Diseño Y Desarrollo Del Modelo De Un Sistema Robótico Humanoide Que Sirva Como Herramienta Publicitaria Para Diferentes Empresas Del País

Total Page:16

File Type:pdf, Size:1020Kb

Diseño Y Desarrollo Del Modelo De Un Sistema Robótico Humanoide Que Sirva Como Herramienta Publicitaria Para Diferentes Empresas Del País DISEÑO Y DESARROLLO DEL MODELO DE UN SISTEMA ROBÓTICO HUMANOIDE QUE SIRVA COMO HERRAMIENTA PUBLICITARIA PARA DIFERENTES EMPRESAS DEL PAÍS ANA MARÍA LONDOÑO RIVERA ANA MARÍA MÁRQUEZ VILLEGAS VANESA MEJÍA MEDINA UNIVERSIDAD EAFIT DEPARTAMENTO DE INGENIERÍA DE DISEÑO DE PRODUCTO MEDELLÍN 2007 DISEÑO Y DESARROLLO DEL MODELO DE UN SISTEMA ROBÓTICO HUMANOIDE QUE SIRVA COMO HERRAMIENTA PUBLICITARIA PARA DIFERENTES EMPRESAS DEL PAÍS ANA MARÍA LONDOÑO RIVERA ANA MARÍA MÁRQUEZ VILLEGAS VANESA MEJÍA MEDINA Proyecto de grado Asesor Manuel Osorio Flórez Ingeniero Mecánico ANICOM UNIVERSIDAD EAFIT DEPARTAMENTO DE INGENIERÍA DE DISEÑO DE PRODUCTO MEDELLÍN 2007 Nota de aceptación: __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ __________________________ Firma del presidente del jurado __________________________ Firma del jurado __________________________ Firma del jurado Medellín, 3 de julio de 2007 A los papás que han sido un apoyo permanente en todos los proyectos quenos hemos propuesto durante estos años. Ana maría Londoño Ana María Márquez Vanesa Mejía AGRADECIMIENTOS Agradecemos a todas las personas que han estado durante todo el proceso de nuestra carrera apoyándonos y compartiendo cada una de las etapas por las cuales hemos pasado. Gracias al departamento de Ingeniería de Diseño de producto, jefe del departamento, profesores y compañeros por darnos las bases y metodologías para que en este momento estemos dándole final a esta etapa de nuestras vidas con el proyecto de grado. Gracias al departamento de Comunicación y Cultura por enseñarnos cosas para nuestra vida personal y laboral. Gracias a los talleres y las personas que en ellos habitan por darnos las herramientas para convertir materiales en diseños palpables. Gracias a los amigos por darnos siempre sus opiniones y enriquecernos con sus comentarios, ayuda, compañía y amistad. Manuel gracias por tu tiempo, paciencia, conocimiento, por compartir y hacernos parte de los sueños de tu empresa. Esperamos que este proyecto tenga más alas y lo podamos disfrutar en la realidad, por que ésta idea no termina aquí, éste es el comienzo de un gran medio alternativo de comunicación para las empresas y para revolucionar el sector de la publicidad y el entretenimiento, mostrando que sí pueden existir diseños creativos para llegar a los consumidores en Colombia. Agradecemos también a nuestras familias que han creído siempre en nosotras y quienes sufren, se alegran, se trasnochan, nos acompañan y siguen creyendo en nuestras ideas. LISTA DE TABLAS Pág. Tabla 1. Tipos de robot según su forma ...........................................................24 Tabla 2. Robots en el cine ................................................................................33 Tabla 3. Grados de libertad de ASIMO .............................................................36 Tabla 4. Especificaciones técnicas de ASIMO..................................................37 Tabla 5. Especificaciones del robot trompetista de Toyota...............................42 Tabla 6. Precios de material publicitario ...........................................................53 Tabla 7. Inversión publicitaria en Colombia acumulado octubre de 2006 .........56 Tabla 8. Pregunta 1. Encuesta a empresas......................................................62 Tabla 9. Pregunta 2. Encuesta a empresas......................................................62 Tabla 10. Pregunta 1. Encuesta a usuarios ......................................................64 Tabla 11. Pregunta 2. Encuesta a usuarios ......................................................65 Tabla 12. Pregunta 3. Encuesta a usuarios ......................................................65 Tabla 13. Pregunta 4. Encuesta a usuarios ......................................................66 Tabla 14. Pregunta 5. Encuesta a usuarios ......................................................66 Tabla 15. Pregunta 6. Encuesta a usuarios ......................................................66 Tabla 16. Pregunta 7. Encuesta a usuarios ......................................................67 Tabla 17. Pregunta 8. Encuesta a usuarios ......................................................67 Tabla 18. Pregunta 9. Encuesta a usuarios ......................................................68 Tabla 19. Pregunta 10. Encuesta a usuarios ....................................................69 Tabla 20. Pregunta 11. Encuesta a usuarios ....................................................69 Tabla 21. Pregunta 12. Encuesta a usuarios ....................................................70 Tabla 22. Pregunta 13. Encuesta a usuarios ....................................................70 Tabla 23. Especificaciones finales de diseño ...................................................88 Tabla 24. Matriz de evaluación de las propuestas de diseño .........................116 Tabla 25. Matriz de evaluación para el nombre del robot ...............................118 Tabla 26. División del problema en subproblemas .........................................124 Tabla 28. Lista de partes y precios .................................................................163 i Tabla 29. Piezas a fabricar .............................................................................169 ii LISTA DE FIGURAS Pág. Figura 1. ASIMO, robot de Honda.....................................................................36 Figura 2. Movimientos