And S-Wave Seismic Attenuation for Deep Natural Gas Exploration and Development DE-FC26-04NT42243

Total Page:16

File Type:pdf, Size:1020Kb

And S-Wave Seismic Attenuation for Deep Natural Gas Exploration and Development DE-FC26-04NT42243 Novel Use of P- and S-wave Seismic Attenuation for Deep Natural Gas Exploration and Development DE-FC26-04NT42243 Final Report October 1, 2004 to September 30, 2006 Issued: October 2006 Contributors Dr. Joel Walls* Dr. M. T. Taner* Richard Uden* Scott Singleton* Naum Derzhi* Dr. Gary Mavko** Dr. Jack Dvorkin** *Principal Contractor: Rock Solid Images 2600 S. Gessner Suite 650 Houston, TX, 77036 **Subcontractor: Petrophysical Consulting Inc. 730 Glenmere Way Emerald Hills, CA, 94062 Novel Use of P-wave and S-wave Seismic Attenuation for Deep Natural Gas Exploration and Development, Final Report DE-FC26-04NT42243 DISCLAIMER This report was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. 2 Novel Use of P-wave and S-wave Seismic Attenuation for Deep Natural Gas Exploration and Development, Final Report DE-FC26-04NT42243 ABSTRACT Deeply buried gas reservoirs along the Gulf of Mexico shelf are an important future energy resource for the U.S. One of the greatest problems encountered by operators in this area is identifying commercially viable targets for drilling. Because of the great depth of the reservoirs (over 15,000 ft), the most common 3D seismic methods for direct hydrocarbon indication, such as AVO (amplitude versus offset), are not reliable. Many wells have been drilled on deep AVO anomalies, only to find that they contain noncommercial quantities of gas (the so called “fizz- water” problem). Other problems in detecting deep gas formations are caused by inadequate offset in the seismic data acquisition and by high fluid pressures, which tend to make gas look more like water in a seismic sense. In 2004, Rock Solid Images undertook a project to demonstrate novel and robust techniques for reducing hydrocarbon indicator risk in deep gas sands by exploiting an additional set of completely independent indicators – the rock inelastic properties. These inelastic properties of P- wave and S-wave energy from multicomponent seismic provide a crucial added dimension of discrimination for pore fluids and lithology. The objective of this project was to develop and test a new methodology for computing P- wave and S-wave attenuation from standard well log data, using the log-derived attenuation for generating P-wave synthetic seismic traces with and without attenuation effects, and extracting seismic attenuation attributes from multicomponent P-wave and S-wave seismic data and relating these to the presence of high GOR oil or natural gas. The objective was achieved, resulting in a new algorithm to compute both Qp and Qs from conventional well log data, an algorithm to create full offset, full waveform synthetics incorporating the effects of attenuation, and two algorithms to compute attenuation from seismic data. We found that attenuation in seismic data can be related to gas-bearing reservoirs, and can be used as a reconnaissance tool in exploration; that attenuation can have a substantial impact on seismic response, both post-stack and pre-stack, and cause significant changes in seismic amplitude with offset, especially at the bottom of a gas zone; and we concluded that attenuation should be used in conjunction with other seismic attributes such as elastic attributes and geologic context in order to reduce risk in the search for DHIs. However, attenuation alone can be a valuable tool in deep targets because AVO may fail in these environments 3 Novel Use of P-wave and S-wave Seismic Attenuation for Deep Natural Gas Exploration and Development, Final Report DE-FC26-04NT42243 TABLE OF CONTENTS DISCLAIMER ................................................................................................................................ 2 ABSTRACT.................................................................................................................................... 3 TABLE OF CONTENTS................................................................................................................ 4 EXECUTIVE SUMMARY ............................................................................................................ 7 PART 1: ROCK PHYSICS RELATIONS FOR QP AND QS....................................................... 8 P-WAVE ATTENUATION IN RESERVOIR AND NON-RESERVOIR ROCK .................. 8 DEFINITIONS AND BASICS........................................................................................... 9 MODULUS DISPERSION AND ATTENUATION AT PARTIAL SATURATION..... 13 MODULUS DISPERSION AND ATTENUATION IN WET ROCK............................. 22 EXAMPLES OF ATTENUATION CALCULATION..................................................... 25 COMPARISON TO DATA.............................................................................................. 28 A THEORETICAL ESTIMATE OF S-WAVE ATTENUATION IN SEDIMENT.............. 33 S-WAVE ATTENUATION DATA.................................................................................. 34 S-WAVE ATTENUATION THEORY ............................................................................ 38 COMPARING Qp/Qs WITH Qp/Qps .................................................................................... 42 A SIMPLE DERIVATION............................................................................................... 