Chapter 21 Offshore Hydrocarbon Industries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2021 Annual General Meeting and Proxy Statement 2020 Annual Report
2020 Annual Report and Proxyand Statement 2021 Annual General Meeting Meeting General Annual 2021 Transocean Ltd. • 2021 ANNUAL GENERAL MEETING AND PROXY STATEMENT • 2020 ANNUAL REPORT CONTENTS LETTER TO SHAREHOLDERS NOTICE OF 2021 ANNUAL GENERAL MEETING AND PROXY STATEMENT COMPENSATION REPORT 2020 ANNUAL REPORT TO SHAREHOLDERS ABOUT TRANSOCEAN LTD. Transocean is a leading international provider of offshore contract drilling services for oil and gas wells. The company specializes in technically demanding sectors of the global offshore drilling business with a particular focus on ultra-deepwater and harsh environment drilling services, and operates one of the most versatile offshore drilling fleets in the world. Transocean owns or has partial ownership interests in, and operates a fleet of 37 mobile offshore drilling units consisting of 27 ultra-deepwater floaters and 10 harsh environment floaters. In addition, Transocean is constructing two ultra-deepwater drillships. Our shares are traded on the New York Stock Exchange under the symbol RIG. OUR GLOBAL MARKET PRESENCE Ultra-Deepwater 27 Harsh Environment 10 The symbols in the map above represent the company’s global market presence as of the February 12, 2021 Fleet Status Report. ABOUT THE COVER The front cover features two of our crewmembers onboard the Deepwater Conqueror in the Gulf of Mexico and was taken prior to the COVID-19 pandemic. During the pandemic, our priorities remain keeping our employees, customers, contractors and their families healthy and safe, and delivering incident-free operations to our customers worldwide. FORWARD-LOOKING STATEMENTS Any statements included in this Proxy Statement and 2020 Annual Report that are not historical facts, including, without limitation, statements regarding future market trends and results of operations are forward-looking statements within the meaning of applicable securities law. -
Transocean Ltd. Provides Quarterly Fleet Status Report
Transocean Ltd. Provides Quarterly Fleet Status Report STEINHAUSEN, Switzerland—February 12, 2021—Transocean Ltd. (NYSE: RIG) today issued a quarterly Fleet Status Report that provides the current status of, and contract information for, the company’s fleet of offshore drilling rigs. As of February 12, the company’s total backlog is approximately $7.8 billion. This quarter’s report includes the following updates: Deepwater Corcovado – Customer exercised a 680-day option in Brazil; Deepwater Mykonos – Customer exercised a 815-day option in Brazil; Development Driller III – Awarded a one-well contract extension in Trinidad; Development Driller III – Awarded a one-well contract, plus a one-well option in Trinidad; Transocean Norge – Awarded a one-well contract in Norway; Transocean Barents – Awarded a three-well contract in Norway; Paul B Loyd, Jr. – Awarded a 78-day contract extension in the U.K. North Sea; Dhirubhai Deepwater KG1– Customer exercised a seven-well option in India; and Deepwater Nautilus – Customer provided notice of termination of its drilling contract in Malaysia. Additionally, the company has retired the Leiv Eiriksson. The rig is classified as held for sale. The report can be accessed on the company’s website: www.deepwater.com. About Transocean Transocean is a leading international provider of offshore contract drilling services for oil and gas wells. The company specializes in technically demanding sectors of the global offshore drilling business with a particular focus on ultra-deepwater and harsh environment drilling services, and operates one of the most versatile offshore drilling fleets in the world. Transocean owns or has partial ownership interests in, and operates a fleet of, 37 mobile offshore drilling units consisting of 27 ultra-deepwater floaters and 10 harsh environment floaters. -
Greenpeace Deep Sea Oil Briefing
