The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A

Total Page:16

File Type:pdf, Size:1020Kb

The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A This information is current as María M. Escribese, Elena Sierra-Filardi, Concha Nieto, of September 25, 2021. Rafael Samaniego, Carmen Sánchez-Torres, Takami Matsuyama, Elisabeth Calderon-Gómez, Miguel A. Vega, Azucena Salas, Paloma Sánchez-Mateos and Angel L. Corbí J Immunol published online 9 July 2012 http://www.jimmunol.org/content/early/2012/07/09/jimmun Downloaded from ol.1201064 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 9, 2012, doi:10.4049/jimmunol.1201064 The Journal of Immunology The Prolyl Hydroxylase PHD3 Identifies Proinflammatory Macrophages and Its Expression Is Regulated by Activin A Marı´a M. Escribese,* Elena Sierra-Filardi,* Concha Nieto,* Rafael Samaniego,† Carmen Sa´nchez-Torres,‡ Takami Matsuyama,x Elisabeth Calderon-Go´mez,{ Miguel A. Vega,* Azucena Salas,{ Paloma Sa´nchez-Mateos,† and Angel L. Corbı´* Modulation of macrophage polarization underlies the onset and resolution of inflammatory processes, with polarization-specific molecules being actively sought as potential diagnostic and therapeutic tools. Based on their cytokine profile upon exposure to pathogenic stimuli, human monocyte-derived macrophages generated in the presence of GM-CSF or M-CSF are considered as proinflammatory (M1) or anti-inflammatory (M2) macrophages, respectively. We report in this study that the prolyl hydroxylase PHD3-encoding EGLN3 gene is specifically expressed by in vitro-generated proinflammatory M1(GM-CSF) human macrophages at the mRNA and protein level. Immunohistochemical analysis revealed the expression of PHD3 in CD163+ lung macrophages Downloaded from under basal homeostatic conditions, whereas PHD3+ macrophages were abundantly found in tissues undergoing inflammatory responses (e.g., Crohn’s disease and ulcerative colitis) and in tumors. In the case of melanoma, PHD3 expression marked a subset of tumor-associated macrophages that exhibit a weak (e.g., CD163) or absent (e.g., FOLR2) expression of typical M2-polarization markers. EGLN3 gene expression in proinflammatory M1(GM-CSF) macrophages was found to be activin A dependent and could be prevented in the presence of an anti-activin A-blocking Ab or inhibitors of activin receptor-like kinase receptors. Moreover, EGLN3 gene expression was upregulated in response to hypoxia only in M2(M-CSF) macrophages, and the hypoxia-mediated http://www.jimmunol.org/ upregulation of EGLN3 expression was significantly impaired by activin A neutralization. These results indicate that EGLN3 gene expression in macrophages is dependent on activin A both under basal and hypoxic conditions and that the expression of the EGLN3-encoded PHD3 prolyl hydroxylase identifies proinflammatory macrophages in vivo and in vitro. The Journal of Immu- nology, 2012, 189: 000–000. he extreme sensitivity of macrophages to endogenous existence of a plethora of macrophage polarization states is critical (e.g., cytokines) and exogenous (e.g., pathogens) stimuli for the adequate onset, regulation, and resolution of immune and T explains their phenotypic and functional heterogeneity inflammatory responses (2). As a representative example, although by guest on September 25, 2021 under homeostatic and pathological conditions (1). In fact, the GM-CSF and M-CSF contribute to macrophage survival and proliferation, they exert distinct actions on macrophage polariza- tion. GM-CSF gives rise to monocyte-derived macrophages that *Laboratorio de Ce´lulas Mieloides, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cientı´ficas, Madrid 28040, Spain; †Hospital General exhibit high Ag-presenting capacity and produce proinflammatory Universitario Gregorio Maran˜o´n, Madrid 28007, Spain; ‡Departamento de Biomedi- cytokines in response to LPS (3, 4). Conversely, M-CSF generates cina Molecular, Centro de Investigacio´n y de Estudios Avanzados del Instituto Poli- x macrophages with high phagocytic activity and IL-10–producing te´cnico Nacional, Mexico DF 07360, Mexico; Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890- ability in response to pathogens (3, 4). Based on their respective 8544, Japan; and {Institut d’Investigacions Biome`diques August Pi i Sunyer, Centre cytokine profiles, human macrophages generated in the presence Esther Koplowitz, Barcelona 08036, Spain of GM-CSF or M-CSF are representative of the classical or al- Received for publication April 10, 2012. Accepted for publication June 9, 2012. ternative macrophage polarization states, respectively, and are This work was supported by grants from Ministerio