Universidad Austral De Chile Sede Puerto Montt Escuela De Ingenieria En Computacion

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Austral De Chile Sede Puerto Montt Escuela De Ingenieria En Computacion UNIVERSIDAD AUSTRAL DE CHILE SEDE PUERTO MONTT ESCUELA DE INGENIERIA EN COMPUTACION Integración de Tecnologías .Net y OpenGL, Aplicadas al Desarrollo de un Editor para Escenarios 3D. Seminario de Titulación para optar al título de Ingeniero en Computación PROFESOR PATROCINANTE: Sr. Mauricio Henríquez Schott CO-PATROCINANTE: Sr. Pablo Mansilla Ojeda Felipe Andrés Morales Saldivia PUERTO MONTT - CHILE 2008-2009 A Mi Madre por su apoyo incondicional... Agradezco públicamente a las siguientes personas: Al Sr. Mauricio Henríquez Schott por guiarme durante el desarrollo del presente proyecto. Al Sr. Pablo Mansilla Ojeda por apoyarme en la realización de este proyecto. Muchas Gracias INDICE Síntesis Abstract 1. Introducción .................................................................................................. 1 2. Planteamiento del problema ........................................................................ 5 2.1 Antecedentes ........................................................................................... 5 2.1.1 Definición del problema .................................................................... 5 2.1.2 Esfuerzos anteriores ........................................................................ 23 2.1.3 Solución Propuesta ......................................................................... 29 2.2 Justificación ........................................................................................... 31 2.2.1 Situación sin proyecto: ................................................................... 31 2.2.2 Situación con proyecto: .................................................................. 31 2.3 Delimitación ............................................................................................ 32 3. Objetivos ...................................................................................................... 34 3.1 Objetivo General .................................................................................... 34 3.2 Objetivos Específicos ............................................................................ 34 4. Metodología ................................................................................................. 35 5. Plan de Trabajo y Cronograma .................................................................. 39 5.1 Actividades ............................................................................................. 39 5.2 Carta Gantt ............................................................................................. 42 6. Recursos...................................................................................................... 43 6.1 Hardware ................................................................................................. 43 6.2 Software .................................................................................................. 43 7. Análisis de la Solución ............................................................................... 44 7.1 Descripción de la solución .................................................................... 44 7.1.1 Módulo Editor 3D. ............................................................................ 45 7.1.1.1 Caso de uso: Crear/Editar/Eliminar Mundo. ............................ 46 7.1.1.2 Caso de uso: Crear/Editar/Eliminar Objeto. ............................. 49 7.1.1.3 Caso de uso: Crear/Editar/Eliminar Luz. .................................. 52 7.1.1.4 Caso de uso: Nueva/Guardar/Cargar Escena. ......................... 53 7.1.2 Módulo Generador de Código Fuente. ........................................... 54 7.1.2.1 Caso de uso: Generar código Fuente Escena. ........................... 54 7.2 Establecimiento de herramientas de desarrollo ................................. 55 7.3 Investigación de Tecnologías ............................................................... 56 7.3.1 Tao FrameWork ................................................................................ 56 7.3.2 Visual Studio 2008 ........................................................................... 59 7.3.3 Microsoft .NET Framework versión 2.0 (x86). ................................ 59 6.3.4 Tecnología de desarrollo basadas Reflection de Plataforma .NET. .................................................................................................................... 60 7.3.5 Tecnología XML 1.0. ......................................................................... 61 7.3.6 Mono 2.4 y MonoDevelop 2.0. ......................................................... 62 7.4 Validación de Requerimientos ........................................................... 63 8. Diseño de la Solución ................................................................................. 64 8.1 Diagrama de clases ............................................................................... 65 8.2 Diccionario de clases de editor OpenGL ............................................. 66 8.4 Casilla de Responsabilidades. ............................................................ 144 8.5 Diagrama de Procesos. ....................................................................... 145 8.5.1 Diagrama de Proceso Creación y edición de un Objeto 3D. ...... 145 8.5.2 Diagrama de Proceso Guardar escena. ....................................... 147 8.5.3 Diagrama de Proceso Cargar escena. .......................................... 148 8.5.4 Diagrama de Proceso Generación código Fuente de la escena Diseñada con el Editor 3D. ..................................................................... 