May 2012 Out of our depth: Deep-sea oil exploration in New Zealand greenpeace.org.nz Contents A sea change in Government strategy ......... 4 Safety concerns .............................................. 5 The risks of deep-sea oil ............................... 6 International oil companies in the dock ..... 10 Where is deep-sea oil exploration taking place in New Zealand? ..................... 12 Cover: A view from an altitude of 3200 ft of the oil on the sea surface, originated by the leaking of the Deepwater Horizon wellhead disaster. The BP leased oil platform exploded April 20 and sank after burning, leaking an estimate of more than 200,000 gallons of crude oil per day from the broken pipeline into the sea. © Daniel Beltrá / Greenpeace Right: A penguin lies in oil spilt from the wreck of the Rena © GEMZ Photography 2 l Greenpeace Deep-Sea Oil Briefing l May 2012 The inability of the authorities to cope with the effects of the recent oil spill from the Rena cargo ship, despite the best efforts of Maritime New Zealand, has brought into sharp focus the environmental risks involved in the Government’s decision to open up vast swathes of the country’s coastal waters for deep-sea oil drilling. The Rena accident highlighted the devastation that can be caused by what in global terms is actually still a relatively small oil spill at 350 tonnes and shows the difficulties of mounting a clean-up operation even when the source of the leaking oil is so close to shore. It raised the spectre of the environmental catastrophe that could occur if an accident on the scale of the Deepwater Horizon disaster in the Gulf of Mexico were to occur in New Zealand’s remote waters. -
Shrimp Fishing in Mexico
235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats. -
Hydrocarbon Exploration Activities in South Africa
Hydrocarbon Exploration Activities in South Africa Anthea Davids [email protected] AAPG APRIL 2014 Petroleum Agency SA - oil and gas exploration and production regulator 1. Update on latest exploration activity 2. Some highlights and important upcoming events 3. Comments on shale gas Exploration map 3 years ago Exploration map 1 year ago Exploration map at APPEX 2014 Exploration map at AAPG ICE 2014 Offshore exploration SunguSungu 7 Production Rights 12 Exploration Rights 16 Technical Cooperation Permits Cairn India (60%) PetroSA (40%) West Coast Sungu Sungu Sunbird (76%) Anadarko (65%) PetroSA (24%) PetroSA (35%) Thombo (75%) Shallow-water Afren (25%) • Cairn India, PetroSA, Thombo, Afren, Sasol PetroSA (50%) • Sunbird - Production Shell International Sasol (50%) right around Ibhubesi Mid-Basin – BHP Billiton (90%) • Sungu Sungu Global (10%) Deep water – • Shell • BHP Billiton • OK Energy Southern basin • Anadarko and PetroSA • Silwerwave Energy PetroSA (20%) • New Age Anadarko (80%) • Rhino Oil • Imaforce Silver Wave Energy Greater Outeniqia Basin - comprising the Bredasdorp, Pletmos, Gamtoos, Algoa and Southern Outeniqua sub-basins South Coast PetroSA, ExonMobil with Impact, Bayfield, NewAge and Rift Petroleum in shallower waters. Total, CNR and Silverwave in deep water Bayfield PetroSA Energy New Age(50%) Rift(50%0 Total CNR (50%) Impact Africa Total (50%) South Coast Partnership Opportunities ExxonMobil (75%) East Impact Africa (25%) Coast Silver Wave Sasol ExxonMobil (75%) ExxonMobil Impact Africa (25%) Rights and major -
Deep River and Dan River Triassic Basins: Shale Inorganic Geochemistry for Geosteering and Environmental Baseline Hydraulic Fracturing
