Fabrication of Pilot Multi-Tube Fire-Tube Boiler Designed for Teaching and Learning Purposes in Mechanical Laboratory

Total Page:16

File Type:pdf, Size:1020Kb

Fabrication of Pilot Multi-Tube Fire-Tube Boiler Designed for Teaching and Learning Purposes in Mechanical Laboratory Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K. Fabrication of Pilot Multi-Tube Fire-Tube Boiler Designed For Teaching and Learning Purposes in Mechanical Laboratory Gbasouzor Austine Ikechukwu, Member IAENG Abstract - The aim of this research is to design and The first reaction-type turbine was built by Hero of fabricate pilot multi-tube boiler using a diesel fired Alexandria in the 1st century AD. In his aeolipile, steam was burner (C13H25)9 to generate 80kg of steam per hour. The fed into a sphere that rotated as steam expanded through two boiler tank is made of pure mild steel. Mild steel is used tangentially mounted nozzles. No useful work was produced to fabricate the fire tubes and other parts such as the by the aeolipile. Not until the 19th century were attempts furnace, smokestack and return chamber that make up made to utilize steam turbines for practical purposes. In 1837 the boiler. The heating surface area was increased for a rotating steam chamber with exhaust nozzles was built to sake of efficiency and fast steam generation by reversing drive cotton gins and circular saws. A single-stage impulse the direction of the gas through a second and third turbine was designed by the Swedish engineer Carl Gustaf de parallel tube (three pass). The boiler (which is fired by a Laval in 1882. A later American design had multiple impulse diesel burner) generates dry saturated steam at a wheels mounted on the same shaft with nozzle sections pressure of 1. Stars and temperature of 111.40C. It can be located between each wheel. Subsequent advances in the used for domestic and industrial purposes. design of steam turbines and boilers allowed for higher pressures and temperatures. These advances led to the huge Keywords: Diesel fired burner, pure mild steel, sake of and efficient modern machines, which are capable of efficiency Domestic and Industrial purposes. converting more than 40 percent of the energy available in the fuel into useful work. I. INTRODUCTION The word 'boiler', in everyday use, covers a wide range of Watt is credited as being the first inventor to separate the equipment, from simple domestic hot water boilers to boilers steam engine, and the boiler, into two separate units in the housed within a power generation plant to convert fossil fuel latter part of the 18th Century. In these early times, the to electricity. Generally, domestic hot water boilers do not primary use of the boiler was to generate steam for steam produce steam and should operate at low pressure. While driven engines. some combination boilers now operate at the pressure of the incoming cold water mains, this is still far below the normal As steam driven engines replaced the horse, as a means operating pressure of steam-raising boilers. of motive power, it followed that steam driven engines were The basic operation of steam turbines employs two rated in 'Horsepower'. concepts, which may be used either separately or together. In Boiler design progressed from what was essentially a kettle an impulse turbine the steam is expanded through nozzles so to a relatively large-diameter flue pipe submerged in water - that it reaches a high velocity. The high-velocity, low- thus the first fire-tube boiler, pressure jet of steam is then directed against the blades of a As power and pressure requirements increased, boilers spinning wheel, where the steam's kinetic energy is extracted became larger and the single-flue pipe became a larger while performing work. Only low-velocity, low-pressure number of smaller diameter flue tubes combined with an steam leaves the turbine. external, or internal, furnace for the combustion of the fuel. In a reaction turbine the steam expands through a series The modern-day 'modified Scotch Marine' boiler, generally of stages, each of which has a ring of curved stationary comprising horizontal steel furnace combustion chambers) blades and a ring of curved rotating blades. In the rotating and/or fire-tube convective pass(es), in 'dry-back' or 'water- section the steam expands partially while providing a reactive back' configurations, owes its heritage to these early multi- force in the tangential direction to turn the turbine wheel. The tube boilers and their application in ships constructed on stationary sections can allow for some expansion (and Scotland's River Clyde. increase in kinetic energy) but are used mainly to redirect the The primary application of the boiler was still motive steam for entry into the next rotating set of blades. power; whether for pumping water from mines, driving In most modern large steam turbines, the high-pressure machinery in mills, propelling steam locomotives or ships. steam is first expanded through a series of impulse stages sets Therefore, boiler ratings were based on the size of the steam of nozzles that immediately lower the high initial pressure so engine that they were capable of driving. The quantity of that the turbine casing does not have to withstand the high steam required to operate a 1 horsepower steam engine pressures produced in the boiler. This is then followed by became known as 1 Boiler Horsepower. (Note that the water- many subsequent impulse or reaction stages (20 or more), in tube boiler was not prevalent until after the first water-tube each of which the steam continues to expand. boiler design patent of 1867; thus, the term Boiler Horsepower (Bhp) has been associated with fire-tube boilers Gbasouzor Austine Ikechukwu is a PhD researcher and Lecturer in the from the earliest days of boiler development). Department of Mechanical Engineering, Anambra State University, P.M. B. During this period, variations in steam engine efficiency 02 Uli. Nigeria, Email: [email protected] Phone: made it difficult to assign a qualified rating (i.e. Pounds per +2348034247458. Hour (PPH)) to the amount of steam required to drive a 1 ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K. horsepower steam engine. Tests, conducted in 1876, Compliance with the ASME Boiler and Pressure Vessel determined approximately 30 pounds of steam per hour was Code. required to produce 1 horsepower of mechanical work. In Compliance with required safety and installation Codes. 