149 8.5.5 Diagrama de Proceso de Selección de objetos Mediante el Mouse. .................................................................................................................. 150 9. Construcción del Software ....................................................................... 152 9.1 Construcción Aplicación versión Beta (solo Funcionalidad de Editor 3D). .............................................................................................................. 152 9.1.1 Construir una ventana que despliegue un Objeto en el mundo. 152 9.1.2 Capacidad de agregar en forma dinámica objetos al mundo y además que se desplieguen. ................................................................. 154 9.1.3 Crear una clase que ofrezca Primitivas OpenGL personalizadas. .................................................................................................................. 154 9.1.4 Definir tipos Objetos que derivan de Entity. ................................ 155 9.1.5 Crear interfaz visual y lógica para creación de Objetos. ............ 156 9.1.6 Exhibir las propiedades del mundo y objetos en una paleta de propiedades. ............................................................................................ 158 9.1.7 Seleccionar el mundo o los objetos desplegados en la ventana mediante el Mouse. ................................................................................. 159 9.1.8 Trasladar/Rotar/Escalar objetos en forma dinámica mediante el Mouse y Paleta de Propiedades. ........................................................... 165 9.1.9 Trasladar/Rotar la cámara en forma dinámica mediante el Mouse y Paleta de Propiedades. ........................................................................... 169 9.1.10 Selección de cámaras. ................................................................. 170 9.1.11 Crear una interfaz visual para la aplicación. ............................. 171 9.1.12 Aplicar Texturas a Objetos de tipo Entity. ................................. 177 9.1.13 Construir funcionalidad que permita crear Objetos Entity compuestos de Otros. ............................................................................ 180 9.1.14 Construir Funcionalidad que permita aplicar planos de corte a objetos de tipo Entity.............................................................................. 181 9.1.15 Construir funcionalidad que permita crear y editar fuentes de Luz. ........................................................................................................... 183 9.1.16 Construir funcionalidad que permita editar el mundo y sus Objetos mediante el teclado. ................................................................. 186 9.1.17 Construir funcionalidad que permita revisar la escena mediante una animación Básica que rote la cámara por la escena. ................... 190 9.1.18 Construir funcionalidad que permita guardar y cargar la escena mediante el uso de la Tecnología Xml. ................................................. 191 9.1.19 Integración de funcionalidades. ................................................. 199 9.2 Construcción aplicación versión Final (Editor 3D + Generador de código Fuente). .......................................................................................... 202 9.2.1 Generador de clase que despliegue la escena diseñada con la aplicación. ............................................................................................... 202 9.2.2 Generador de Proyecto .Net que despliegue la escena diseñada con la aplicación. .................................................................................... 207 10. Pruebas .................................................................................................... 209 10.1 Conceptos generales de las pruebas realizadas. ........................... 209 10.1.1 Pruebas de Unidad. ...................................................................... 209 10.1.2 Pruebas de Integración. .............................................................
Recommended publications
  • A Topology-Adaptive Overlay Framework. (Under the Direction of Dr
    ABSTRACT KANDEKAR, KUNAL. TAO: A Topology-Adaptive Overlay Framework. (Under the direction of Dr. Khaled Harfoush.) Large-scale distributed systems rely on constructing overlay networks in which nodes communicate with each other through intermediate overlay neighbors. Organizing nodes in the overlay while preserving its congruence with the underlying IP topology (the underlay) is important to reduce the communication cost between nodes. In this thesis, we study the state- of-the-art approaches to match the overlay and underlay topologies and pinpoint their limitations in Internet-like setups. We also introduce a new Topology-Adaptive Overlay organization framework, TAO, which is scalable, accurate and lightweight. As opposed to earlier approaches, TAO compiles information resulting from traceroute packets to a small number of landmarks, and clusters nodes based on (1) the number of shared hops on their path towards the landmarks, and (2) their proximity to the landmarks. TAO is also highly flexible and can complement all existing structured and unstructured distributed systems. Our experimental results, based on actual Internet data, reveal that with only five landmarks, TAO identifies the closest node to any node with 85% - 90% accuracy and returns nodes that on average are within 1 millisecond from the closest node if the latter is missed. As a result, TAO overlays enjoy very low stretch (between 1.15 and 1.25). Our results also indicate that shortest-path routing on TAO overlays result in shorter end-to-end delays than direct underlay delays in 8-10% of the overlay paths. TAO: A Topology-Adaptive Overlay Framework by Kunal Kandekar A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science Computer Science Raleigh 2006 Approved by: _______________________________ _______________________________ Dr.
