1 PRC (P45506): PROPOSED GANSU JIUQUAN INTEGRATED URBAN ENVIRONMENT IMPROVEMENT PROJECT A. Project Background 1. the Proposed Pr

Total Page:16

File Type:pdf, Size:1020Kb

1 PRC (P45506): PROPOSED GANSU JIUQUAN INTEGRATED URBAN ENVIRONMENT IMPROVEMENT PROJECT A. Project Background 1. the Proposed Pr 1 PRC (P45506): PROPOSED GANSU JIUQUAN INTEGRATED URBAN ENVIRONMENT IMPROVEMENT PROJECT A. Project Background 1. The proposed project aims to improve the living conditions of urban residents in Jiuquan Municipality in Gansu Province, People’s Republic of China (PRC) through improvements to urban environment and transport services. 1 The project will support river environment improvement works, urban roads, bridges and associated utility infrastructure, and institutional strengthening and capacity development of related urban environment and transport services. The project is included in the PRC’s country operations business plan (2011-2013) as a firm project in 2013. 2. Jiuquan. The project is located in Jiuquan in northwest Gansu Province, approximately 730 kilometers (km) northwest of provincial capital of Lanzhou. The population of the municipality is 1.2 million and that of the city is 464,000 in 2010, of which 248,000 live in urban area.2 Jiuquan city is spread over a low-lying plain on the banks of the Beidahe river between the southern limits of the Gobi desert and the northern range of Qilian mountain. Jiuquan is rich in natural resources and its key industries are renewable energy equipment, agricultural products processing and construction materials, with growing tourism development increasingly contributing to the city’s economic output. In the route of Hexi Corridor, Jiuquan has historically been an oasis of the ancient Silk Road and has a potential to serve as a vital artery for the relatively less developed northwestern region of the PRC and promoting regional economic integration with the Central Asia Regional Economic Cooperation countries. 3. Challenges. Jiuquan suffers from various urban environmental problems partly due to harsh natural environment proximate to the desert and partly due to lack of investment in key urban infrastructure. Jiuquan has a continental desert climate with constrained water resources and high evaporation. 3 The annual average precipitation is only 84 millimeters (mm) but significant run-off occurs from snow melt in the Qilian mountain range coupled with torrential rainfall during summer which at times causes seasonal flooding. Sand and dust being transported by frequent strong winds from the desert cause atmospheric pollution, high incidence of respiratory illness and productivity loss. 4 Long neglected Beidahe river faces ecological and environmental degradation, induces floods and droughts more frequently and severely than in the past, and subsequently affects the public environment, health and safety. Jiuquan’s increasingly congested urban roads experience road surface failures, and thus limit the city’s ability to play a connecting role along the Hexi Corridor. The project’s rationale is to address these urban development challenges, improve living conditions of urban residents and enable Jiuquan to optimize its development potentials. 4. River. To address the environmental problems and challenges, the project will support an integrated multi-functional river improvement approach comprising river training works, water 1 A project preparatory technical assistance (PPTA) is included, with details given in Appendix 4. 2 Jiuquan municipality comprises Suzhou district (Jiuquan city area), Yumen city, Dunhuang city, Jinta county, Guazhou county, Subei county and Akesei county. Gansu Provincial Government has a plan for economic integration of Jiuquan with its neighboring city of Jiayuguan, the details of which will be researched and analyzed as part of sector analysis during the project preparation. 3 Total available water resources are estimated at 3 billion cubic meter (m3) in Jiuquan, of which 2.6 billion m3 is from surface water and 0.4 billion m3 from groundwater. While less severe compared with the other cities along the Hexi Corridor, water scarcity in Jiuquan is evident particularly with its annual average evaporation of 2,140 mm. 4 Jiuquan Environmental Protection Bureau advises that the annual average of daily sand and dust deposits from the atmosphere is 22.93 ton per square kilometer per day (t/km2/d). In the case of the five-day sandstorm on 24-28 April 2011, 46,700 mu (about 31.1 km2) of farm land was affected with direct economic loss of CNY 15.65 million. 