1889, the American Society of Mechanical Engineers The ability to meet the required efficiency and other (ASME) standardized the term "Boiler Horsepower" as being performance standards. based on a conventional steam engine evaporation rate of 30 The ability to meet the required level of pollutant pounds of steam per hour (PPH), at 70 PSIG pressure, and a emissions, feed water temperature of 100° F. This definition was Compliance with the requirements of the National Board subsequently modified to: Boiler Horsepower - the unit of of Boiler and Pressure Vessel Inspectors through local capacity expressed as the equivalent evaporation of 34.5 jurisdictions having authority (JHA), pounds of water per hour, from and at 212° F (33,475 The ability to meet the perceived needs of the customer Btu/hr.). in terms of operational performance, reliability and maintenance costs. Also, it was determined that for the steel fire-tube boilers of The ability to produce a competitively priced product the day, which utilized brick set bases incorporating large amounts of refractory, and generally coal fired, 10 square Fire-tube boiler manufacturers have established over the feet of fireside heating surface was necessary for a steam years that these criteria can be satisfied with varying fire-side engine to generate I mechanical horsepower. As a result it heating surface specifications. Thus, the nominal 5 square became an industry standard practice to rale lire-tube boilers feet of fire-side heating surface per boiler horsepower axiom in Boiler Horsepower, and to base this rating on fire-side is less important as a critical design consideration. heating surface (1 Bhp per 10 square feet of fire-side heating surface). B. High-pressure Competition between fire-tube boiler manufacturers While the advances of 18th century, the call was for higher eventually forced improvements in boiler design and fuel pressures; this was strongly resisted by Watt who used the burning equipment. This, together with a broad shift towards monopoly his patent gave him to prevent others from liquid and gaseous fuel utilization, resulted in cleaner and building high-pressure engines and using them in vehicles. more reliable combustion and improved heat transfer within He mistrusted the materials' resistance and the boiler the boiler. Progressive reduction in the fire-side heating technology of the day. surface required, per Boiler Horsepower, was therefore The important advantages of high pressure were: consistent with these advancements. By the I960's, the 10 1) They could be made much smaller than previously for a square feet of fire-side heating surface per Boiler given power output. There was thus the potential for Horsepower criterion decreased to 5 square feel of fireside steam engines to be developed that were small and heating surface per Boiler Horsepower - an axiom which is powerful enough to propel themselves and other objects. commonly cited today, particularly in the United States. As a result, steam power for transportation now became During the latter part of the 20 Century, many a practicality in the form of ships and land vehicles, manufacturers of fire-tube boilers designed which revolutionised cargo businesses, travel, military and marketed boilers with greater input capacity burners with strategy, and essentially every aspect of society. requisite steam nozzle and safety valve(s) characteristics 2) Because of their smaller size, they were much less which therefore permitted operation at less than 5 square feet expensive.
Recommended publications
  • MACHINES OR ENGINES, in GENERAL OR of POSITIVE-DISPLACEMENT TYPE, Eg STEAM ENGINES
    F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion aspects of reciprocating-piston engines F02B57/00, F02B59/00; crankshafts, crossheads, connecting-rods F16C; flywheels F16F; gearings for interconverting rotary motion and reciprocating motion in general F16H; pistons, piston rods, cylinders, for engines in general F16J) Definition statement This subclass/group covers: Machines or engines, in general or of positive-displacement type References relevant to classification in this subclass This subclass/group does not cover: Rotary-piston or oscillating-piston F01C type Non-positive-displacement type F01D Informative references Attention is drawn to the following places, which may be of interest for search: Internal combustion engines F02B Internal combustion aspects of F02B 57/00; F02B 59/00 reciprocating piston engines Crankshafts, crossheads, F16C connecting-rods Flywheels F16F Gearings for interconverting rotary F16H motion and reciprocating motion in general Pistons, piston rods, cylinders for F16J engines in general 1 Cyclically operating valves for F01L machines or engines Lubrication of machines or engines in F01M general Steam engine plants F01K Glossary of terms In this subclass/group, the following terms (or expressions) are used with the meaning indicated: In patent documents the following abbreviations are often used: Engine a device for continuously converting fluid energy into mechanical power, Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. Machine a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump.
