Flute with One Open Tone Hole
Acoust. Sci. & Tech. 38, 1 (2017) #2017 The Acoustical Society of Japan PAPER Resonance modes of a flute with one open tone hole Seiji Adachià Department of Acoustics, Fraunhofer Institute for Building Physics, Nobelstr. 12, 70569 Stuttgart, Germany (Received 1 September 2015, Accepted for publication 3 August 2016) Abstract: A minimal model explaining intonation anomaly, or pitch sharpening, which can sometimes be found in baroque flutes, recorders, shakuhachis etc. played with cross-fingering, is presented. In this model, two bores above and below an open tone hole are coupled through the hole. This coupled system has two resonance frequencies !Æ, which are respectively higher and lower than those of the upper and lower bores !U and !L excited independently. The !Æ differ even if !U ¼ !L. The normal effect of cross-fingering, i.e., pitch flattening, corresponds to excitation of the !À-mode, which occurs when !L ’ !U and the admittance peak of the !À-mode is higher than or as high as that of the !þ-mode. Excitation of the !þ-mode yields intonation anomaly. This occurs when !L / !U and the peak of the !þ-mode becomes sufficiently high. With an extended model having three degrees of freedom, pitch bending of the recorder played with cross-fingering in the second register has been reasonably explained. Keywords: Cross fingering, Pitch bending, Intonation anomaly, Avoided crossing PACS number: 43.75.Qr, 43.20.Ks, 43.75.Ef [doi:10.1250/ast.38.14] electrical circuits etc. In Gough [6], a string coupled to a 1. INTRODUCTION soundboard by a bridge is discussed in detail as well as Cross-fingering is a technique of playing woodwind two strings coupled with each other. -
Measurements of Acoustic Impedance and Their Data Application to Calculation and Audible Simulation of Sound Propagation
Acoust. Sci. & Tech. 29, 1 (2008) #2008 The Acoustical Society of Japan PAPER Measurements of acoustic impedance and their data application to calculation and audible simulation of sound propagation Teruo Iwase1, Yu Murotuka2, Kenichi Ishikawa3 and Koichi Yoshihisa4 1Faculty of Engineering, Niigata University, 8050 Igarashi 2-no-cho Nishi-ku, Niigata, 950–2181 Japan 2Graduate School, Niigata University, 8050 Igarashi 2-no-cho Nishi-ku, Niigata, 950–2181 Japan 3Oriental Consultants Co. Ltd., Shibuya Bldg. 16–28 Shibuya, Shibuya-ku, Tokyo 150–0036 Japan 4Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya, 468–8502 Japan ( Received 20 April 2007, Accepted for publication 17 August 2007 ) Abstract: Acoustic impedance determines the boundary condition of each sound field, but collections of actual values to evaluate sound fields are insufficient. Therefore, measurements of acoustic impedance using a particle velocity sensor were taken on different fields. Such measurement results were used for sound propagation calculations. Frequency characteristics of sound propagation on grass, snow-covered, and porous drainage pavement surfaces showed fair correspondence with field measurement results. Subsequently, fine calculations in the frequency domain were converted to impulse responses for each sound field model. Convolution operations based on the impulse response and on voice, music, and other noise sources readily produced an ideal sound field for the audible sound file. Furthermore, simulations of noise from a car running through a paved drainage area, with noise reduction effects, were attempted as advanced applications. Keywords: Acoustic impedance, Sound propagation, Road traffic noise, Snow field, Drainage pavement, Impulse response, Convolution PACS number: 43.28.En, 43.58.Bh [doi:10.1250/ast.29.21] example, the prediction method for traffic noise has 1. -
The Link Between the Tonehole Lattice Cutoff
The link between the tonehole lattice cutoff frequency and clarinet sound radiation: a quantitative study Erik Petersen, Tom Colinot, Philippe Guillemain, Jean Kergomard To cite this version: Erik Petersen, Tom Colinot, Philippe Guillemain, Jean Kergomard. The link between the tonehole lattice cutoff frequency and clarinet sound radiation: a quantitative study. Acta Acustica, LesUlis, France : Les Editions de Physique, 2020, 4, 10.1051/aacus/2020018. hal-03026360 HAL Id: hal-03026360 https://hal.archives-ouvertes.fr/hal-03026360 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Acta Acustica 2020, 4,18 Ó E. A. Petersen et al., Published by EDP Sciences, 2020 https://doi.org/10.1051/aacus/2020018 Available online at: https://acta-acustica.edpsciences.org SCIENTIFIC ARTICLE The link between the tonehole lattice cutoff frequency and clarinet sound radiation: a quantitative study Erik Alan Petersen, Tom Colinot, Philippe Guillemain*, and Jean Kergomard LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, 13453 Marseille Cedex 13, France Received 7 April 2020, Accepted 31 August 2020 Abstract – Musical instruments are said to have a personality, which we notice in the sound that they produce. -
Acoustics: the Study of Sound Waves
Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion, sending alternating waves of compression and rarefaction radiating outward from the object. Sound information is transmitted by the amplitude and frequency of the vibrations, where amplitude is experienced as loudness and frequency as pitch. The familiar movement of an instrument string is a transverse wave, where the movement is perpendicular to the direction of travel (See Figure 1). Sound waves are longitudinal waves of compression and rarefaction in which the air molecules move back and forth parallel to the direction of wave travel centered on an average position, resulting in no net movement of the molecules. When these waves strike another object, they cause that object to vibrate by exerting a force on them. Examples of transverse waves: vibrating strings water surface waves electromagnetic waves seismic S waves Examples of longitudinal waves: waves in springs sound waves tsunami waves seismic P waves Figure 1: Transverse and longitudinal waves The forces that alternatively compress and stretch the spring are similar to the forces that propagate through the air as gas molecules bounce together. (Springs are even used to simulate reverberation, particularly in guitar amplifiers.) Air molecules are in constant motion as a result of the thermal energy we think of as heat. (Room temperature is hundreds of degrees above absolute zero, the temperature at which all motion stops.) At rest, there is an average distance between molecules although they are all actively bouncing off each other. -
Physics 1240: Sound and Music
Physics 1240: Sound and Music Today (7/29/19): Percussion: Vibrating Beams *HW 3 due at the front, HW 4 now posted (due next Mon.) Next time: Percussion: Vibrating Membranes Review Types of Instruments (Hornbostel–Sachs classification) • Chordophones: vibrating strings • Aerophones: vibrating columns of air • Idiophones: vibrating the whole instrument • Membranophones: vibrating membrane/skin • Electrophones: vibrating loudspeaker Review Aerophones e.g. flute, e.g. clarinet e.g. saxophone, recorder oboe, bassoon • Free (no standing waves) • Flute-type (edge tones) • Reed-type (vibrating reed/lips) = = = 2 4 1 • How to create waves: Edge tones Bernoulli effect Review • Tone holes, valves: decrease/increase effective length L • Register holes, octave holes: excite 3rd/2nd harmonics • Ear canal: tube closed at one end 1 3 BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … C) 143, 429, 715, … D) 286, 857, 1429, … E) 172, 343, 515, … BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … • Flute: open-open tube C) 143, 429, 715, … • Tone hole: decreases L D) 286, 857, 1429, … from 1 m to 0.6 m E) 172, 343, 515, … 343 m/s = = 2(0.6 m) = (286 Hz) 2 BA Clicker Question 14.2 An oboe can be modelled as a cone open at one end. -
Chapter 12: Physics of Ultrasound
Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1.