43 LABORATORY EXAMPLE ........................................................................................... 46 PART 1 SUMMARY.............................................................................................................. 47 PART 2: SYNTHETIC SEISMOGRAM MODELING WITH Q................................................ 49 MODELING ATTENUATION EFFECTS IN A GAS RESERVOIR................................... 49 SYNTHETIC SEISMIC TRACES AT NORMAL INCIDENCE .................................... 50 SYNTHETIC SEISMIC GATHERS ................................................................................ 52 AVO CURVES FROM GATHERS ................................................................................. 53 TUNING AND ATTENUATION .......................................................................................... 55 HALF-SPACE MODELING OF PP REFLECTIONS WITH ATTENUATION .................. 60 THE EARTH MODEL ..................................................................................................... 60 CALCULATING THE AVO RESPONSE....................................................................... 62 ACCOUNTING FOR ATTENUATION IN AVO ........................................................... 62 APPROXIMATIONS ....................................................................................................... 63 ATTENUATION EFFECT ON AVO – ANALYTICAL APPROXIMATION............... 64 IMPLEMENTATION....................................................................................................... 65 TESTING.......................................................................................................................... 66 HALF-SPACE MODELING OF PS REFLECTIONS WITH OFFSET ................................ 68 4 Novel Use of P-wave and S-wave Seismic Attenuation for Deep Natural Gas Exploration and Development, Final Report DE-FC26-04NT42243 MATLAB APPLET FOR MODELING THE EARTH BEYOND THE WELL ................... 73 PART 2 SUMMARY.............................................................................................................. 75 PART 3: PROPERTIES OF PORE FLUIDS AT HIGH PRESSURE AND TEMPERATURE.. 77 COMPARISON TO THE BATZLE-WANG (1992) EQUATIONS...................................... 77 EFFECT ON ELASTIC PROPERTIES OF SAND ............................................................... 79 EFFECT ON AVO RESPONSE............................................................................................. 80 FLUID PROPERTIES ............................................................................................................ 81 PART 3 SUMMARY.............................................................................................................. 81 PART 4: ATTENUATION AND DISPERSION FROM SEISMIC AND LINK TO WELL DATA ........................................................................................................................................... 83 GENERAL DEFINITIONS.................................................................................................... 83 “CLOSING THE LOOP” FOR Q........................................................................................... 84 SPECTRAL RATIO METHODS ........................................................................................... 85 SPECTRAL RATIO FOR STRATIGRAPHIC ATTENUATION................................... 86 SPECTRAL RATIO FOR INTRINSIC Q, PLUS STRATIGRAPHIC ATTENUATION ..........................................................................................................................................
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Lesson 3 Forces That Build the Land Main Idea
    Lesson 3 Forces That Build the Land Main Idea Many landforms result from changes and movements in Earth’s crust. Objectives Identify types of landforms and the processes that form them. Describe what happens when an earthquake occurs. Vocabulary fault focus aftershock seismic wave epicenter seismograph magnitude vent What forces change Earth’s crust? At transform boundaries, the pieces of rock rub together in a force called shearing, like the blades of a pair of scissors, causing the rock to break. At convergent boundaries, plates collide and this force is called compression, squeezing the rock together. At divergent boundaries, plates separate causing tension, making the crust longer and thinner eventually breaking and creating a fault. Faults are usually located along the boundaries between tectonic plates. Three Kinds of Faults Shearing forms strike-slip faults. Tension forms normal faults. The rock above the fault moves down. Compression forms reverse faults. The rock above the fault moves up. Uplifted Landforms Folded mountains are mostly made up of rock layers folded by being squeezed together. Fault-block mountains are made by huge, tilted blocks of rock separated from the surrounding rock by faults. The Colorado Plateau was formed when rock layers were pushed upward. The Colorado River eventually formed the Grand Canyon. Quick Check Infer Why are faults often produced along plate boundaries? Forces act on the crust most directly at plate boundaries, because these locations are where plates are moving, relative to each other. Critical Thinking Why do some mountains form as folded mountains and others form as fault-block mountains? Compression forces form folded mountains, and tension forms fault- block mountains.
