Trichomycetes from China and the Description of Three New Smittium Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
S41467-021-25308-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St. -
Trichomycetes from Lentic and Lotic Aquatic Habitats in Ontario, Canada
1449 Trichomycetes from lentic and lotic aquatic habitats in Ontario, Canada D.B. Strongman and Merlin M. White Abstract: Fungi and protists make up an ecological group, trichomycetes, that inhabit the guts of invertebrates, mostly aquatic insects. Trichomycetes are reported herein from arthropods collected in lotic habitats (fast flowing streams) and lentic environments (ponds, ditches, seeps, and lakes) from 11 sites in Algonquin Park and 6 other sites in Ontario, Can- ada. Thirty-two trichomycete species were recovered, including 7 new species: Legeriomyces algonquinensis, Legeriosi- milis leptocerci, Legeriosimilis whitneyi, and Paramoebidium umbonatum are described from mayfly nymphs (Ephemeroptera); Pennella digitata and Glotzia incilis from black fly and midge larvae (Diptera), respectively; and Arun- dinula opeongoensis from a crayfish (Crustacea). Legeriomyces rarus Lichtw. & M.C. Williams and Stachylina penetralis Lichtw. are new North American records, and seven species are documented for the first time in Canada. More common and widely distributed trichomycete species such as Harpella melusinae Le´ger & Duboscq and Smittium culicis Manier, were also recovered. Most previous studies on trichomycetes have been done primarily in lotic environments but clearly lentic systems (e.g., ponds and lakes) harbour diverse arthropod communities and further exploration of these habitats will continue to increase our knowledge of trichomycete diversity. Key words: Amoebidiales, Eccrinales, Harpellales, insect fungal endobionts, symbiotic protista. Re´sume´ : Les champignons et les protistes comportent un groupe e´cologique, les trichomyce`tes, qui habitent les intestins de la plupart des insectes aquatiques. Les auteurs rapportent des ttrichomyce`tes provenant d’arthropodes vivants dans des habitats lotiques (cours d’eau rapides) et des environnements lentiques (e´tangs, fosse´s, suintement et lacs) re´colte´s sur 11 sites dans le parc Algonquin et six autres sites en Ontario, au Canada. -
Arthropod-Pathogenic Entomophthorales from Switzerland
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2007 Band/Volume: 59 Autor(en)/Author(s): Keller Siegfried Artikel/Article: Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. 75-113 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions Siegfried Keller Federal Research Station Agroscope Reckenholz-TaÈnikon ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland Keller S. (2007) Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. ± Sydowia 59 (1): 75±113. Twenty-nine species of arthropod-pathogenic Entomophthorales new to Switzerland are described. Nine are described as new species, namely Batkoa hydrophila from Plecoptera, Conidiobolus caecilius from Psocoptera, Entomophaga antochae from Limoniidae (Diptera), E. thuricensis from Cicadellidae (Homo- ptera), Erynia fluvialis from midges (Diptera), E. tumefacta from Muscidae (Dip- tera), Eryniopsis rhagonidis from Rhagionidae (Diptera), Pandora longissima from Limoniidae (Diptera) and Strongwellsea pratensis from Muscidae (Diptera). Pan- dora americana, P. sciarae, Zoophthora aphrophorae and Z. rhagonycharum are new combinations. Eleven species are first records since the original description. The list of species recorded from Switzerland amounts to 90 species representing 38% of the world-wide known species of arthropod-pathogenic Entomophthorales. Part I of this monograph (Keller 1987) treated the genera Con- idiobolus, Entomophaga [including the species later transferred on to the new genus Batkoa Humber (1989)], and Entomophthora. Part II (Keller 1991) treated the genera Erynia sensu lato (now subdivided into the genera Erynia, Furia and Pandora), Eryniopsis, Neozygites, Zoophthora and Tarichium. So far 51 species including 8new ones have been listed. -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Marine Insects
UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats. -
Assessing the Potential Effects of Fungicides on Nontarget Gut Fungi (Trichomycetes) and Their Associated Larval Black Fly Hosts1
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol. 50, No. 2 AMERICAN WATER RESOURCES ASSOCIATION April 2014 ASSESSING THE POTENTIAL EFFECTS OF FUNGICIDES ON NONTARGET GUT FUNGI (TRICHOMYCETES) AND THEIR ASSOCIATED LARVAL BLACK FLY HOSTS1 Emma R. Wilson, Kelly L. Smalling, Timothy J. Reilly, Elmer Gray, Laura Bond, Lance Steele, Prasanna Kandel, Alison Chamberlin, Justin Gause, Nicole Reynolds, Ian Robertson, Stephen Novak, Kevin Feris, and Merlin M. White2 ABSTRACT: Fungicides are moderately hydrophobic and have been detected in water and sediment, particularly in agricultural watersheds, but typically are not included in routine water quality monitoring efforts. This is despite their widespread use and frequent application to combat fungal pathogens. Although the efficacy of these compounds on fungal pathogens is well documented, little is known about their effects on nontarget fungi. This pilot study, a field survey in southwestern Idaho from April to December 2010 on four streams with varying pesti- cide inputs (two agricultural and two reference sites), was conducted to assess nontarget impact of fungicides on gut fungi, or trichomycetes. Tissues of larval black flies (Diptera: Simuliidae), hosts of gut fungi, were analyzed for pesticide accumulation. Fungicides were detected in hosts from streams within agricultural watersheds but were not detected in hosts from reference streams. Gut fungi from agricultural sites exhibited decreased percent infes- tation, density and sporulation within the gut, and black fly tissues had elevated pesticide concentrations. Differ- ences observed between the sites demonstrate a potential effect on this symbiotic system. Future research is needed to parse out the details of the complex biotic and abiotic relationships; however, these preliminary results indicate that impacts to nontarget organisms could have far-reaching consequences within aquatic ecosystems. -
Trichomycete Fungi (Zygomycota) Associated with Mosquito Larvae (Diptera: Culicidae) in Natural and Artificial Habitats in Manaus, AM Brazil
March - April 2005 325 PUBLIC HEALTH Trichomycete Fungi (Zygomycota) Associated with Mosquito Larvae (Diptera: Culicidae) in Natural and Artificial Habitats in Manaus, AM Brazil ELENY DA S. PEREIRA1, RUTH L.M. FERREIRA1, NEUSA HAMADA1 AND ROBERT W. L ICHTWARDT2 1Instituto Nacional de Pesquisas da Amazônia, Coordenação de Pesquisas em Entomologia, C. postal 478, 69011-970 Manaus, AM, Brazil, [email protected], [email protected], [email protected] 2Dept Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA Neotropical Entomology 34(2):325-329 (2005) Fungos Trichomycetes (Zygomicota) Associados com Larvas de Mosquitos (Diptera: Culicidae) em Criadouros Naturais e Artificiais em Manaus, AM RESUMO - Espécies de fungos da classe Trichomycete (Zygomycota) estão associados com o trato digestivo dos Arthropoda. A relação entre esses fungos e seus hospedeiros ainda é pouco conhecida, podendo ser comensal, benéfica ou deletéria. Conhecimentos da estrutura de comunidades parasitas/ patógenos e os habitats de larvas de Culicidae podem ser importantes em estudos que utilizam medidas combinadas para o controle populacional. Larvas de Culicidae e os fungos Trichomycetes associados foram coletados no município de Manaus, AM; amostras de criadouros incluindo plantas (habitat natural) e reservatórios antrópicos (habitat artificial). O total de 1518 larvas foi coletado, 913 em criadouros naturais e 605 em criadouros artificiais, distribuídas em 12 espécies de sete gêneros. O total de 661 indivíduos (4o estádio) foi dissecado para verificar a presença de fungos Trichomycetes no intestino médio e posterior. Infecção de fungos Trichomycetes no intestino posterior foram observados em 15% de Culex urichii Coquillett, 13% de Culex (Culex) sp1, 9% of Limatus spp., 49% de Aedes aegypti Linnaeus e 1% de Ochlerotatus argyrothorax Bonne-Wepster & Bonne. -