Deep River and Dan River Triassic basins: Shale inorganic geochemistry for geosteering and environmental baseline hydraulic fracturing By Jeffrey C. Reid North Carolina Geological Survey Open-File Report 2019-01 February 20, 2019 Suggested citation: Reid, Jeffrey C., 2019, Deep River and Dan River Triassic basins, North Carolina: Shale inorganic geochemistry for geosteering and environmental baseline hydraulic fracturing, North Carolina Geological Survey, Open File Report 2019-01, 10 pages, 4 appendices. Contents Page Contents ……………………………………………………………………………………. 1 Abstract …………………………………………………………………………………….. 2 Introduction and objectives ……………………………………………………………….. 3 Methodology and analytical techniques …………………………………………………… 4 Deep River basin (Sanford sub-basin) ……...……………………………………… 4 Dan River basin ……………………………………………………………………. 4 Summary and conclusions …………………………………………………………………. 5 References cited ……………………………………………………………………………. 6 Acknowledgement …………………………………………………………………………. 8 Figure Figure 1. Map showing the locations of the Sanford sub-basin, Deep River basin, and the Dan River basin, North Carolina (after Reid and Milici, 2008). Table Table 1. List of analytical method abbreviations used. Appendices Appendix 1. Deep River basin, Sanford sub-basin, inorganic chemistry – Certificate of analysis and data table. Appendix 2. Deep River basin inorganic chemistry – Inorganic chemistry plots by drill hole. Appendix 3. Dan River basin inorganic chemistry – Certificate of analysis and data table. Appendix 4. Dan River basin inorganic chemistry -
Seismic Reflection Methods in Offshore Groundwater Research
geosciences Review Seismic Reflection Methods in Offshore Groundwater Research Claudia Bertoni 1,*, Johanna Lofi 2, Aaron Micallef 3,4 and Henning Moe 5 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK 2 Université de Montpellier, CNRS, Université des Antilles, Place E. Bataillon, 34095 Montpellier, France; johanna.lofi@gm.univ-montp2.fr 3 Helmholtz Centre for Ocean Research, GEOMAR, 24148 Kiel, Germany; [email protected] 4 Marine Geology & Seafloor Surveying, Department of Geosciences, University of Malta, MSD 2080 Msida, Malta 5 CDM Smith Ireland Ltd., D02 WK10 Dublin, Ireland; [email protected] * Correspondence: [email protected] Received: 8 April 2020; Accepted: 26 July 2020; Published: 5 August 2020 Abstract: There is growing evidence that passive margin sediments in offshore settings host large volumes of fresh and brackish water of meteoric origin in submarine sub-surface reservoirs. Marine geophysical methods, in particular seismic reflection data, can help characterize offshore hydrogeological systems and yet the existing global database of industrial basin wide surveys remains untapped in this context. In this paper we highlight the importance of these data in groundwater exploration, by reviewing existing studies that apply physical stratigraphy and morpho-structural interpretation techniques to provide important information on—reservoir (aquifer) properties and architecture, permeability barriers, paleo-continental environments, sea-level changes and shift of coastal facies through time and conduits for water flow. We then evaluate the scientific and applied relevance of such methodology within a holistic workflow for offshore groundwater research. Keywords: submarine groundwater; continental margins; offshore water resources; seismic reflection 1. -
Deepwater Mobile Oil Rigs in the Exclusive Economic Zone and the Uncertainty of Coastal State Jurisdiction Rebecca K
Journal of International Business and Law Volume 10 | Issue 2 Article 10 2011 Deepwater Mobile Oil Rigs in the Exclusive Economic Zone and the Uncertainty of Coastal State Jurisdiction Rebecca K. Richards Follow this and additional works at: http://scholarlycommons.law.hofstra.edu/jibl Recommended Citation Richards, Rebecca K. (2011) "Deepwater Mobile Oil Rigs in the Exclusive Economic Zone and the Uncertainty of Coastal State Jurisdiction," Journal of International Business and Law: Vol. 10: Iss. 2, Article 10. Available at: http://scholarlycommons.law.hofstra.edu/jibl/vol10/iss2/10 This Notes & Student Works is brought to you for free and open access by Scholarly Commons at Hofstra Law. It has been accepted for inclusion in Journal of International Business and Law by an authorized administrator of Scholarly Commons at Hofstra Law. For more information, please contact [email protected]. Richards: Deepwater Mobile Oil Rigs in the Exclusive Economic Zone and the DEEPWATER MOBILE OIL RIGS IN THE EXCLUSIVE ECONOMIC ZONE AND THE UNCERTAINTY OF COASTAL STATE JURISDICTION Rebecca K. Richards* I. INTRODUCTION The involvement of a deepwater mobile oil rig in the April 2010 BP oil spill disaster in the United States exclusive economic zone ("EEZ") in the Gulf of Mexico forcefully demonstrated the potential that deepwater mobile oil rigs have to cause catastrophic harm to the coastal state in ways not presented by fixed oil rigs operating in shallow water.' Though coastal states have this great risk of catastrophic harm, their plenary jurisdiction over deepwa- ter mobile oil rigs is currently uncertain. 