2 impounding structures, embankments and engineered wetlands, which will collectively reduce urban flood and drought risks, improve the river’s retention capacity and resilience to the climate change impacts, restore the ecological function of the river and its habitats, and provide a landscaped area for public amenity. The project will also support planting wind-breaking tree screens along the shoals and banks of Beidahe river which will provide natural windbreak to defend the city against sandstorms and enhance public amenity. The project will introduce a modern approach to irrigate the plantations from new impounding structures to be replenished during high run-off period and used for low flow conditions, which will contribute to enhancing efficiency of water use and conservation of water resources in Jiuquan.5 5. Roads. Roads serving the old part of the urban area have become increasingly congested and some were not well maintained and experience surface failures. Those roads also lack the provision of utility service mains resulting in inefficient supply to adjacent housing and commercial properties. The project will support the construction and reconstruction of urban roads and bridges, thereby relieving congestion on the existing road network and improving access to the main industrial employment areas and from farm to market for neighboring rural areas. Urban service delivery will also be improved by providing new municipal utility services mains to the areas along the roads. 6. Strategic fit. Through integrated urban environment improvement, the project will enhance the livability of Jiuquan. The project will also contribute to promoting balanced regional development in the PRC as well as in Gansu Province, thereby supporting the PRC’s Twelfth Five-Year Plan, 2011-2015. The project aligns with the PRC’s country partnership strategy of the Asian Development Bank (ADB).6 It conforms to ADB’s Water Policy7 and supports ADB’s water, urban and transport sector strategies.8 The project will build on ADB experience and lessons gained from the previous projects in Gansu, 9 urban development, water resources management and small and medium-sized cities’ development projects, and incorporate international practices on environmentally sound and sustainable river rehabilitation and transport investment. Given the harsh physical environment and scarcity of water resources in Jiuquan, the project will undergo thorough due diligence to ensure that the project-supported urban development will be sustainable in view of the carrying capacity of the natural system. Innovative features will be explored in designing river rehabilitation, water impounding structures, wetlands engineering, and tree screening plantations to maximize integrated environmental and social benefits and involve community participation. Roads and bridges will be designed to accommodate non-motorized transport and support low-carbon urban development. B. Impact, Outcome, and Outputs 5 At present, irrigation requirements for city landscaped areas and adjacent agriculture are met by pumping from groundwater. 6 ADB. 2008. Country Partnership Strategy: People’s Republic of China, 2008-2010. Manila. ADB’s existing strategy advocates efficient urban infrastructure, strengthening environmental management, supporting inclusive growth, and well balanced development. Environmentally sustainable, socially inclusive and regionally balanced urban development is expected to continue to be a focal area in the new country partnership strategy (2011-2015) that is under preparation. 7 ADB. 2001. Water for All: The Water Policy of the Asian Development Bank. Manila. The policy encourages water conservation, efficient water use, protection and rehabilitation of degraded forestlands, and wetland conservation and improvement. 8 Water Operational Plan (under preparation); Urban Operational Plan (under preparation); and ADB. 2010. Sustainable Transport Initiative: Operational Plan. Manila. 9 ADB has supported urban projects in Baiyin, Tianshui, Dingxi and Zhangye in Gansu Province. See footnote 15 for JMG’s efforts in building up linkages with these cities to learn their lessons and practices. 3 7. The expected project impact is improved living conditions in Jiuquan. The intended project outcome is improved urban environment and transport services in Jiuquan. Indicative project outputs are: (i) River environment improvement—(a) rehabilitating 13 km urban stretch of Beidahe river including river beds, shoals, weirs and embankments, (b) constructing water impounding structures with a total capacity of three million m3, (c) constructing engineered wetlands with a total area of 40 hectares (ha), (d) developing 400 ha of wind-break tree screens plantations, and (e) providing equipment for river environment maintenance; (ii) Urban roads, bridges and associated utility facilities—improving urban roads, bridges and related facilities by (a) constructing 8 km new road to serve north bank of Beidahe river, (b) rehabilitating 16 km existing arterial roads, (c) constructing and reconstructing two bridges, and (d) developing related utility facilities including, water supply, drainage, sewers, district heating pipes and energy-saving lighting; and (iii) Capacity development and institutional