de Economı´a y Competitividad considered as proinflammatory or anti-inflammatory macrophages (BFU2008-01493-BMC and SAF2011-23801), Genoma Espan˜a (Molecular and Cel- lular Mechanisms in Chronic Inflammatory and Autoimmune Diseases project), Insti- (3, 5). tuto de Salud Carlos III (Spanish Network for the Research in Infectious Diseases Variation in the levels of oxygen is a parameter that also RD06/0008 and Red de Investigacio´n en SIDA RD06/0006/1016), Comunidad determines the state of macrophage polarization (6). In healthy Auto´noma de Madrid/Fondo Europeo de Desarrollo Regional (Rheumatoid Arthritis: Physiopathology Mechanisms and Identification of Potential Therapeutic Targets tissues, oxygen levels span from 150 mmHg in the lung to 40–100 Program) (to A.L.C.), Grant SAF2010-1602 from the Ministerio de Ciencia e Inno- mmHg in the circulation and 4–20 mmHg in the tissues (7). vacion (to P.S.-M.), and Grant Agreement 229673 from the European Community’s Pathologic hypoxia, commonly found in malignant solid tumors, Seventh Framework Programme (FP7/2009-2013). M.M.E. is supported by a Sara Borrell postdoctoral contract from Instituto de Salud Carlos III (CD09/00386). inflammatory lesions, and healing wounds (8–10), also influences M.M.E., E.-S.F., C.N., R.S., and C.S.-T. performed research and analyzed data; T.M., macrophage polarization and leads to transcriptional and meta- M.A.V., and P.S.-M. contributed vital reagents; and M.M.E. and A.L.C. designed the bolic changes (6) and the acquisition of effector functions to research, analyzed data, and wrote the paper. promote angiogenesis and restore tissue homeostasis (7, 11, 12). Address correspondence and reprint requests to Dr. Marı´a M. Escribese and Dr. Macrophages accumulate in large numbers in damaged hypoxic Angel L. Corbı´, Centro de Investigaciones Biolo´gicas, Consejo Superior de Inves- tigaciones Cientı´ficas, Ramiro de Maeztu 9, Madrid 28040, Spain. E-mail addresses: tissues and respond to hypoxia by altering their gene expression [email protected] and [email protected] program via upregulation of the hypoxia-inducible factor (HIF) 1 Abbreviations used in this article: FRb, folate receptor b; HIF, hypoxia-inducible (HIF1a/HIF1b)andHIF2(HIF2a/HIF1b) transcription factors factor; PHD3, prolyl hydroxylase 3; qRT-PCR, quantitative real-time RT-PCR; TAM, (13, 14). In the presence of oxygen, both a subunits are prolyl- tumor-associated macrophage. hydroxylated, recognized by the von Hippel-Lindau tumor Copyright Ó 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00 suppressor protein (15–17), and degraded by the ubiquitin- www.jimmunol.org/cgi/doi/10.4049/jimmunol.1201064 2 PHD3 EXPRESSION IN PROINFLAMMATORY MACROPHAGES proteasome pathway (17). The three HIF prolyl hydroxylases medium for 48 h in the absence of GM-CSF, after which the conditioned (PHD1–3) (16, 18) require molecular oxygen as a cosubstrate and, medium was collected. Cells were routinely cultured in 21% O2 and 5% therefore, constitute the link between oxygen availability and HIF- CO2 (normoxic conditions). For hypoxic conditions, cells were placed in an in vivo 400 hypoxia Work Station (Ruskinn Technology) that was in- dependent transcription (19). fused with a mixture of 1% O2,5%CO2, and 94% N2 (Sociedad Espan˜ola The prolyl hydroxylase PHD3 is encoded by the EGLN3 gene, de Carburos Meta´licos) for 24 h and treated or not with the activin for which expression is upregulated in platelet-derived growth receptor-like kinase (ALK)4/5/7 inhibitor SB431542 (Sigma-Aldrich) or factor-stimulated rat fibroblasts (20). PHD3 is involved in nerve- an anti-activin A-blocking Ab (R&D Systems). growth factor-dependent survival of neurons (21), stimulates py- Quantitative real-time RT-PCR ruvate kinase M2 coactivation for HIF1 (22), and also participates Oligonucleotides for selected genes were designed according to the Roche in HIF-independent processes to control cell death, changes in software for quantitative real-time PCR (Roche
Recommended publications
  • Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression
    International Journal of Molecular Sciences Review Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression Guang Yang, Rachel Shi and Qing Zhang * Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; [email protected] (G.Y.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +1-214-645-4671 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer. Keywords: hypoxia; PHDs; TETs; JmjCs; HIFs 1. Introduction Molecular oxygen serves as a co-factor in many biochemical processes and is fundamental for aerobic organisms to maintain intracellular ATP levels [1,2].