2 The vagueness of coastal state jurisdictional author- ity over these rigs3 unacceptably increases the risk of accidents,4 as seen with the BP Deepwater Horizon spill. -
Dr. Walter Cruickshank Acting Director Bureau of Ocean Energy Management 1849 C Street, NW Washington, D.C. 20240 March 9, 2018
Dr. Walter Cruickshank Acting Director Bureau of Ocean Energy Management 1849 C Street, NW Washington, D.C. 20240 March 9, 2018 Re: Comments on the 2019 – 2024 National Outer Continental Shelf Oil and Gas Leasing Draft Proposed Program [BOEM-2017-0074] – Opposition to New Leasing Dear Dr. Cruickshank: On behalf of Heal the Bay, an environmental nonprofit dedicated to making the coastal waters and watersheds of greater Los Angeles safe, healthy, and clean, we are strongly opposed to the expansion of oil and gas activities in the Pacific and other regions listed in the Draft Proposed 2019-2024 National Outer Continental Shelf Oil and Gas Leasing Program (Draft Proposed Program). Heal the Bay respectfully urges the Bureau of Ocean Energy Management to abandon its wasteful scoping and planning efforts for the Draft Proposed Program and related Programmatic Environmental Impact Statement (PEIS). We are opposed to new leasing in the Pacific (2 lease sales each for Northern California, Central California, and Southern California, and 1 for Washington/Oregon), the Atlantic (3 lease sales each for the Mid- and South Atlantic, 2 for the North Atlantic, and 1 for the Straits of Florida), the Gulf of Mexico (2 lease sales), and all waters off Alaska (19 lease sales) and urge you to offer no new oil and gas leases in federal waters. The Administration’s proposal to expand offshore drilling to nearly all U.S. waters, encompassing over 90% of total Outer Continental Shelf acreage – the largest number of potential offshore lease sales ever proposed – is shortsighted and reckless. Offshore oil and gas drilling is inherently dangerous, and threatens the nation’s ocean economy and environment. -
PDF Download First Term at Tall Towers Kindle
FIRST TERM AT TALL TOWERS PDF, EPUB, EBOOK Lou Kuenzler | 192 pages | 03 Apr 2014 | Scholastic | 9781407136288 | English | London, United Kingdom First Term at Tall Towers, Kids Online Book Vlogger & Reviews - The KRiB - The KRiB TV Retrieved 5 October Council on Tall Buildings and Urban Habitat. Archived from the original on 20 August Retrieved 30 August Retrieved 26 July Cable News Network. Archived from the original on 1 March Retrieved 1 March The Daily Telegraph. Tobu Railway Co. Retrieved 8 March Skyscraper Center. Retrieved 15 October Retrieved Retrieved 27 March Retrieved 4 April Retrieved 27 December Palawan News. Retrieved 11 April Retrieved 25 October Tallest buildings and structures. History Skyscraper Storey. British Empire and Commonwealth European Union. Commonwealth of Nations. Additionally guyed tower Air traffic obstacle All buildings and structures Antenna height considerations Architectural engineering Construction Early skyscrapers Height restriction laws Groundscraper Oil platform Partially guyed tower Tower block. Italics indicate structures under construction. Petronius m Baldpate Platform Tallest structures Tallest buildings and structures Tallest freestanding structures. Categories : Towers Lists of tallest structures Construction records. Namespaces Article Talk. Views Read Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable version. Wikimedia Commons. Tallest tower in the world , second-tallest freestanding structure in the world after the Burj Khalifa. Tallest freestanding structure in the world —, tallest in the western hemisphere. Tallest in South East Asia. Tianjin Radio and Television Tower. Central Radio and TV Tower. Liberation Tower. Riga Radio and TV Tower. Berliner Fernsehturm. Sri Lanka. Stratosphere Tower. United States. Tallest observation tower in the United States. -