Recommended publications
  • 2.20 Gansu Province
    2.20 Gansu Province Gansu Provincial Prison Enterprise Group, affiliated with Gansu Provincial Prison Administration Bureau,1 has 18 prison enterprises Legal representative of the prison company: Liu Yan, general manager of Gansu Prison Enterprise Group2 His official positions in the prison system: Deputy director of Gansu Provincial Prison Administration Bureau No. Company Name of the Legal Person Legal Registered Business Scope Company Notes on the Prison Name Prison, to which and representative/ Title Capital Address the Company Shareholder(s) Belongs 1 Gansu Gansu Provincial Gansu Liu Yan 803 million Wholesale and retail of machinery 222 Jingning The Gansu Provincial Prison Provincial Prison Provincial Deputy director of yuan and equipment (excluding sedans), Road, Administration Bureau is Gansu Province’s Prison Administration Prison Gansu Provincial building materials, chemical Chengguan functional department that manages the Enterprise Bureau Administration Prison products, agricultural and sideline District, prisons in the entire province. It is in charge Group Bureau Administration products (excluding grain Lanzhou City of the works of these prisons. It is at the Bureau; general wholesale); wholesale and retail of deputy department level, and is managed by manager of Gansu daily necessities the Justice Department of Gansu Province.4 Prison Enterprise Group3 2 Gansu Dingxi Prison of Gansu Qiao Zhanying 16 million Manufacturing and sale of high-rise 1 Jiaoyu Dingxi Prison of Gansu Province6 was Dingqi Gansu Province Provincial Member of the yuan and long-span buildings, bridges, Avenue, established in May 1952. Its original name Steel Prison Communist Party marine engineering steel structures, An’ding was the Gansu Provincial Fourth Labor Structure Enterprise Committee and large boiler steel frames, District, Dingxi Reform Detachment.
    [Show full text]
  • Mammalia: Bovidae) from the Late Miocene Qingyang Area, Gansu, China
    Palaeontologia Electronica palaeo-electronica.org “Gazella” (Mammalia: Bovidae) from the late Miocene Qingyang area, Gansu, China Yikun Li, Qinqin Shi, Shaokun Chen, and Tao Deng ABSTRACT The rich collection from the late Miocene sediments from the Qingyang area, Gansu, China was discovered by E. Licent in the 1920s, and previous studies focused on the equids and hyaenids whereas little attention was given to the accompanying bovid material. The collection of Bovidae dug up from the Qingyang area and pre- served at Musée Hoangho Paiho, Tianjin, China, is dominated by “Gazella”. We describe and identify two species: “Gazella” paotehensis and “G.” dorcadoides. The nomenclatural issues surrounding those two species of gazelles are reviewed in this paper, and although the questionable mandible illustrated by Teilhard de Chardin and Young in 1931 may be excluded from “G.” paotehensis metrically and morphologically, the species is still considered valid. The subcomplete cranium M 3956, kept at Uppsala Universitet Evolutionsmuseet and studied by B. Bohlin, is selected here as the neotype of “G.” paotehensis, and emended diagnoses are given. Based on previous studies and insights from new material from the Qingyang area, we provide a table summarizing diagnostic morphological characters of “G.” paotehensis and “G.” dorcadoides. Yikun Li. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin 10115, Germany. [email protected] Qinqin Shi. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
    [Show full text]
  • World Bank Document
    Gansu Revitalization and Innovation Project: Procurement Plan Annex: Procurement Plan Procurement Plan of Gansu Revitalization and Innovation Project April 24, 2019 Public Disclosure Authorized Project information: Country: The People’s Republic of China Borrower: The People’s Republic of China Project Name: Gansu Revitalization and Innovation Project Loan/Credit No: Project ID: P158215 Project Implementation Agency (PIA): Gansu Financial Holding Group Co. Ltd (line of credit PPMO) will be responsible for microcredit management under Component 1. Gansu Provincial Culture and Tourism Department (culture and tourism PPMO) will be responsible for Component 2 and 3. The culture and Public Disclosure Authorized tourism PPMO will be centrally responsible for overseeing, coordinating, and