CLASSIFICATION and SYNONYMY of Tile CRANE-FLIES Descrffied by E~RICO BRUNETTI (DIPTERA: FAMILIES PTYCHOPTERIDAE, TRICHOCERIDAE and TIPULIDAE) By
CLASSIFICATION AND SYNONYMY OF TIlE CRANE-FLIES DESCRffiED BY E~RICO BRUNETTI (DIPTERA: FAMILIES PTYCHOPTERIDAE, TRICHOCERIDAE AND TIPULIDAE) By CHARLES P. ALEXANDER Ainherst, Massachusetts* CONTENTS PAGE I-Introduction .• .. 19 II-The Indian specie sofcrane-flies described by Brunetti 20 Family Ptychopteridae , . 20 Family Trichocerida .. .. 21 Family Tipulidae 21 III-The extra-limital Tipulidae described by Brunetti 33 IV---:.Synopsis 34 I-INTRODUCTION Between 1911 and 1924, the late Enrico Brunetti described as new approximately 240 species of crane-flies, the great majority from the area comprised within the limits of former British India and Burma. Due in part to circumstances beyond his control, as discussed in papers by Alexander (1942) and Edwards (1924)**, Brunetti's arrangement of many of his species to genera was questionable, with the result that subsequent taxonomic work on these flies from this faunal area proved difficult and uncertain. Edwards (1924) was able to examine certain of the Brunetti types that were brought to London by the describer while some others have been seen by the writer, having been loaned me for study through the kind and appreciated interest of the authorities of the Indian Museum. It is believed that the present distribution of these species, with an indication of synonymy as it appears certain at the present time, may prove helpful to later workers on the crane-flies of this particularly interesting region. *Contribution No. 1234 from the Department of Entomology, University of Massachusetts, Amherst, Massachusetts, U.S.A. **Dl.tes in parenthesis refer in most instances to papers cited in the short Biblio graphy that follow3 this introdllctory statement. -
Dipterists Forum Events
BULLETIN OF THE Dipterists Forum Bulletin No. 73 Spring 2012 Affiliated to the British Entomological and Natural History Society Bulletin No. 73 Spring 2012 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Malcolm Smart Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Judy Webb [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Malcolm Smart Ordinary Members “Southcliffe”, Pattingham Road, Perton, Wolverhampton, WV6 7HD [email protected] Chris Spilling, Duncan Sivell, Barbara Ismay Erica McAlister, John Ismay, Mick Parker Bulletin contributions Unelected Members Please refer to later in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel. -
Lichtwardt 2001.Pdf (12.31Mb)
Mycologia, 93(1), 2001, pp. 66-81. © 2001 by The Mycological Society of America, Lawrence, KS 66044-8897 Molecular variation within and among species of Harpellales Alexandra M. Gottlieb wall structure, and both orders produce basipetal Robert W. Lichtwardt1 monosporous sporangia (Moss and Young 1978). In Department of Ecology and Evolutionary Biology, particular, a bifurcate type of septum has been re University of Kansas, Lawrence, Kansas 66045-2106 ported in Harpellales (Farr and Lichtwardt 1967), Asellariales (Manier 1973, Saikawa et al 1997, Moss 1975), Kickxellales (Young 1969), Dimargaritales Abstract: Intra- and interspecific variation of the nu (Saikawa 1977, Jeffries and Young 1979) and Mersi- clear ribosomal internal transcribed spacers (ITS) of taciaceae (Entomophthorales) (Saikawa 1989). How 77 Smittium isolates and related genera was studied ever, Porter and Smiley (1979) concluded that the using RFLP. Due to the sequence and length varia Harpellales, Kickxellales and Mucorales were not tion encountered, the ITS is unsuitable for compar closely related based on disparate RNA molecular ison at the species level within Smittium, as presently weights. Walker's (1984) 5S rRNA sequence compar delimited. Intra- and interspecific variation of 18S ison indicated that Harpellales were more related to rDNA was also analyzed. Cladistic analysis of 32 new Mucorales than to Kickxellales, but the differences 18S rDNA sequences resolved at least five lineages were too small to be convincing. Recently, O'Donnell and suggests that Smittium is not monophyletic. In et al (1998) showed certain phylogenetic relatedness addition, 17 18S rDNA sequences from 5 orders of in the sequences of the 18S ribosomal DNA of some Zygomycota were included to assess phylogenetic re Kickxellales and four representatives of the Harpel lationships with the Trichomycetes. -
