DISSERTATION O Attribution
Total Page:16
File Type:pdf, Size:1020Kb
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output (Accessed: Date). Trade-off Study of a New Build versus Upgraded Existing Undersea Optic Fibre Cable System A Dissertation Submitted in Partial Fulfilment of the Degree of MAGISTER INGENERIAE in ENGINEERING MANAGEMENT at the FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT of the UNIVERSITY of JOHANNESBURG By Kgomotso Peter Manyapetsa 2015 SUPERVISOR: Dr A. WESSELS Acknowledgements I wish to thank the following persons who provided valuable advice and assistance on the compilation of this dissertation: Mr Tebogo Molobeng – for provisioning and guidance about the procurement and implementation of undersea fibre cable systems given your wealth of experience in the industry, Mr Mongezi Nonkomo - for advice during the proposal drafting phase and advice on operations and maintenance of undersea optic fibre cable systems and general advice on how the industry functions, Mr Ralph Vraagom – for persistently encouraging me to start the master’s program, Ms Lerato Holoane- for the encouragement and patience throughout the masters phase, Mr Vinny Motjoadi- inspiration and motivation during dire times, as well as guidance on dissertation drafting, and Supervisors Prof JH Pretorius and Dr. A Wessels for the supervision and recommendations during the research proceedings. I Abstract Undersea optic fibre cable systems are an integral part of the international telecommunications infrastructure for supporting growing marketplace bandwidth needs and they have become a critical component to the constantly evolving Internet traffic content. The issue associated with existing undersea optic fibre cable systems is the scalability of the capacity in meeting and anticipating future capacity demands of the network. In order to meet increased traffic demands, telecoms companies are required to build new systems or upgrade the existing ones in order to address this issue of increased capacity demand. Building an undersea optic fibre cable system is an expensive venture, so much so that the system owners are reluctant to invest in newer optic fibre cable system whilst they have ownership on existing systems. They seek ways in which to optimise the existing system in order to extend the economic lifespan of the system. The research sought to demonstrate how effective it is to upgrade the existing undersea optic fibre cable systems given the technological advancements, expenditures as opposed to constructing a new undersea optic fibre cable system through a trade-off study of a new build versus upgraded existing undersea optic fibre cable system activities. It was found that upgrading an existing system to a capacity beyond the original design capacity was achievable through the enablers such as Wavelength Division Multiplex, spectral efficiency, coherent detection, modulation formats and forward error correction techniques. It was found that only the terminal station equipment gets altered whilst the submerged plant remains unchanged, making it possible to optimise the capacity on the existing undersea optic fibre system effectively in a timeous period and enable the exploitation of the increased traffic demand. Whereas to construct a new optic fibre cable system requires huge capital investments and time to implement the system can take a minimum of 24 months without delays, however delays are part and parcel of system construction, delays ranging from obtaining permits, equipment/material delivery, construction of both the submerged and dry plants. II Table of contents Acknowledgements ............................................................................................................................... I Abstract .................................................................................................................................................. II Table of contents ................................................................................................................................. III List of Figures ....................................................................................................................................... V List of Tables ........................................................................................................................................ VI Abbreviations ...................................................................................................................................... VII Glossary .............................................................................................................................................. VIII Chapter 1: Introduction ........................................................................................................................ 1 1.1. Background ............................................................................................................................... 1 1.2. Research Rationale ................................................................................................................. 2 1.3. The Problem Statement .......................................................................................................... 4 1.4. Research Objectives and Questions ..................................................................................... 5 1.5. Significance of the research ................................................................................................... 6 1.6. Research delimitations ............................................................................................................ 6 1.7. Report layout ............................................................................................................................. 7 Chapter 2: Literature Review: undersea fibre optic cable system composition .......................... 9 2.1. Submerged Plant ...................................................................................................................... 9 2.1.1. Undersea Optic fibre cable ................................................................................................. 9 2.1.2. Repeaters ............................................................................................................................ 10 2.1.3. Equalisers ............................................................................................................................ 11 2.1.4. Branching units ................................................................................................................... 11 2.2. Dry Plant .................................................................................................................................. 11 2.2.1. Power Feeding Equipment (PFE) .................................................................................... 12 2.3. Network Management System (NMS) ................................................................................ 15 2.4. Undersea optic fibre cable System Integration .................................................................. 16 2.4.1. Power Feeding Equipment System powering layout .................................................... 17 2.4.2. Submarine Line Terminating Equipment layout ............................................................ 17 2.4.3. Cable Landing Station Equipment Connectivity ............................................................ 18 2.5. Reliability and Availability ...................................................................................................... 19 2.5.1. Failure rate analysis of the undersea fibre optic cable ................................................. 19 2.5.2. Submerged plant reliability................................................................................................ 20 III 2.6. The development and implementation of an undersea optic fibre cable system ......... 21 2.6.1. The Life cycle phases of an undersea fibre optic cable system ................................. 22 2.6.2. Phase I: Conceptual/ Planning ......................................................................................... 22 2.6.2.1. Feasibility studies ........................................................................................................... 22 2.6.2.2. Financing a New undersea optic fibre Cable ............................................................. 23 2.6.2.3. Business case development ......................................................................................... 24 2.6.3. Phase II: Development ...................................................................................................... 25 2.6.3.1. Construction and maintenance agreement (C&MA) ................................................. 26 2.6.3.2. Procurement Group activities ......................................................................................