training its cascaded PIUs at lower levels for subproject management. Both PPMOs will be responsible for liaison with the provincial PLG, municipal PLGs, and the World Bank on all aspects of project management, fiduciary, safeguards, and all other areas. The project will be implemented by eight project implementation units (PIUs) in the respective cities/districts/counties under the four prefecture municipalities. They are: Qin’an County Culture and Tourism Bureau, Maiji District Culture and Tourism Bureau, Wushan County Culture and Tourism Bureau, Lintao County Culture and Tourism Bureau, Tongwei County Culture and Tourism Bureau, Ganzhou District Culture and Tourism Bureau, Jiuquan City Culture and Tourism Bureau and Dunhuang City Culture and Tourism Bureau. Name of Components PIUs Gansu Financial Holding Group Co. Ltd (line of credit Public Disclosure Authorized PPMO). GFHG is designated as the wholesaler FI to handle Component 1. Under the direct oversight and Component 1: Increased Access to Financial management of the line of credit PPMO (GFHG), Bank Services for MSEs of Gansu is designated as the 1st participating financial institution (PFI) to handle micro- and small credit transactions.
    [Show full text]
  • Dynamics of Green and Blue Water Flows and Their Controlling Factors in Heihe River Basin of Northwestern China
    Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-241, 2016 Manuscript under review for journal Hydrol. Earth Syst. Sci. Published: 13 June 2016 c Author(s) 2016. CC-BY 3.0 License. Dynamics of green and blue water flows and their controlling factors in Heihe River basin of northwestern China Kaisheng Luo1,2, Fulu Tao1* 1Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources 5 Research, Chinese Academy of Sciences, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing, 100101, China *Corresponding Author: Fulu Tao ([email protected]) Abstract. Climate variation will affect hydrological cycle, as well as the availability of water resources. In spite of large progresses have been made in the dynamics of hydrological cycle variables, the dynamics and drivers of blue water flow, 10 green water flow and total flow (three flows), as well as the proportion of green water (GWC), in the past and future at county scale, were scarcely investigated. In this study, taking the Heihe River basin in China as an example, we investigated the dynamics of green and blue water flows and their controlling factors during 1980-2009 using five statistical approaches and the Soil and Water Assessment Tool (SWAT). We found that there were large variations in the dynamics of green and blue water flows during 1980-2009 at the county scale. Three flows in all counties showed an increasing trend except 15 Jiayuguan and Jianta county. The GWC showed a downward trend in the Qilian, Suzhou, Shandan, Linze and Gaotai counties, but an upward trend in the Mingle, Sunan, Jinta, Jiayuguan, Ganzhou and Ejilaqi counties.
    [Show full text]
  • Issues and Potential Solutions to the Clean Heating Project in Rural Gansu
    sustainability Article Issues and Potential Solutions to the Clean Heating Project in Rural Gansu Dehu Qv 1,* , Xiangjie Duan 1, Jijin Wang 2, Caiqin Hou 1, Gang Wang 1, Fengxi Zhou 1,* and Shaoyong Li 1,* 1 Department of Building Environment and Energy Application Engineering, School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; [email protected] (X.D.); [email protected] (C.H.); [email protected] (G.W.) 2 School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150090, China; [email protected] * Correspondence: [email protected] (D.Q.); [email protected] (F.Z.); [email protected] (S.L.); Tel.: +86-931-2973715 (D.Q.) Abstract: Rural clean heating project (RCHP) in China aims to increase flexibility in the rural energy system, enhance the integration of renewable energy and distributed generation, and reduce environmental impact. While RCHP-enabling routes have been studied from a technical perspective, the economic, ecological, regulatory, and policy dimensions of RCHP are yet to be analysed in depth, especially in the underdeveloped areas in China. This paper discusses RCHP in rural Gansu using a multi-dimensional approach. We first focus on the current issues and challenges of RCHP in rural Gansu. Then the RCHP-enabling areas are briefly zoned into six typical regions based on the resource distribution in Gansu Province, and a matching framework of RCHP is recommended. Then we focus on the economics and sustainability of RCHP-enabling technologies. Based on the medium-term assessment of RCHP in the demonstration provinces, various technical schemes and routes are analysed and compared in order to determine which should be adopted in rural Gansu.