(Diptera: Tipulidae) of Australia VIII. Preliminary Key to the Genus-Group Taxa
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 1996 Band/Volume: 0044 Autor(en)/Author(s): Theischinger Günther Artikel/Article: The Limoniinae (Diptera: Tipulidae) of Australia. VIII Preliminary key to the genus-group taxa 117-144 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Stapfia 44 117-144 31.5. 1996 The Limoniinae (Diptera: Tipulidae) of Australia VIII. Preliminary key to the genus-group taxa G. THEISCHINGER Abstract: The genus-group taxa of the Australian Limoniinae are keyed, with relevant characters illustrated. Introduction Until now, a key to the genera and subgenera of the Australian Limoniinae has not been available. Therefore, since starting to study this group of crane flies in 1988. I have been asked repeatedly by Australian biologists and by overseas tipulid specialists to provide such a key. After having revised several genera and having sorted most of the Australian Limo- niinae available in collections, I am now in a position to present a preliminary key to the genus-group taxa. I am particularly glad about the timing of the key's appearance, as it is coincident with a forthcoming project on the larvae of the Australian Tipulidae. Apart from filling a gap, the preliminary key below should facilitate this and other projects in their infant stages and will possibly benefit from them later. It should be noted again that besides the one-family concept of Tipulidae which was followed throughout his career by Alexander, which was recently seconded by BYERS (1992) and which is followed in this paper, an alternative multi-family system of crane flies is presently being used and has been used for some time by tipulid workers, par- ticularly in Europe. -
Imprimatur Pour La Thèse
IMPRIMATUR POUR LA THÈSE Limoniidae, squs-familie des Limoniinae, une contribution à la connaissance de la faune diptérologique helvétique de M pns.ieur Wi 1 Iy Geiger UNIVERSITÉ DE NEUCHATEL FACULTÉ DES SCIENCES La Faculté des sciences de l'Université de Neuchâtel, sur le rapport des membres du jury, Messieurs; W. Matthey, A. Aeschlimann, W. Sauter (EPF-ZuriÇh.L^ Leeuwen (Amsterdam) autorise l'impression de la présente thèse. Neuchâtel, le .1.6...mars..1987 Le doyen: François Sigrist L Thèse Willy GEIGER: Limoniidae sous-famille Limoniinae de Suisse. Une contribution à la connaissance de la faune diptérologique helvétique0 Liste des publications déposées 1. Geiger, W. 1983. Dicranomyia (Salebriella) pauli sp. n. from western Europe. Rev. Suisse Zool. 90:639-642 2. Geiger, W. 1985 a. Two new species of Dicranomyia Stephens, 1829, with notes on related species. Bull. zool. Mus. Uni. Amsterdam, 10(10): 53-60 3. Geiger, W. 1985 b. Limoniidae sous-famille Limoniinae de Suisse. Synonymies nouvelles. Mitt. schw. ent. Ges. 58:69-76 4. Geiger, W. 1986 a. Bibliographie raisonnée des Limoniidae de la zone paléarctique ouest (Publications 1900-1982). I. Sous-famille Limoniinae. Bull. rom. entomol. 4:3-121 5. Geiger, W. 1986 b. Diptera Limoniidae 1: Limoniinae. Insecta Helvetica Catalogus, vol. 5, 160 pages 6. Geiger, W. 1986 e. Diptera Limoniidae 1: Limoniinae. Insecta Helvetica Fauna, vol. 8, 131 pages 7. Dufour, C, Geiger, W., Haenni, J.-P. 1983. Les méthodes mises en oeuvre par la Diptérologie helvétique. Bull. soc. ent. France, 88:98-109 8. Stary, J., Geiger, W. 1985. A new Dicranomyia (Salebriella) from the Alps.