    [Show full text]
  • Building a Small Horizontal Steam Engine
    Building a Small Horizontal Steam Engine The front cylinder head is a pipe cap, THE small engine described in this the exterior of which is turned to pre- article was built by the writer in sent a more pleasing appearance, and his spare time—about an hour a day for drilled and threaded to receive the stuff- four months—and drives the machinery ing box, Fig. 2. The distance between in a small shop. At 40-lb. gauge pres- the edge of the front-end steam port and sure, the engine runs at 150 r.p.m., under the inner side of the cap, when screwed full load, and delivers a little over .4 home, should be much less than that brake horsepower. A cast steam chest, shown, not over ¼ in., for efficiency, and with larger and more direct steam ports, the same at the rear end. When the to reduce condensation losses; less clear- cap has been permanently screwed on ance in the cylinder ends, and larger the cylinder, one side is flattened, as bearing surfaces in several places, would shown, on the shaper or grinder, and the bring the efficiency of the engine up to a steam ports laid out and drilled. It would much higher point than this. In the be a decided advantage to make these writer's case, however, the engine is de- ports as much larger than given as is livering ample power for the purpose to possible, as the efficiency with ½-in. ports which it is applied, and consequently is far below what it might be.
    [Show full text]
  • Steam and You! How Steam Engines Helped the United States to Expand Reading
    Name____________________________________ Date ____________ Steam and You! How Steam Engines Helped The United States To Expand Reading How Is Steam Used To Help People? (Please fill in any blank spaces as you read) Have you ever observed steam, also known as water vapor? For centuries, people have observed steam and how it moves. Describe steam on the line below. Does it rise or fall?____________________________________________________________ Steam is _______ and it ___________. When lots of steam moves into a pipe, it creates pressure that can be used to move things. Inventors discovered about 300 years ago that they could use steam to power machines. These machines have transformed human life. Steam is used today to help power ships and to spin large turbines that generate electricity for millions of people throughout the world. The steam engine was one of the most important inventions of the Industrial Revolution that occurred about from about 1760 to 1840. The Industrial Revolution was a time when machine technology rapidly changed society. Steam engines were used to power train locomotives, steamboats, machines in factories, equipment in mines, and even automobiles before other kinds of engines were invented. Boiling water in a tea kettle produces A steamboat uses a steam engine to steam. Steam can power a steam engine. turn a paddlewheel to move the boat. A steam locomotive was powered when A steam turbine is a large metal cylinder coal or wood was burned inside it to boil with large fan blades that can spin when water to make steam. The steam steam flows through its blades.
    [Show full text]
  • Oil Fuel and the Empire
    OIL FUEL AND THE EMPIRE jf' D. HENRY FOUNDER OF " THJE PETROLEUU WORLD " AND AUTHOR OF 'BAKU; AN EVENTFUL HISTORY," " THIRTY-FIVE YEARS OF OIL TRANSPORT; THE EVOLUTION OF THE TANK STEAMER," ETC HALF-TONE ILLUSTRATIONS, DIAGRAMS AND ORIGINAL DRAWINGS Printed by BRADBURY, AGNEW, & CO. LD. LONDON AND TONBRIDGE And Published at 22-23, Great Tower Street, London, E.C. 1908 IT /"i^pz:. Printed by ^ P" Bradbury, Agnew &. Co. Ld. London and Tonbridge. poelished at 22 & 23, Great Tower Street, London, E.C. Bl July, 1908. TO THE OIL MEN OF THE DOMINION OF CANADA WHO MADE THE FIRST OFFER TO S0PPLY COLONIAL OIL FUEL TO THE BRITISH NAVY ^ £IQUID fuel is already substituted for coal in many steam- ships. When sufficient quantities can ,be obtained it has many obvious advantages over coal. At present it does not appear that adequate supplies are available. Competent authori- ties, here and abroad, are giving attention to this question, and to the development of supplies. If the want can be met at prices justifying the use of liquid fuel there will undoubtedly be a movement in that direction." Sir William H. White, Chief Constructor at the Admiralty, in 1899. Thomas Gibson Bowles, in a lively letter to Tke Times, mR.in 1900, hit the Admiralty hard for reducing " a fleet-in- being to a fleet in building," and denounced " the persis- tent refusal seriously to entertain or examine the matter of oil fuel." In July, 1904, Mr. Bowles asked whether the oil fuel experi- ments in warships had been satisfactory. Oil, he added, would carry a ship twice the distance coal would, but he doubted whether we could get a sufficient supply.