    [Show full text]
  • Gansu Cultural and Natural Heritage Protection
    PROJECT INFORMATION DOCUMENT (PID) APPRAISAL STAGE Report No.: AB3065 CN-Gansu Cultural and Natural Heritage Protection and Project Name Development Public Disclosure Authorized Region EAST ASIA AND PACIFIC Sector Other social services (57%); General transportation sector (30%); General water, sanitation and flood protection sector (10%); Solid waste management (3%) Project ID P091949 Borrower(s) PEOPLE’S REPUBLIC OF CHINA Implementing Agency Gansu Provincial Government Gansu Provincial Development and Reform Commission 319 Houlou, No. 1 Building Zhongyang Guangchang, Chengguan District Gansu Public Disclosure Authorized China 730030 Tel: +86 931 846 4760 Fax: +86 931 848 4190 [email protected] Environment Category [X] A [ ] B [ ] C [ ] FI [ ] TBD (to be determined) Date PID Prepared July 25, 2007 Date of Appraisal June 20, 2007 Authorization Date of Board Approval TBD 1. Country and Sector Background Public Disclosure Authorized 1. Gansu Province, with its capital of Lanzhou and a total population of 26 million, is located in northwestern China. The economy has traditionally been based on agricultural production, mining of the province’s abundant mineral reserves, and heavy industrial development. Poor infrastructure and Gansu’s distance from the coast, have largely kept it isolated from the rapid development experienced by other provinces in China over the last two decades. As a result, Gansu is the second poorest province in the country, measured by per- capita GDP. Moreover, the province contains some of the country’s poorest communities, as listed on the Government’s national poverty register. 2. A major element of Gansu’s poverty alleviation and economic restructuring strategy is the development of a sustainable tourism industry.
    [Show full text]
  • Transmission of Han Pictorial Motifs Into the Western Periphery: Fuxi and Nüwa in the Wei-Jin Mural Tombs in the Hexi Corridor*8
    DOI: 10.4312/as.2019.7.2.47-86 47 Transmission of Han Pictorial Motifs into the Western Periphery: Fuxi and Nüwa in the Wei-Jin Mural Tombs in the Hexi Corridor*8 ∗∗ Nataša VAMPELJ SUHADOLNIK 9 Abstract This paper examines the ways in which Fuxi and Nüwa were depicted inside the mu- ral tombs of the Wei-Jin dynasties along the Hexi Corridor as compared to their Han counterparts from the Central Plains. Pursuing typological, stylistic, and iconographic approaches, it investigates how the western periphery inherited the knowledge of the divine pair and further discusses the transition of the iconographic and stylistic design of both deities from the Han (206 BCE–220 CE) to the Wei and Western Jin dynasties (220–316). Furthermore, examining the origins of the migrants on the basis of historical records, it also attempts to discuss the possible regional connections and migration from different parts of the Chinese central territory to the western periphery. On the basis of these approaches, it reveals that the depiction of Fuxi and Nüwa in Gansu area was modelled on the Shandong regional pattern and further evolved into a unique pattern formed by an iconographic conglomeration of all attributes and other physical characteristics. Accordingly, the Shandong region style not only spread to surrounding areas in the central Chinese territory but even to the more remote border regions, where it became the model for funerary art motifs. Key Words: Fuxi, Nüwa, the sun, the moon, a try square, a pair of compasses, Han Dynasty, Wei-Jin period, Shandong, migration Prenos slikovnih motivov na zahodno periferijo: Fuxi in Nüwa v grobnicah s poslikavo iz obdobja Wei Jin na območju prehoda Hexi Izvleček Pričujoči prispevek v primerjalni perspektivi obravnava upodobitev Fuxija in Nüwe v grobnicah s poslikavo iz časa dinastij Wei in Zahodni Jin (220–316) iz province Gansu * The author acknowledges the financial support of the Slovenian Research Agency (ARRS) in the framework of the research core funding Asian languages and Cultures (P6-0243).