del centro de gravedad de ASIMO grados de libertad ..37 Figura 3. Corrección del desalineamiento del torso a la hora de caminar ........38 Figura 4. Control de reacción con el suelo........................................................38 Figura 5. Control del momento de inercia igual a cero......................................39 Figura 6. Rangos de movimiento de los brazos de ASIMO ..............................39 Figura 7. Esquema de ASIMO ..........................................................................40 Figura 8. Robot trompetista de Toyota..............................................................41 Figura 9. Grupo de músicos robots de Toyota..................................................42 Figura 10. QRIO, robot de Sony .......................................................................43 Figura 11. QRIO cargando cajas de colores.....................................................43 Figura 12. Detalles de algunas las partes de QRIO. De izquierda a derecha: hombro, pierna y pie. ........................................................................................44 Figura 13. Control del centro de gravedad, movimiento en escaleras y cambios en la superficie..................................................................................................44 Figura 14. Visión de QRIO................................................................................45 Figura 15. Wakamaru, robot de Mitsubishi .......................................................45 Figura 16. Detalles de ubicación de la batería, sensor y articulaciones............46 Figura 17. Confirmación de posición dentro de la casa ....................................47 Figura 18. Reconocimiento facial de Wakamaru...............................................47 Figura 19. HOAP-2, robot de Fujitsu.................................................................48 Figura 20. HRP-2, robot de Kawada Industries.................................................49 Figura 21. Kico-Circuito, robot de Eventronic....................................................49 Figura 22. Inversión publicitaria en Colombia acumulado octubre de 2006......56 Figura 23. Board de la naturaleza en el diseño ................................................97 Figura 24. Board estructuras reticulares ...........................................................97 Figura 25. Board de biónica..............................................................................97 iii Figura 26. Board de paneles.............................................................................98 Figura 27. Análisis formal del referente I ..........................................................98 Figura 28. Análisis formal del referente II .........................................................98 Figura 29. Propuestas de diseño ......................................................................99 Figura 30. Diseño de cuerpos para robots......................................................100 Figura 31. Board de gaviota............................................................................101 Figura 32. Colores de las gaviotas..................................................................101 Figura 33. Análisis formal de las gaviotas I.....................................................101 Figura 34. Análisis formal de las gaviotas II....................................................102 Figura 35. Board de pingüinos........................................................................102 Figura 36. Colores y texturas de pingüinos.....................................................103 Figura 36. Análisis formal de los pingüinos I...................................................103 Figura 37. Análisis formal de los pingüinos II..................................................103 Figura 38. Board del pez mandarín.................................................................104 Figura 39. Colores y texturas del pez mandarín .............................................104 Figura 40. Análisis formal del pez mandarín I.................................................105
Recommended publications
  • Development of Open Platform Humanoid Robot Darwin-OP Inyong Ha*, Yusuke Tamura and Hajime Asama
    Advanced Robotics, 2013 http://dx.doi.org/10.1080/01691864.2012.754079 SHORT PAPER Development of open platform humanoid robot DARwIn-OP Inyong Ha*, Yusuke Tamura and Hajime Asama Department of Precision Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan (Received 24 January 2012; accepted 27 March 2012) To develop an appropriate research platform, this paper presents the design method for a humanoid which has a net- work-based modular structure and a standard PC architecture. Based on the proposed method, we developed DARwIn- OP which meets the requirements for an open humanoid platform. DARwIn-OP has an expandable system structure, high performance, simple maintenance, familiar development environment and affordable prices. Not only hardware but also software aspects of open humanoid platform are discussed in this paper. Keywords: open platform; humanoid; DARwIn-OP 1. Introduction lution from E series [3]. Then, they opened the first ver- A humanoid robot is a robot that has a general structure sion of ASIMO which walked stably at 1.6 km/h to the of the human body, such as two legs, two arms, a torso, public in 2000 [4]. A new ASIMO was introduced in and a head. Although, some shapes of a humanoid robot 2005 and it could run and walk up and down stairs. Sup- may not be exactly the same as that of a human, a ported by the Ministry of Economics, Commerce and humanoid robot has a basic similar appearance and func- Industry, Japan, the HRP-2 was developed by National tions of a human.