    [Show full text]
  • Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
    OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC).
    [Show full text]
  • Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Endocrine Abstracts Vol 65
    Endocrine Abstracts November 2019 Volume 65 ISSN 1479-6848 (online) Society for Endocrinology BES 2019 11–13 November 2019, Brighton published by Online version available at bioscientifica www.endocrine-abstracts.org Volume 65 Endocrine Abstracts November 2019 Society for Endocrinology BES 2019 11–13 November 2019, Brighton VOLUME EDITORS The abstracts submitted were marked by the Abstract Marking panel, selected by the Programme Organising Committee. Programme Committee D Bassett (Programme Secretary) (London) Laura Matthews (Leeds) Andrew Childs (Programme Co-ordinator) (London) Carla Moran (Cambridge) Nils Krone (Programme Co-ordinator) (Sheffield) Annice Mukherjee (Salford) Helen Simpson (Programme Co-ordinator) (London) Francesca Spiga (Bristol) Davide Calebiro (Birmingham) Jeremy Tomlinson (Oxford) Ben Challis (Cambridge) Jennifer Walsh (Sheffield) Mandy Drake (Edinburgh) Abstract Marking Panel Ramzi Ajjan (Leeds) Neil Gittoes (Birmingham) John Newell-Price (Sheffield) Richard Anderson (Edinburgh) Helena Gleeson (Birmingham) Mark Nixon (Edinburgh) Ruth Andrew (Edinburgh) Philippa Hanson (London) Finbarr O’Harte (Ulster) Weibke Arlt (Birmingham) Martin Hewison (Birmingham) Adrian Park (Cambridge) Mo Aye (Hull) Claire Higham (Manchester) Simon Pearce (Newcastle) Tom Barber (Warwick) Steve Hillier (Edinburgh) Andrew Powlson (Cambridge) Duncan Bassett (London) Andy James (Newcastle) Teresa Rea (Belfast) Roger Brown (Edinburgh) Channa Jayasena (London) Martin Read (Birmingham) Paul Carroll (London) Niki Karavitaki (Oxford) Aled Rees (Cardiff)
    [Show full text]
  • Potential Genotoxicity from Integration Sites in CLAD Dogs Treated Successfully with Gammaretroviral Vector-Mediated Gene Therapy
    Gene Therapy (2008) 15, 1067–1071 & 2008 Nature Publishing Group All rights reserved 0969-7128/08 $30.00 www.nature.com/gt SHORT COMMUNICATION Potential genotoxicity from integration sites in CLAD dogs treated successfully with gammaretroviral vector-mediated gene therapy M Hai1,3, RL Adler1,3, TR Bauer Jr1,3, LM Tuschong1, Y-C Gu1,XWu2 and DD Hickstein1 1Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA and 2Laboratory of Molecular Technology, Scientific Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, Maryland, USA Integration site analysis was performed on six dogs with in hematopoietic stem cells. Integrations clustered around canine leukocyte adhesion deficiency (CLAD) that survived common insertion sites more frequently than random. greater than 1 year after infusion of autologous CD34+ bone Despite potential genotoxicity from RIS, to date there has marrow cells transduced with a gammaretroviral vector been no progression to oligoclonal hematopoiesis and no expressing canine CD18. A total of 387 retroviral insertion evidence that vector integration sites influenced cell survival sites (RIS) were identified in the peripheral blood leukocytes or proliferation. Continued follow-up in disease-specific from the six dogs at 1 year postinfusion. A total of 129 RIS animal models such as CLAD will be required to provide an were identified in CD3+ T-lymphocytes and 102 RIS in accurate estimate
    [Show full text]
  • An Enhanced Chemopreventive Effect of Methyl Donor S-Adenosylmethionine in Combination with 25-Hydroxyvitamin D in Blocking Mammary Tumor Growth and Metastasis
    Bone Research www.nature.com/boneres ARTICLE OPEN An enhanced chemopreventive effect of methyl donor S-adenosylmethionine in combination with 25-hydroxyvitamin D in blocking mammary tumor growth and metastasis Niaz Mahmood1, Ani Arakelian1, William J. Muller2, Moshe Szyf3 and Shafaat A. Rabbani1 Therapeutic targeting of metastatic breast cancer still remains a challenge as the tumor cells are highly heterogenous and exploit multiple pathways for their growth and metastatic spread that cannot always be targeted by a single-agent monotherapy regimen. Therefore, a rational approach through simultaneous targeting of several pathways may provide a better anti-cancer therapeutic effect. We tested this hypothesis using a combination