    [Show full text]
  • Nuclear Data
    CNIC-00810 CNDC-0013 INDC(CPR)-031/L NUCLEAR DATA No. 10 (1993) China Nuclear Information Center Chinese Nuclear Data Center Atomic Energy Press CNIC-00810 CNDC-0013 INDC(CPR)-031/L COMMUNICATION OF NUCLEAR DATA PROGRESS No. 10 (1993) Chinese Nuclear Data Center China Nuclear Information Centre Atomic Energy Press Beijing, December 1993 EDITORIAL BOARD Editor-in-Chief Liu Tingjin Zhuang Youxiang Member Cai Chonghai Cai Dunjiu Chen Zhenpeng Huang Houkun Liu Tingjin Ma Gonggui Shen Qingbiao Tang Guoyou Tang Hongqing Wang Yansen Wang Yaoqing Zhang Jingshang Zhang Xianqing Zhuang Youxiang Editorial Department Li Manli Sun Naihong Li Shuzhen EDITORIAL NOTE This is the tenth issue of Communication of Nuclear Data Progress (CNDP), in which the achievements in nuclear data field since the last year in China are carried. It includes the measurements of 54Fe(d,a), 56Fe(d,2n), 58Ni(d,a), (d,an), (d,x)57Ni, 182~ 184W(d,2n), 186W(d,p), (d,2n) and S8Ni(n,a) reactions; theoretical calculations on n+160 and ,97Au, 10B(n,n) and (n,n') reac­ tions, channel theory of fission with diffusive dynamics; the evaluations of in­ termediate energy nuclear data for 56Fe, 63Cu, 65Cu(p,n) monitor reactions, and of 180Hf, ,8lTa(n,2n) reactions, revision on recommended data of 235U and 238U for CENDL-2; fission barrier parameters sublibrary, a PC software of EXFOR compilation, some reports on atomic and molecular data and covariance research. We hope that our readers and colleagues will not spare their comments, in order to improve the publication. Please write to Drs.
    [Show full text]
  • The Atomic Simulation Environment - a Python Library for Working with Atoms
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 The Atomic Simulation Environment - A Python library for working with atoms Larsen, Ask Hjorth; Mortensen, Jens Jørgen; Blomqvist, Jakob; Castelli, Ivano Eligio; Christensen, Rune; Dulak, Marcin; Friis, Jesper; Groves, Michael; Hammer, Bjørk; Hargus, Cory Total number of authors: 34 Published in: Journal of Physics: Condensed Matter Link to article, DOI: 10.1088/1361-648X/aa680e Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dulak, M., Friis, J., Groves, M., Hammer, B., Hargus, C., Hermes, E., C. Jennings, P., Jensen, P. B., Kermode, J., Kitchin, J., Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., ... Jacobsen, K. W. (2017). The Atomic Simulation Environment - A Python library for working with atoms. Journal of Physics: Condensed Matter, 29, [273002]. https://doi.org/10.1088/1361-648X/aa680e General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Playing with the Time. Experimental Archaeology and the Study of the Past
    PLAYING WITH THE TIME. EXPERIMENTAL ARCHAEOLOGY AND THE STUDY OF THE PAST Editors: Rodrigo Alonso, Javier Baena & David Canales 4th. International Experimental Archaeology Conference 8-11 may 2014, Museo de la Evolución Huma. Burgos, Spain. Experimenta (the Spanish Experimental Archaeology Association) is a non-profit association created, among other proposes, to organize international experimental archaeology conferences. Previous conferences were successively held in Santander (2005), Ronda (2008) and Banyoles (2011). Organization Scientific committee Experimenta (Asociación española de Arqueología Experimental) Carlos Díez (Universidad de Burgos) Museo de la Evolución Humana, Junta de Castilla y León Marta Navazo(Universidad de Burgos) Universidad Autónoma de Madrid Ángel Carrancho (Universidad de Burgos) EXARC José A. Rodriguez Marcos (Universidad de Burgos) Diego Arceredillo (Fundación Atapuerca) Cooperación institutions Marcos Terradillos (Fundación Atapuerca) Fundación Atapuerca Millán Mozota (Institut Milá i Fontanals, CSIC) Universidad de Burgos Xavier Terradas (Institut Milá i Fontanals, CSIC) Consejo Superior de Investigaciones Científicas - IMF, Barcelona Ignacio Clemente (Institut Milá i Fontanals, CSIC) Asociación Española para el Estudio del Cuaternaro (AEQUA) Antonio Morgado (Universidad de Granada) Gema Chacón (Institut de Paleoecologia Humana i Evolució Social) Organizing committee Josep Maria Verges (Institut de Paleoecologia Humana i Evolució Social) Alejandro Sarmiento (Museo de la Evolución Humana, Junta de Castilla
    [Show full text]
  • Normas-ML: Supporting the Modeling of Normative Multi-Agent