Understanding the Costs and Benefits of Deepwater Oil Drilling Regulation
January 2011 RFF DP 10-62 Understanding the Costs and Benefits of Deepwater Oil Drilling Regulation Alan Krupnick, Sarah Campbell, Mark A. Cohen, and Ian W.H. Parry 1616 P St. NW Washington, DC 20036 202-328-5000 www.rff.org DISCUSSION PAPER Understanding the Costs and Benefits of Deepwater Oil Drilling Regulation Alan Krupnick, Sarah Campbell, Mark A. Cohen, and Ian W.H. Parry Abstract The purpose of this paper is to provide a conceptual framework for understanding how analysis of costs and benefits might be incorporated into an assessment of regulatory policies affecting deepwater drilling. We begin by providing a framework for analyzing the life-cycle impacts of oil drilling and its alternatives, including onshore drilling and importing oil from abroad. We then provide background estimates of the different sources of oil supplied in the United States, look at how other oil supply sources might respond to regulations on deepwater drilling, and consider the economic costs of these regulations. After providing a comprehensive description of the potential costs and benefits from various types of drilling—including, when possible, estimates of the magnitude of these benefits and costs—we discuss the extent to which these costs and benefits may already be taken into account (or reinforced) through the legal, regulatory, and tax systems and through market mechanisms. We conclude by presenting a framework and simple example of how a cost–benefit analysis might be used to inform regulation of deepwater drilling, and sum up the policy implications of our work. Key Words: catastrophic oil spill, cost–benefit analysis, government regulation, liability © 2011 Resources for the Future. -
Financing Options in the Oil and Gas Industry, Practical Law UK Practice Note
Financing options in the oil and gas industry, Practical Law UK Practice Note... Financing options in the oil and gas industry by Suzanne Szczetnikowicz and John Dewar, Milbank, Tweed, Hadley & McCloy LLP and Practical Law Finance. Practice notes | Maintained | United Kingdom Scope of this note Industry overview Upstream What is an upstream oil and gas project? Typical equity structure Relationship with the state Key commercial contracts in an upstream project Specific risks in financing an upstream project Sources of financing in the upstream sector Midstream, downstream and integrated projects Typical equity structures What is a midstream oil and gas project? Specific risks in financing a midstream project What is a downstream oil and gas project? Specific risks in financing a downstream project Integrated projects Sources of financing in midstream, downstream and integrated projects Multi-sourced project finance Shareholder funding Equity bridge financing Additional sources of financing Other financing considerations for the oil and gas sectors Expansion financings Hedging Refinancing Current market trends A note on the structures and financing options and risks typically associated with the oil and gas industry. © 2018 Thomson Reuters. All rights reserved. 1 Financing options in the oil and gas industry, Practical Law UK Practice Note... Scope of this note This note considers the structures, financing options and risks typically associated with the oil and gas industry. It is written from the perspective of a lawyer seeking to structure a project that is capable of being financed and also addresses the aspects of funding various components of the industry from exploration and extraction to refining, processing, storage and transportation.