of two nutraceutical agents S-adenosylmethionine (SAM) and Vitamin D (Vit. D) prohormone [25-hydroxyvitamin D; ‘25(OH)D’] that are individually known to exert distinct changes in the expression of genes involved in tumor growth and metastasis. Our results show that both SAM and 25(OH)D monotherapy significantly reduced proliferation and clonogenic survival of a panel of breast cancer cell lines in vitro and inhibited tumor growth, lung metastasis, and breast tumor cell colonization to the skeleton in vivo. However, these effects were significantly more pronounced in the combination setting. RNA-Sequencing revealed that the transcriptomic footprint on key cancer-related signaling pathways is broader in the combination setting than any of the monotherapies. Furthermore, comparison of the differentially expressed genes from our transcriptome analyses with publicly available cancer-related dataset demonstrated that the combination treatment 1234567890();,: upregulates genes from immune-related pathways that are otherwise downregulated in bone metastasis in vivo.
    [Show full text]
  • Downloaded from the UCSC PRO-Seq Library Preparation and Sequencing
    ARTICLE https://doi.org/10.1038/s41467-021-21687-2 OPEN Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response ✉ ✉ Zdenek Andrysik1,2, Heather Bender1,2, Matthew D. Galbraith 1,2 & Joaquin M. Espinosa 1,2,3 Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia- inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ 1234567890():,; a multi-omics pipeline including measurements of nascent RNA to characterize transcrip- tional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prog- nosis across diverse cancer types. In this work, we provide a valuable resource for investi- gating context-dependent roles of HIF1A and its targets in cancer biology. 1 Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 2 Linda Crnic Institute for Down Syndrome, School of Medicine, University
    [Show full text]
  • Eukaryotic Mrna Literature Flyer-20200806
    Published in Nature Communications Armadillo Repeat Containing 12 Promotes Neuroblastoma Progression Through Interaction with Retinoblastoma Binding Protein 4 Background Armadillo (ARM) family proteins play an important role in tumor progression. This paper identified ARMC12 as an ARM member associated with neuroblastoma progression. 1 Materials 6 · Tumor cells (1×10 ) 2 RNA Isolation · Total RNA extracted using TRIzol® Research Pipeline 3 Library Construction · mRNA libraries for RNA-seq 4 Sequencing · Illumina platform 5 Bioinformatic Analysis · Differential expression · GSEA (Gene Set Enrichment Analysis) Research Results Armadillo repeat containing 12 (ARMC12 ), an ARM member associated with NB progression, promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2 (PRC2), resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcomes for patients. Analysis Showcase Novogene’s RNA-seq analysis helped to screen differentially expressed genes upon ARMC12 overexpression. Five genes, CADM1 , EGLN3 , HRK , HS6ST3 , and SMAD9 , were identified and further proved to be suppressed by ARMC12 , facilitating
    [Show full text]
  • Original Article Association of EGLN1 and EGLN3 Single-Nucleotide Polymorphisms with Chronic Obstructive Pulmonary Disease Risk in a Chinese Population
    Int J Clin Exp Med 2017;10(7):10866-10873 www.ijcem.com /ISSN:1940-5901/IJCEM0046332 Original Article Association of EGLN1 and EGLN3 single-nucleotide polymorphisms with chronic obstructive pulmonary disease risk in a Chinese population Si Fang*, Jinfan Qiu*, Huapeng Yu, Huizhen Fan, Xiping Wu, Zekui Fang, Qixiao Shen, Shuyu Chen Department of Respiration, Zhujiang Hospital, Southern Medical University, Guangzhou, China. *Equal contribu- tors. Received December 11, 2016; Accepted March 31, 2017; Epub July 15, 2017; Published July 30, 2017 Abstract: Hypoxia is implicated in the process of chronic inflammation, which is the characteristic pathogenesis of COPD (chronic obstructive pulmonary disease). EGLNs (EglN prolyl hydroxylase) that connect oxygen sensing to the activation of HIF-1 (hypoxia inducible factor-1) have been proven to play a role in the development of COPD. The ob- jective of this study was to explore the role of EGLN1 and EGLN3 SNPs (single-nucleotide polymorphisms) in suscep- tibility and development of COPD in a Chinese cohort. Seven SNPs were chosen from two genes (EGLN1 and EGLN3) in 217 cases and 447 controls. The relationship between SNPs and COPD risk was analyzed by using genetic model analysis. Among the seven SNPs, rs11156819 in EGLN3 exhibited a significant association with COPD risk with an OR of 1.392 (95% CI=1.085-1.787, P=0.009). In the log-additive model, the minor allele T of rs11156819 in EGLN3 significantly increased the risk of COPD (OR=1.58, 95% CI=1.14-2.19,P =0.006) after adjusting for gender, age and smoking status.