    49 2019 8 4 ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal. Vol. 8 N. 4 (2019), 49-81 ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal Regular Issue, Vol. 8 N. 4 (2019), 49-81 eISSN: 2255-2863 DOI: http://dx.doi.org/10.14201/ADCAIJ2019844981 NorMAS-ML: Supporting the Modeling of Normative Multi-agent Systems Emmanuel Sávio Silva Freirea, Mariela Inés Cortésb, Robert Marinho da Rocha Júniorb, Enyo José Tavares Gonçalvesc, and Gustavo Augusto Campos de Limab aTeaching Department, Federal Institute of Ceará, Morada Nova, Brazil bComputer Science Department, State University of Ceará, Fortaleza, Brazil cComputer Science Department, Federal University of Ceará, Quixadá, Brazil [email protected], [email protected], [email protected], [email protected], [email protected] KEYWORD ABSTRACT Normative Multi- Context: A normative multi-agent system (NMAS) is composed of agents that their be- agent System; havior is regulated by norms. The modeling of those elements (agents and norms) togeth- Norms; Modeling er at design time can be a good way for a complete understanding of their structure and Language; behavior. Multi-agent system modeling language (MAS-ML) supports the representation NorMAS-ML of NMAS entities, but the support for concepts related to norms is somewhat limited. MAS-ML is founded in taming agents and objects (TAO) framework and has a support tool called the MAS-ML tool. Goal: The present work aims to present a UML-based modeling language called normative multi-agent system (NorMAS-ML) able to model the MAS main entities along with the static normative elements.
    [Show full text]
  • Session 3 15
    Proceedings of CGAMES’2006 8th International Conference on Computer Games: Artificial Intelligence and Mobile Systems 24-27 July 2006 Hosted by Galt House Hotel Louisville, Kentucky, USA Organised by University of Wolverhampton in association with University of Louisville and IEEE Computer Society Society for Modelling and Simulation (SCS-Europe) Institution of Electrical Engineers (IEE) British Computer Society (BCS) Digital Games Research Association (DiGRA) International Journal of Intelligent Games and Simulation (IJIGS) Edited by: Quasim Mehdi Guest Editor: Adel Elmaghraby Published by The University of Wolverhampton School of Computing and Information Technology Printed in Wolverhampton, UK ©2006 The University of Wolverhampton Responsibility for the accuracy of all material appearing in the papers is the responsibility of the authors alone. Statements are not necessarily endorsed by the University of Wolverhampton, members of the Programme Committee or associated organisations. Permission is granted to photocopy the abstracts and other portions of this publication for personal use and for the use of students providing that credit is given to the conference and publication. Permission does not extend to other types of reproduction nor to copying for use in any profit-making purposes. Other publications are encouraged to include 300-500 word abstracts or excerpts from any paper, provided credits are given to the author, conference and publication. For permission to publish a complete paper contact Quasim Mehdi, SCIT, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1SB, UK, [email protected]. All author contact information in these Proceedings is covered by the European Privacy Law and may not be used in any form, written or electronic without the explicit written permission of the author and/or the publisher.
    [Show full text]
  • IDN Authoring Tools Resource
    Appendix I: Tools Shortlist Yotam Shibolet, Noam Knoller and Hartmut Koenitz Note: This is a copy of the anonymised document posted 25 July 2018 on interactivenarrativedesign.org/ authoringtools/appendix.pdf. It is kept here as a placeholder since its url has been cited in a conference paper. The difference from the original is limited to the addition of the author names above, and the current note. The current project website is at interactivenarrativedesign.org/authoringtools/ Main overview Real-time-animation\game engines All-purpose game engines 1. Corona GUI 2. Construct2 3. CooperCube5 4. Clickteam Fusion 2.5 5. CryEngine V 6. Amazon Lumberyard (based on CryeEngine) 7. GameMaker Studio 2 8. GODOT Game Engine 9. LOVE 10. Ogre3D Game Engine 11. Panda3D 12. Playcanvvas 13. Unity (Plugins: AdventureCreator, Cradle, Danesh, Fungus, Tidy Text Adventures, Vive VR Tookit, Yarn\Yarn Spinner, PSST – mixed-initiative) 14. Unreal (and Blueprint mode) 15. Source (and GoldSource) 16. Shiva Genre-specific game makers 17. AdventureGameStudios 18. Adventjure (Clojure) 19. Bitsy 20. Bladecoder Adventure Engine 21. CANVAS + SWB (Story World Builder) 22. Chatmapper 23. Ensemble 24. Game Salad 25. ITY Studio 26. One-Roll Engine 27. RPG in a Box 28. RPG Maker MV (and the Degica ‘make’r series) 29. Stencyl 30. TIC 80 31. Tinsel 32. ToonTastic 33. Versu 34. Visionaire 35. Wolf RPG Editor Dead Comme-il-Faut Scribe Interactive Drama Architecture Storybricks Engine Hybrid text + graphic tools Visual novel authoring tools 36. Omega Visual Nover Maker 37. Kirikiri\Kirikir Z 38. NScripter 39. Ren’Py 40. RenJS 41. RLDev 42. Tyranobuilder Dead Novelty Other hybrid tools 43.