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
    Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project .
    [Show full text]
  • An Interactive Tool for Designing Complex Robot Motion Patterns
    An Interactive Tool for Designing Complex Robot Motion Patterns Georgios Pierris and Michail G. Lagoudakis Abstract— Low-cost robots with a large number of degrees KME was originally designed for and currently supports of freedom are becoming increasingly popular, nevertheless only the Aldebaran Nao humanoid robot (RoboCup edi- their programming is still a domain for experts. This paper tion) [1], which features a total of 21 degrees of freedom, and introduces the Kouretes Motion Editor (KME), an interactive software tool for designing complex motion patterns on robots its simulated model on the Webots simulator [2]. However, with many degrees of freedom using intuitive means. KME the main features of KME could be easily adapted for allows for a TCP/IP connection to a real or simulated robot, other robots and the tool itself could be used for a variety over which various robot poses can be communicated to or from of purposes, such as providing complex motion patterns the robot and manipulated locally using the KME graphical as starting points for learning algorithms and supporting user interface. This portability and flexibility enables the user to work under different modes, with different robots, using educational activities in robot programming courses. KME different host machines. KME was originally designed for and has been employed successfully by Kouretes, the RoboCup currently supports only the Aldebaran Nao humanoid robot team of the Technical University of Crete in Greece, for which features a total of 21 degrees of freedom. KME has designing various special actions (stand-up, ball kicks, goalie been employed successfully by Kouretes, the RoboCup team of falls), thanks to which the team ranked in the 3rd place at the Technical University of Crete, for designing various special actions, thanks to which the team ranked in the 3rd place at the RoboCup 2008 competition (Standard Platform League).
    [Show full text]
  • Sample Thesis Title with a Concise and Accurate
    ON EFFECTIVE HUMAN-ROBOT INTERACTION BASED ON RECOGNITION AND ASSOCIATION DISSERTATION Submitted by Avinash Kumar Singh In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY Under the Supervision of PROF. G.C. NANDI DEPARTMENT OF INFORMATION TECHNOLOGY भारतीय सचू ना प्रौद्योगिकी संथान INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD (A centre of excellence in IT, estaइलाहाबादblished by M inistry of HRD, Govt. of India) 12 February 2016 INDIAN INSTITUTE OF INFORMATION TECHNOLOGY ALLAHABAD (A Centre of Excellence in Information Technology Established by Govt. of India) CANDIDATE DECLARATION I, Avinash Kumar Singh, Roll No. RS-110 certify that this thesis work entitled “On Effective Human - Robot Interaction based on Recognition and Association” is submitted by me in partial fulfillment of the requirement of the Degree of Doctor of Philosophy in Department of Information Technology, Indian Institute of Information Technology, Allahabad. I understand that plagiarism includes: 1. Reproducing someone else's work (fully or partially) or ideas and claiming it as one's own. 2. Reproducing someone else's work (Verbatim copying or paraphrasing) without crediting 3. Committing literary theft (copying some unique literary construct). I have given due credit to the original authors/ sources through proper citation for all the words, ideas, diagrams, graphics, computer programs, experiments, results, websites, that are not my original contribution. I have used quotation marks to identify verbatim sentences and given credit to the original authors/sources. I affirm that no portion of my work is plagiarized. In the event of a complaint of plagiarism, I shall be fully responsible.