    [Show full text]
  • Part 3: Normal Faults and Extensional Tectonics
    12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi­ mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a low­angle master detachment.
    [Show full text]
  • THE JOURNAL of GEOLOGY March 1990
    VOLUME 98 NUMBER 2 THE JOURNAL OF GEOLOGY March 1990 QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH APPLICATIONS TO EARLY MESOZOIC RIFTS OF EASTERN NORTH AMERICA' ROY W. SCHLISCHE AND PAUL E. OLSEN Department of Geological Sciences and Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT In many half-graben, strata progressively onlap the hanging wall block of the basins, indicating that both the basins and their depositional surface areas were growing in size through time. Based on these con- straints, we have constructed a quantitative model for the stratigraphic evolution of extensional basins with the simplifying assumptions of constant volume input of sediments and water per unit time, as well as a uniform subsidence rate and a fixed outlet level. The model predicts (1) a transition from fluvial to lacustrine deposition, (2) systematically decreasing accumulation rates in lacustrine strata, and (3) a rapid increase in lake depth after the onset of lacustrine deposition, followed by a systematic decrease. When parameterized for the early Mesozoic basins of eastern North America, the model's predictions match trends observed in late Triassic-age rocks. Significant deviations from the model's predictions occur in Early Jurassic-age strata, in which markedly higher accumulation rates and greater lake depths point to an increased extension rate that led to increased asymmetry in these half-graben. The model makes it possible to extract from the sedimentary record those events in the history of an extensional basin that are due solely to the filling of a basin growing in size through time and those that are due to changes in tectonics, climate, or sediment and water budgets.
    [Show full text]
  • A Parametric Method to Model 3D Displacements Around Faults with Volumetric Vector Fields G
    A parametric method to model 3D displacements around faults with volumetric vector fields G. Laurent, G. Caumon, A. Bouziat, M. Jessell To cite this version: G. Laurent, G. Caumon, A. Bouziat, M. Jessell. A parametric method to model 3D displace- ments around faults with volumetric vector fields. Tectonophysics, Elsevier, 2013, 590, pp.83-93. 10.1016/j.tecto.2013.01.015. hal-01301478 HAL Id: hal-01301478 https://hal.archives-ouvertes.fr/hal-01301478 Submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A parametric method to model 3D displacements around faults with volumetric vector fieldsI Gautier Laurenta,b,∗, Guillaume Caumona,b, Antoine Bouziata,b,1, Mark Jessellc, Gautier Laurenta,b,∗, Guillaume Caumona,b, Antoine Bouziata,b,1, Mark Jessellc aUniversit´ede Lorraine, CRPG UPR 2300, Vandoeuvre-l`es-Nancy,54501, France bCNRS, CRPG, UPR 2300, Vandoeuvre-l`es-Nancy, 54501, France cIRD, UR 234, GET, OMP, Universit´eToulouse III, 14 Avenue Edouard Belin, 31400 Toulouse, FRANCE Abstract This paper presents a 3D parametric fault representation for modeling the displacement field associated with faults in accordance with their geometry. The displacements are modeled in a canonical fault space where the near-field displacement is defined by a small set of parameters consisting of the maximum displacement amplitude and the profiles of attenuation in the surrounding space.