    [Show full text]
  • Gansu Airport Group Co., Ltd. Main Contractor Local Company Main Consultant -
    Ex-Post Monitoring of Completed ODA Loan Project The People’s Republic of China Lanzhou Zhongchuan Airport Expansion Project External Evaluators: Tomoko Matsushita and Masahiro Yoshizawa, INGEROSEC Corporation 1. Project Description Kazakhstan Mongolia Gansu Province Beijing City Project Site The People's Republic of China Nepal Bhutan India Myanmar Project Location Map Terminal building of Lanzhou Zhongchuan Airport 1.1 Project Objective The project’s objective was to newly construct a runway except for the existing runway and a passenger terminal building in the former runway area of Lanzhou Zhongchuan Airport situated 70km northwest of the urban district of Lanzhou, Gansu Province in order to cope with the predicted increase in the demand for air transport, thereby contributing to activating economic activities in the northwestern region. At the same time, the project aims to grade up the aforesaid airport serve as an emergency or alternative airport, thereby contributing to the improvement of aviation safety in the northwestern region. 1.2 Outline of the Loan Agreement Approved Amount / Disbursed Amount 6,338 million yen / 6,299 million yen Loan Agreement Signing Date / December, 1996 / June, 2002 Final Disbursement Date Ex-post Evaluation 2004 Executing Agency Gansu Airport Group Co., Ltd. Main Contractor Local company Main Consultant - 1.3 Background of Ex-post Monitoring Gansu Province, which located in Northeastern China near Xinjiang Uygur Autonomous 4-1 Region and Central Asia, plays an important role in terms of politics and economics. Since the surrounding areas including the Tarim Basin are abundant in oil reserves, transportation of materials in the province was expected to increase when the development of oil fields started on a large scale.
    [Show full text]
  • 2. Ethnic Minority Policy
    Public Disclosure Authorized ETHNIC MINORITY DEVELOPMENT PLAN FOR THE WORLD BANK FUNDED Public Disclosure Authorized GANSU INTEGRATED RURAL ECONOMIC DEVELOPMENT DEMONSTRATION TOWN PROJECT Public Disclosure Authorized GANSU PROVINCIAL DEVELOPMENT AND REFORM COMMISSION Public Disclosure Authorized LANZHOU , G ANSU i NOV . 2011 ii CONTENTS 1. INTRODUCTION ................................................................ ................................ 1.1 B ACKGROUND AND OBJECTIVES OF PREPARATION .......................................................................1 1.2 K EY POINTS OF THIS EMDP ..........................................................................................................2 1.3 P REPARATION METHOD AND PROCESS ..........................................................................................3 2. ETHNIC MINORITY POLICY................................................................ .......................... 2.1 A PPLICABLE LAWS AND REGULATIONS ...........................................................................................5 2.1.1 State level .............................................................................................................................5 2.1.2 Gansu Province ...................................................................................................................5 2.1.3 Zhangye Municipality ..........................................................................................................6 2.1.4 Baiyin City .............................................................................................................................6
    [Show full text]
  • Study on Urban Efficiency Measurement and Spatiotemporal
    sustainability Article Study on Urban Efficiency Measurement and Spatiotemporal Evolution of Cities in Northwest China Based on the DEA–Malmquist Model Jun Yin and Qingmei Tan * College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; [email protected] * Correspondence: [email protected] Received: 18 November 2018; Accepted: 12 January 2019; Published: 15 January 2019 Abstract: Urban efficiency can effectively measure the management and allocation level of urban factor inputs. Based on the data of 30 prefecture-level cities in Northwest China from 2006 to 2015, urban efficiency is measured by data envelopment analysis (DEA). Then the spatiotemporal evolution rule is identified by Malmquist model. The results illustrate that the overall average urban efficiency of cities in Northwest China each year from 2006 to 2015 was at the low level. Only Jiayuguan, Yulin, Yan’an, and Karamay reached the high average urban efficiency, while Dingxi, Pingliang, Guyuan, Shangluo, Tianshui, Longnan, and Baiyin were at the inefficient level. Most cities in Northwest China were still in the “growing” stage of increasing returns to scale. The scale of urban investment was relatively insufficient, and economies of scale had not yet formed. Cities with decreasing returns to scale were mainly distributed in the capital cities and the central and sub-central cities of Guanzhong-Tianshui Economic Zone with relatively abundant urban resources and capital. Cities with constant returns to scale were mainly distributed in four cities including Yan’an, Yulin, Jiayuguan, and Karamay with high efficiency. The overall comprehensive efficiency, technical efficiency, and scale efficiency of cities in Northwest China were not only low, but also showing a downward trend.