    [Show full text]
  • Developing Audio-Visual Capabilities of Humanoid Robot NAO Jordi Sanchez-Riera
    Developing Audio-Visual capabilities of humanoid robot NAO Jordi Sanchez-Riera To cite this version: Jordi Sanchez-Riera. Developing Audio-Visual capabilities of humanoid robot NAO. Robotics [cs.RO]. Université de Grenoble, 2013. English. tel-00863461 HAL Id: tel-00863461 https://tel.archives-ouvertes.fr/tel-00863461 Submitted on 19 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Specialit´ e´ : IMAGERIE, VISION ET ROBOTIQUE Arretˆ e´ ministerial´ : Present´ ee´ par Jordi Sanchez-Riera These` dirigee´ par Radu Horaud prepar´ ee´ au sein Laboratoire Jean Kuntzman(LJK) - INRIA Rhoneˆ Alpes et de Mathematiques,´ Sciences et Technologies de l’Information, Infor- matique Developing Audio-Visual capabili- ties of humanoid robot NAO These` soutenue publiquement le 14 juin 2013, devant le jury compose´ de : Dr., Peter Sturm INRIA, President´ Dr., Crisitian Sminchisescu Lund University, Rapporteur Dr., Vaclav Hlavac CTU Prague, Rapporteur Dr., Rodolphe Gelin Aldebaran Robotics, Examinateur Dr., Radu Horaud INRIA, Directeur de these` Abstract Humanoid robots are becoming more and more important in our daily lives due the high potential they have to help persons in different situations.
    [Show full text]
  • Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
    Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones.
    [Show full text]
  • Evolving Controllers for High-Level Applications on a Service Robot: a Case Study with Exhibition Visitor Flow Control
    Noname manuscript No. (will be inserted by the editor) Evolving Controllers for High-Level Applications on a Service Robot: A Case Study with Exhibition Visitor Flow Control Alex Fukunaga · Hideru Hiruma · Kazuki Komiya · Hitoshi Iba the date of receipt and acceptance should be inserted later Abstract We investigate the application of simulation-based genetic programming to evolve controllers that perform high-level tasks on a service robot. As a case study, we synthesize a controller for a guide robot that manages the visitor traffic flow in an exhibition space in order to maximize the enjoyment of the visitors. We used genetic programming in a low-fidelity simulation to evolve a controller for this task, which was then transferred to a service robot. An experimental evaluation of the evolved controller in both simulation and on the actual service robot shows that it performs well compared to hand-coded heuristics, and performs comparably to a human operator. 1 Introduction Evolutionary robotics (ER) is a class of approaches that use genetic and evolu- tionary computation methods in order to automatically synthesize controllers for autonomous robots. Early work started with evolution and testing of controllers in simulation [1,17,9]. This was followed by the introduction of embodied evolution, where the evolution was performed on real robots [25,21], as well as controllers which were evolved in simulation and transferred to real robots [25]. Nelson, Bar- low, and Doitsidis present a recent, comprehensive review of previous work in evolutionary robotics [24]. Previous work on ER involving mobile robots has focused on relatively low-level tasks, such as locomotion/gait generation, navigation (including object avoidance), A.
    [Show full text]
  • Malachy Eaton Evolutionary Humanoid Robotics Springerbriefs in Intelligent Systems
    SPRINGER BRIEFS IN INTELLIGENT SYSTEMS ARTIFICIAL INTELLIGENCE, MULTIAGENT SYSTEMS, AND COGNITIVE ROBOTICS Malachy Eaton Evolutionary Humanoid Robotics SpringerBriefs in Intelligent Systems Artificial Intelligence, Multiagent Systems, and Cognitive Robotics Series editors Gerhard Weiss, Maastricht, The Netherlands Karl Tuyls, Liverpool, UK More information about this series at http://www.springer.com/series/11845 Malachy Eaton Evolutionary Humanoid Robotics 123 Malachy Eaton Department of Computer Science and Information Systems University of Limerick Limerick Ireland ISSN 2196-548X ISSN 2196-5498 (electronic) SpringerBriefs in Intelligent Systems ISBN 978-3-662-44598-3 ISBN 978-3-662-44599-0 (eBook) DOI 10.1007/978-3-662-44599-0 Library of Congress Control Number: 2014959413 Springer Heidelberg New York Dordrecht London © The Author(s) 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Chapter 6. Evolution of Legged Machines and Robots
    excerpt from the book: Marko B. Popovic, Biomechanics and Robotics, Pan Stanford Publishing Pte. Ltd., 2013 (No of pages 351) Print ISBN: 9789814411370, eBook ISBN: 9789814411387, DOI: 10.4032/9789814411387 Copyright © 2014 by Pan Stanford Publishing Pte. Ltd. Chapter 6. Evolution of Legged Machines and Robots Chapter outline: Early Legged Machines in the 19th Century 193 Legged Machines in the First Half of the 20th Century 195 Legged Machines during 1950–1970 196 Legged Robots during 1970–1980 197 Legged Robots during 1980–1990 199 Legged Robots during 1990–2000 204 Legged Robots since 2000 208 References and Suggested Reading 214 [chapter content intentionally omitted] References: About AIBO, http://www.sonyaibo.net/aboutaibo.htm. Retrieved July 2012. Asimo by Honda, history, http://asimo.honda.com/asimo-history/. Retrieved July 2012. ASIMO—Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/ASIMO. Retrieved July 2012. BBC News—Robotic cheetah breaks speed record for legged robots, (BBC News Technology 6 March 2012) http://www.bbc.com/news/technology-17269535. Retrieved July 2012. Big Muskie’s Bucket, McConnelsville, Ohio, http://www.roadsideamerica.com/story/2184. Retrieved July 2012. Boston Dynamics: Dedicated to the Science and Art of How Things Move; http://www.bostondynamics.com/robot_bigdog.html. Retrieved July 2012. Chavez-Clemente, D., “Gait Optimization for Multi-legged Walking Robots, with Application to a Lunar Hexapod”, PhD Dissertation, the Stanford University Department of Aeronautics and Astronautics, January 2011. Cox, W., “Big muskie”, The Ohio State Engineer, p. 25–52, 1970. Cyberneticzoo.com. Early Humanoid Robots, http://cyberneticzoo.com/?page_id=45. Retrieved July 2012. Cyberneticzoo.com.