    [Show full text]
  • Garlock Fault: an Intracontinental Transform Structure, Southern California
    GREGORY A. DAVIS Department of Geological Sciences, University of Southern California, Los Angeles, California 90007 B. C. BURCHFIEL Department of Geology, Rice University, Houston, Texas 77001 Garlock Fault: An Intracontinental Transform Structure, Southern California ABSTRACT Sierra Nevada. Westward shifting of the north- ern block of the Garlock has probably contrib- The northeast- to east-striking Garlock fault uted to the westward bending or deflection of of southern California is a major strike-slip the San Andreas fault where the two faults fault with a left-lateral displacement of at least meet. 48 to 64 km. It is also an important physio- Many earlier workers have considered that graphic boundary since it separates along its the left-lateral Garlock fault is conjugate to length the Tehachapi-Sierra Nevada and Basin the right-lateral San Andreas fault in a regional and Range provinces of pronounced topogra- strain pattern of north-south shortening and phy to the north from the Mojave Desert east-west extension, the latter expressed in part block of more subdued topography to the as an eastward displacement of the Mojave south. Previous authors have considered the block away from the junction of the San 260-km-long fault to be terminated at its Andreas and Garlock faults. In contrast, we western and eastern ends by the northwest- regard the origin of the Garlock fault as being striking San Andreas and Death Valley fault directly related to the extensional origin of the zones, respectively. Basin and Range province in areas north of the We interpret the Garlock fault as an intra- Garlock.
    [Show full text]
  • The Late Bajocian-Bathonian Evolution of the Oseberg-Brage Area, Northern North Sea
    Sedimentation history as an indicator of rift initiation and development: the Late Bajocian-Bathonian evolution of the Oseberg-Brage area, northern North Sea RODMAR RAVNÅS, KAREN BONDEVIK, WILLIAM HELLAND-HANSEN, LEIF LØMO, ALF RYSETH & RON J. STEEL Ravnås, R., Bondevik, K., Helland-Hansen, W., Lømo, L., Ryseth, A. & Steel, R. J.: Sedimentation history as an indicator of rift initiation and development: the Late Bajocian-Bathonian evolution of the Oseberg-Brage area, northem North Sea. Norsk Geologisk Tidsskrift, Vol. 77, pp. 205-232. Oslo 1997. ISSN 0029 -196X. The Tarbert Formation in the Oseberg-Brage area consists of shoreline sandstones and lower delta-plain heterolithics which basinward interdigitate with offshore sediments of the lower Heather Formation and landward with fluvio-deltaic deposits of the upper Ness Formation. The Late Bajocian-Tarbert and lower Heather Formations form three wedge-shaped, regressive-transgressive sequences which constitute offset, landward-stepping shoreline prisms. Initial gentle rotational extensional faulting occurred during the deposition of the uppermost Ness Formation and resulted in basinfloor subsidence and flooding across the Brent delta. Subsequent extensional faulting exerted the major control on the drainage development, basin physiography, the large-scale stacking pattem, i.e. the progradational-to-backstepping nature of the sequences, as well as on the contained facies tracts and higher-order stacking pattem in the regressive and transgressive segments. Progradation occurred during repetitive tectonic dormant stages, whereas the successive transgressive segments are coupled against intervening periods with higher rates of rotational faulting and overall basinal subsidence. Axial drainage dominated during the successive tectonic dormant stages. Transverse drainage increased in influence during the intermittent rotational tilt stages, but only as small, local (fault block) hanging-wall and footwall sedimentary lobes.
    [Show full text]
  • Thesis, "Structure and Evolution of the Horse Heaven Hills in South
    AN ABSTRACT OF THE THESIS OF Michael Curtis Hagood for the Master of Science in Geology presented February 21, 1985. Title: Structure-and Evolution of the Horse Heaven Hills in South-Central Washington. APPROVED BY MEMBERS OF THE THESIS COMMITTEE: Marvin H. Beeson, Chairman Michael L. Cummings Gilbert T. Benson Stephen P. Reidel The Horse Heaven Hills uplift in south-central Washington con- sists of distinct northwest and northeast trends which merge in the lower Yakima Valley. The northwest trend is adjacent to and parallels the Rattlesnake-Wallula alignment (RAW; a part of the Olympic-Wallowa lineament). The northwest trend and northeast trend consist of aligned or en echelon anticlines and monoclines whose axes are gener- ally oriented in the direction of the trend. At the intersection, La 2 folds in the northeast trend plunge onto and are terminated by folds of the northwest trend. The crest of the Horse Heaven Hills uplift within both trends is composed of a series of asymmetric, north vergent, eroded, usually double-hinged anticlines or monoclines. Some of these "major" anti- clines and monoclines are paralleled to the immediate north by lower- relief anticlines or monoclines. All anticlines approach monoclines in geometry and often change to a monoclinal geometry along their length. In both trends, reverse faults commonly parallel the axes of folds within the tightly folded hinge zones. Tear faults cut across the northern limbs of the anticlines and monoclines and are coincident with marked changes in the wavelength of a fold or a change in the trend of a fold. Layer-parallel faults commonly exist along steeply- dipping stratigraphic contacts or zones of preferred weakness in intraflow structures.