    [Show full text]
  • Comparative Analysis of Heuristic Algorithms for Solving Multiextremal Problems
    International Journal on Advances in Systems and Measurements, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/systems_and_measurements/ 86 Comparative Analysis of Heuristic Algorithms for Solving Multiextremal Problems Rudolf Neydorf, Ivan Chernogorov, Victor Polyakh Dean Vucinic Orkhan Yarakhmedov, Yulia Goncharova Vesalius College Department of Software Computer Technology and Vrije Universiteit Brussel Automated Systems and Department of Scientific- Brussels, Belgium Technical Translation and Professional Communication Don State Technical University Email: [email protected] Rostov-on-Don, Russia Email: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—In this paper, 3 of the most popular search Many modern practical optimization problems are optimization algorithms are applied to study the multi- inherently complicated by counterpoint criterion extremal problems, which are more extensive and complex requirements of the involved optimized object. The expected than the single-extremal problems. This study has shown that result - the global optimum - for the selected criteria is not only the heuristic algorithms can provide an effective solution always the best solution to consider, because it incorporate to solve the multiextremal problems. Among the large group of many additional criteria and restrictions. It is well known available algorithms, the 3 methods have demonstrated the that such situations arise in the design of complex best performance, which are: (1) particles swarming modelling technological systems when solving transportation and method, (2) evolutionary-genetic extrema selection and (3) logistics problems among many others. In addition, many search technique based on the ant colony method. The objects in their technical and informational nature are prone previous comparison study, where these approaches have been applied to an overall test environment with the multiextremal to multi-extreme property.
    [Show full text]
  • Chapter 1: the Semiotic Conditions of Videogame Authorship
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The Foundations of Videogame Authorship Permalink https://escholarship.org/uc/item/96x08750 Author Huber, William Humberto Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The Foundations of Videogame Authorship A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Art History, Theory and Criticism by William Humberto Huber Committee in charge: Professor Lev Manovich, Chair Professor Grant Kester Professor Kuiyi Shen Professor Stefan Tanaka Professor Noah Wardrip-Fruin 2013 © William Humberto Huber, 2013 All rights reserved. SIGNATURE PAGE The Dissertation of William Humberto Huber is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION With gratitude to friends, family and colleagues. To Samantha, with deepest devotion, for her friendship, affection and patience. To Rafael, for whom play is everything. iv EPIGRAPH Art is a game between all people, of all periods. – Marcel Duchamp v TABLE OF CONTENTS Signature Page ............................................................................................................... iii Dedication ..................................................................................................................... iv Epigraph ..........................................................................................................................v
    [Show full text]
  • Sun's Chief Open Source Officer +
    RJS | PYTHON | SCGI | OPENOFFICE.ORG | Qt | PHP LINUX JOURNAL ™ METAPROGRAMMING PRIMER LANGUAGES VIEW CODE IN YOUR BROWSER SCGI FOR FASTER Since 1994: The Original Magazine of the Linux Community WEB APPLICATIONS JUNE 2007 | ISSUE 158 OPENOFFICE.ORG RJS EXTENSIONS | Python Validate E-Mail LUA OVERVIEW | SCGI Addresses | OpenOffice.org in PHP | Database Comparison Interview with SUN’S CHIEF OPEN | Qt SOURCE OFFICER | PHP The Object Relational Mapping Quagmire JUNE www.linuxjournal.com USA $5.00 | CAN $6.50 2007 ISSUE 158 U|xaHBEIGy03102ozXv+:' + Qt 4.x Asynchronous Data Access Today, Jack confi gured a switch in London, rebooted servers in Sydney, and watched his team score the winning run in Cincinnati. With Avocent data center management solutions, the world can fi nally revolve around you. Avocent puts secure access and control right at your fi ngertips — from multi-platform servers to network routers, remote data centers to fi eld offi ces. You can manage everything from a single screen, from virtually anywhere. This means you can troubleshoot, reboot or upgrade your data center devices — just as if you were sitting in front of them. Avocent simplifi es your workday. What you do with the extra time is up to you. For information on improving data center performance, visit www.avocent.com/control Avocent, the Avocent logo and The Power of Being There are registered trademarks of Avocent Corporation. All other trademarks or company names are trademarks or registered trademarks of their respective companies. Copyright © 2007 Avocent Corporation. Today_BB2_Linux.indd 1 4/3/07 12:36:29 PM JUNE 2007 CONTENTS Issue 158 COVER STORY 46 Interview with Simon Phipps Why did Sun decide to GPL Java? Glyn Moody FEATURES 50 Programming Python, Part I 70 Christof Wittig and Ted Neward on Find out what the love for Python is about.