    [Show full text]
  • Learning to Recognize and Reproduce Abstract Actions from Proprioception
    Learning to Recognize and Reproduce Abstract Actions from Proprioception Karl F. MacDorman¤y Rawichote Chalodhorny Hiroshi Ishiguroy ¤Frontier Research Center yDepartment of Adaptive Machine Systems Graduate School of Engineering Osaka University Suita, Osaka 565-0871 Japan [email protected] Abstract We explore two controversial hypotheses through robotic implementation: (1) Processes involved in recognition and response are tightly coupled both in their operation and epi- genesis; and (2) processes involved in symbol emergence should respect the integrity of recognition and response while exploiting the fundamental periodicity of biological motion. To that end, this paper proposes a method of recog- nizing and generating motion patterns based on nonlinear Figure 1. In the proposed approach, a neural network principal component neural networks that are constrained learns each kind of periodic or transitional movement to model both periodic and transitional movements. The in order to recognize and to generate it. Recent senso- method is evaluated by an examination of its ability to seg- rimotor data elicit activity in corresponding networks, ment and generalize different kinds of soccer playing activ- which segment the data and produce appropriate an- ity during a RoboCup match. ticipatory responses. Active networks constitute an organism’s conceptualization of the world since they embody expectations, derived from experience, about 1 Introduction the outcomes of acts and what leads to what. It is as- sumed that behavior is purposive: affective appraisals Complex organisms recognize their relation to their sur- guide the system toward desired states. roundings and act accordingly. The above sentence sounds like a truism owing in part to the almost ubiquitous dis- tinction between recognition and response in academic dis- sensory ones, but rather to assert that these centers are inti- ciplines.
    [Show full text]
  • A Low-Cost Autonomous Humanoid Robot for Multi-Agent Research
    NimbRo RS: A Low-Cost Autonomous Humanoid Robot for Multi-Agent Research Sven Behnke, Tobias Langner, J¨urgen M¨uller, Holger Neub, and Michael Schreiber Albert-Ludwigs-University of Freiburg, Institute for Computer Science Georges-Koehler-Allee 52, 79110 Freiburg, Germany { behnke langneto jmuller neubh schreibe } @ informatik.uni-freiburg.de Abstract. Due to the lack of commercially available humanoid robots, multi-agent research with real humanoid robots was not feasible so far. While quite a number of research labs construct their own humanoids and it is likely that some advanced humanoid robots will be commercially available in the near future, the high costs involved will make multi-robot experiments at least difficult. For these reasons we started with a low-cost commercial off-the-shelf humanoid robot, RoboSapien (developed for the toy market), and mod- ified it for the purposes of robotics research. We added programmable computing power and a vision sensor in the form of a Pocket PC and a CMOS camera attached to it. Image processing and behavior control are implemented onboard the robot. The Pocket PC communicates with the robot base via infrared and can talk to other robots via wireless LAN. The readily available low-cost hardware makes it possible to carry out multi-robot experiments. We report first results obtained with this hu- manoid platform at the 8th International RoboCup in Lisbon. 1 Introduction Evaluation of multi-agent research using physical robots faces some difficulties. For most research groups building multiple robots stresses the available resources to their limits. Also, it is difficult to compare results of multi-robot experiments when these are carried out in the group’s own lab, according to the group’s own rules.
    [Show full text]