    [Show full text]
  • 4. Deep-Tow Observations at the East Pacific Rise, 8°45N, and Some Interpretations
    4. DEEP-TOW OBSERVATIONS AT THE EAST PACIFIC RISE, 8°45N, AND SOME INTERPRETATIONS Peter Lonsdale and F. N. Spiess, University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California ABSTRACT A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several dif- ferent types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fast- spreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outward- facing normal faults, in a zone 12 to 20 km from the axis.
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Fluid History of the Sideling Hill Syncline, Hancock County, Maryland
    FLUID HISTORY OF THE SIDELING HILL SYNCLINE, HANCOCK COUNTY, MARYLAND William J. Lacek A Thesis Submitted to the Graduate College of Bowling Green State University in Partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2015 Committee: John Farver, Advisor, Charles Onasch, Margaret Yacobucci ii ABSTRACT John Farver, Advisor Fluid inclusion microthermometry was employed to determine the fluid history of the Sideling Hill syncline in Maryland with respect to its deformation history. The syncline is unique in the region in that it preserves the youngest rocks (Mississippian) in the Valley and Ridge Province and is the easternmost exposure of Mississippian rocks in this portion of the Central Appalachians. Two types of fluid inclusions were prominent in vein quartz: CH4-rich and two-phase aqueous with the former comprising about 60% of the inclusions observed. The presence of the two fluids in inclusions that appear to be coeval indicates that the migrating fluid was a CH4- saturated aqueous brine that was trapped immiscibly as separate CH4-rich and two-phase aqueous inclusions. Cross cutting relations show that at least two generations of veins formed during deformation. Similarities in chemistry of the inclusions in the different vein generations suggests that a single fluid was present during deformation. Older veins were found to have formed at depths of at least 5 km while younger veins formed at minimum depths of 9 km. Overburden for older veins is attributed to emplacement of the North Mountain Thrust (NMT) sheet (~6 km thick). The thickness of the Alleghanian clastic wedge is calculated to be ~2.5 km in the Appalachian Plateau which accounts for most of the remaining overburden in younger veins.
    [Show full text]
  • Uplift of Earth's Crust
    Standards—7.3.4: Explain how heat flow and movement of material within Earth causes earthquakes and vol- canic eruptions and creates mountains and ocean basins. 7.3.7: Give examples of some changes in Earth’s surface that are abrupt, such as earthquakes and volcanic eruptions, and some changes that happen very slowly, such as uplift and wearing down of mountains and the action of glaciers. Also covers: 7.2.7 (Detailed standards begin on page IN8.) Uplift of Earth’s Crust Building Mountains One popular vacation that people enjoy is a trip to the mountains. Mountains tower over the surrounding land, often providing spectacular views from their summits or from sur- I Describe how Earth’s mountains rounding areas. The highest mountain peak in the world is form and erode. Mount Everest in the Himalaya in Tibet. Its elevation is more I Compare types of mountains. than 8,800 m above sea level. In the United States, the highest I Identify the forces that shape mountains reach an elevation of more than 6,000 m. There are Earth’s mountains. four main types of mountains—fault-block, folded, upwarped, and volcanic. Each type forms in a different way and can pro- The forces inside Earth that cause duce mountains that vary greatly in size. Earth’s plates to move around also are responsible for forming Earth’s Age of a Mountain As you can see in Figure 11, mountains mountains. can be rugged with high, snowcapped peaks, or they can be rounded and forested with gentle valleys and babbling streams.
    [Show full text]