    [Show full text]
  • Interactive Multimedia Streams in Distributed Applications Edouard Lamboraya,*, Aaron Zollingera, Oliver G
    ARTICLE IN PRESS Computers & Graphics 27 (2003) 735–745 Technical section Interactive multimedia streams in distributed applications Edouard Lamboraya,*, Aaron Zollingera, Oliver G. Staadtb, Markus Grossa a Computer Science Department, Institute of Scientific Computing, IFW D29.1, ETH-Zentrum, CH-8092 Zurich, Switzerland b Computer Science Department, University of California, Davis, USA Abstract Distributed multimedia applications typically handle two different types of communication: request/reply interaction for control information as well as real-time streaming data. The CORBA Audio/Video Streaming Service provides a promising framework for the efficient development of such applications. In this paper, we discuss the CORBA-based design and implementation of Campus TV, a distributed television studio architecture. We analyze the performance of our test application with respect to different configurations. We especially investigate interaction delays, i.e., the latencies that occur between issuing a CORBA request and receiving the first video frame corresponding to the new mode. Our analysis confirms that the interaction delay can be reasonably bounded for UDP and RTP. In order to provide results which are independent from coding schemes, we do not take into account any media specific compression issues. Hence, our results help to make essential design decisions while developing interactive multimedia applications in general, involving e.g., distributed synthetic image data, or augmented and virtual reality. r 2003 Elsevier Ltd. All rights reserved. Keywords: Distributed systems; Augmented, and virtual realities; Computer conferencing, teleconferencing, and videoconferencing; Performance of systems 1. Introduction This paper analyzes the TAO/ACEframework [3] and its CORBA Audio/Video Streaming Service implementa- Distributed component architectures leverage the tion in the context of dynamically changing real-time development of networked applications since they transmissions [4].
    [Show full text]
  • Appendix a Basic Mathematics for 3D Computer Graphics
    Appendix A Basic Mathematics for 3D Computer Graphics A.1 Vector Operations (),, A vector v is a represented as v1 v2 v3 , which has a length and direction. The location of a vector is actually undefined. We can consider it is parallel to the line (),, (),, from origin to a 3D point v. If we use two points A1 A2 A3 and B1 B2 B3 to (),, represent a vector AB, then AB = B1 – A1 B2 – A2 B3 – A3 , which is again parallel (),, to the line from origin to B1 – A1 B2 – A2 B3 – A3 . We can consider a vector as a ray from a starting point to an end point. However, the two points really specify a length and a direction. This vector is equivalent to any other vectors with the same length and direction. A.1.1 The Length and Direction The length of v is a scalar value as follows: 2 2 2 v = v1 ++v2 v3 . (EQ 1) 378 Appendix A The direction of the vector, which can be represented with a unit vector with length equal to one, is: ⎛⎞v1 v2 v3 normalize()v = ⎜⎟--------,,-------- -------- . (EQ 2) ⎝⎠v1 v2 v3 That is, when we normalize a vector, we find its corresponding unit vector. If we consider the vector as a point, then the vector direction is from the origin to that point. A.1.2 Addition and Subtraction (),, (),, If we have two points A1 A2 A3 and B1 B2 B3 to represent two vectors A and B, then you can consider they are vectors from the origin to the points.
    [Show full text]