    [Show full text]
  • Linxia, People’S Republic of China
    Applicant UNESCO Global Geopark Linxia, People’s Republic of China Geographical and geological summary 1. Physical and human geography Linxia Geopark is situated in Linxia Hui Autonomous Prefecture, Gansu Province, People's Republic of China. The geographical coordinates are 103°02′19.08′′-103°38′21.06′′E; 35°14′37.43′′-36°09′10.87′′N, with a total area of 2120 km2. Linxia Geopark stretches across two natural regions, that is, the arid area of the Loess Plateau in Northwest China and the alpine humid area of the Qinghai-Tibet Plateau. The Geopark, high in the southwest and low in the northeast, is in the shape of a sloping basin with an average elevation of 2000m. The Geopark is in a temperate continental climate zone with annual average temperature of 5.0- 9.4°C. The annual precipitation is 260-660mm, and the rainfall is mostly concentrated between June and September. The Geopark is located in the upper reaches of the Yellow River basin and has abundant surface water. Most parts are covered with aeolian loess parent material. The distribution of natural vegetation varies widely with very prominent zonality. The Geopark involves six counties (cities) including Yongjing County, Hezheng County, Dongxiang County, Linxia City, Guanghe County, and Linxia County in Linxia Hui Autonomous Prefecture, and 66 townships. The Geopark has a population of 1.166 million, with 31 nations including Hui, Han, Dongxiang, Baoan, Salar, and so on. In the north of the Geopark, Yongjing County is 74km away from the provincial capital Lanzhou, and in the south, Hezheng is 116km away from Lanzhou.
    [Show full text]
  • Management Implications to Water Resources Constraint Force on Socio-Economic System in Rapid Urbanization: a Case Study of the Hexi Corridor, NW China
    Water Resour Manage (2007) 21:1613–1633 DOI 10.1007/s11269-006-9117-0 Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China Chuang-lin Fang & Chao Bao & Jin-chuan Huang Received: 11 January 2006 /Accepted: 30 October 2006 / Published online: 6 December 2006 # Springer Science + Business Media B.V. 2006 Abstract As water has become the shortest resources in arid, semi-arid and rapid urbanization areas when the water resources utilization has approached or exceeded its threshold, water resources system slows down the socio-economic growth rate and destroys the projected targets to eradicate poverty and realize sustainable development. We put forward the concept of Water Resources Constraint Force (WRCF) and constructed a conceptual framework on it. Conceptual models on the interactions and feedbacks between water resources and socio-economic systems in water scarce regions or river basins indicate that, if the socio-economic system always aims at sustainable development, WRCF will vary with a normal distribution curve. Rational water resources management plays an important role on this optimistic variation law. Specifically, Water Demand Management (WDM) and Integrated Water Resources Management (IWRM) are considered as an important perspective and approach to alleviate WRCF. A case study in the Hexi Corridor of NW China indicates that, water resources management has great impact on WRCF both in Zhangye and Wuwei Region, and also the river basins where they are located. The drastic transformation of water resources management pattern and the experimental project – Building Water-saving Society in Zhangye Region alleviated the WRCF to some extent.
    [Show full text]