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 Downes Et Al
    US 2006O128764A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0128764 A1 DOWnes et al. (43) Pub. Date: Jun. 15, 2006 (54) NON-STEROIDAL FARNESOD X Publication Classification RECEPTOR MODULATORS AND METHODS FOR THE USE THEREOF (51) Int. Cl. A61K 31/4433 (2006.01) (75) Inventors: Michael R Downes, San Diego, CA A6II 3/44 (2006.01) (US); Ronald M Evans, La Jolla, CA A6II 3 L/353 (2006.01) (US) A6II 3/16 (2006.01) (52) U.S. Cl. ........................... 514/357: 514/456; 514/625 Correspondence Address: FOLEY & LARDNER LLP P.O. BOX 80278 (57) ABSTRACT SAN DIEGO, CA 92138-0278 (US) The efficient regulation of cholesterol synthesis, metabo (73) Assignee: THE SALK INSTITUTE FOR BIO lism, acquisition, and transport is an essential component of LOGICAL STUDES lipid homeostasis. The farnesoid X receptor (FXR) is a transcriptional sensor for bile acids, the primary product of (21) Appl. No.: 10/535,043 cholesterol metabolism. Accordingly, the development of potent, selective, Small molecule agonists, partial agonists, (22) PCT Fed: Nov. 14, 2003 and antagonists of FXR would be an important step in PCT No.: PCT/USO3/36137 further deconvoluting FXR physiology. In accordance with (86) the present invention, the identification of novel potent FXR Related U.S. Application Data activators is described. Two derivatives of invention com pounds, bearing stilbene or biaryl moieties, contain mem (60) Provisional application No. 60/426,664, filed on Nov. bers that are the most potent FXR agonists reported to date 15, 2002. in cell-based assays. These compounds are useful as chemi cal tools to further define the physiological role of FXR as (30) Foreign Application Priority Data well as therapeutic leads for the treatment of diseases linked to cholesterol, bile acids and their metabolism and homeo Sep.
    [Show full text]
  • Molecular Network-Based Identification of Competing Endogenous Rnas and Mrna Signatures That Predict Survival in Prostate Cancer
    Xu et al. J Transl Med (2018) 16:274 https://doi.org/10.1186/s12967-018-1637-x Journal of Translational Medicine RESEARCH Open Access Molecular network‑based identifcation of competing endogenous RNAs and mRNA signatures that predict survival in prostate cancer Ning Xu1,2, Yu‑Peng Wu2, Hu‑Bin Yin1, Xue‑Yi Xue2 and Xin Gou1* Abstract Background: The aim of the study is described the regulatory mechanisms and prognostic values of diferentially expressed RNAs in prostate cancer and construct an mRNA signature that predicts survival. Methods: The RNA profles of 499 prostate cancer tissues and 52 non-prostate cancer tissues from TCGA were ana‑ lyzed. The diferential expression of RNAs was examined using the edgeR package. Survival was analyzed by Kaplan– Meier method. microRNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) networks from the miRcode database were constructed, based on the diferentially expressed RNAs between non-prostate and prostate cancer tissues. Results: A total of 773 lncRNAs, 1417 mRNAs, and 58 miRNAs were diferentially expressed between non-prostate and prostate cancer samples. The newly constructed ceRNA network comprised 63 prostate cancer-specifc lncRNAs, 13 miRNAs, and 18 mRNAs. Three of 63 diferentially expressed lncRNAs and 1 of 18 diferentially expressed mRNAs were signifcantly associated with overall survival in prostate cancer (P value < 0.05). After the univariate and multivari‑ ate Cox regression analyses, 4 mRNAs (HOXB5, GPC2, PGA5, and AMBN) were screened and used to establish a predic‑ tive model for the overall survival of patients. Our ROC curve analysis revealed that the 4-mRNA signature performed well.
    [Show full text]