    [Show full text]
  • WSA Engineering Branch Training 3
    59 RECIPROCATING STEAM ENGINES Reciprocating type main engines have been used to propel This is accomplished by the guide and slipper shown in the ships, since Robert Fulton first installed one in the Clermont in drawing. 1810. The Clermont's engine was a small single cylinder affair which turned paddle wheels on the side of the ship. The boiler was only able to supply steam to the engine at a few pounds pressure. Since that time the reciprocating engine has been gradually developed into a much larger and more powerful engine of several cylinders, some having been built as large as 12,000 horsepower. Turbine type main engines being much smaller and more powerful were rapidly replacing reciprocating engines, when the present emergency made it necessary to return to the installation of reciprocating engines in a large portion of the new ships due to the great demand for turbines. It is one of the most durable and reliable type engines, providing it has proper care and lubrication. Its principle of operation consists essentially of a cylinder in which a close fitting piston is pushed back and forth or up and down according to the position of the cylinder. If steam is admitted to the top of the cylinder, it will expand and push the piston ahead of it to the bottom. Then if steam is admitted to the bottom of the cylinder it will push the piston back up. This continual back and forth movement of the piston is called reciprocating motion, hence the name, reciprocating engine. To turn the propeller the motion must be changed to a rotary one.
    [Show full text]
  • 141210 the Rise of Steam Power
    The rise of steam power The following notes have been written at the request of the Institution of Mechanical Engineers, Transport Division, Glasgow by Philip M Hosken for the use of its members. The content is copyright and no part should be copied in any media or incorporated into any publication without the written permission of the author. The contents are based on research contained in The Oblivion of Trevithick by the author. Section A is a very brief summary of the rise of steam power, something that would be a mighty tome if the full story of the ideas, disappointments, successes and myths were to be recounted. Section B is a brief summary of Trevithick’s contribution to the development of steam power, how he demonstrated it and how a replica of his 1801 road locomotive was built. Those who study early steam should bear in mind that much of the ‘history’ that has come down to us is based upon the dreams of people seen as sorcerers in their time and bears little reality to what was actually achieved. Very few of the engines depicted in drawings actually existed and only one or two made any significant contribution to the harnessing of steam power. It should also be appreciated that many drawings are retro-respective and close examination shows that they would not work. Many of those who sought to utilise the elusive power liberated when water became steam had little idea of the laws of thermodynamics or what they were doing. It was known that steam could be very dangerous but as it was invisible, only existed above the boiling point of water and was not described in the Holy Bible its existence and the activities of those who sought to contain and use it were seen as the work of the Devil.
    [Show full text]
  • Methods of Steam Generation; Steam Boilers
    F22B METHODS OF STEAM GENERATION; STEAM BOILERS (steam engine plants where engine aspects predominate F01K; domestic central-heating systems using steam F24D; heat exchange or heat transfer in general F28; generation of vapour in the cores of nuclear reactors G21) Definition statement This subclass/group covers: This subclass covers general aspects of, or methods for, steam generation. Methods of steam generation characterised by the form of heating method, constructional features of steam boilers, control systems for steam boilers and all component parts or details of steam boilers are covered. Thereby this subclass is limited in only methods of, or apparatus for, the generation of steam under pressure for heating or power purposes. Relationship between large subject matter areas Steam engine plants where engine aspects predominate are classified in F01K, domestic central heating systems using steam are classified in F24D, heat exchange or heat transfer in general is classified in F28 and the generation of vapour in cores of nuclear reactors is classified in G21. Informative references Attention is drawn to the following places, which may be of interest for search: Cooking vessels A47J 27/00 Apparatus for making beverages A47J 31/00 Baking, Roasting, Grilling, Frying A47J 37/00 Machines for cleaning floors, carpets, A47L 11/4086 furniture, walls, or wall coverings with arrangements for steam generation Bathing devices for special A61H 33/00 therapeutic or hygienic purposes Cleaning by methods involving the B08B 3/00 use or presence of liquid steam Washing machines with steam D06F 39/008 generation 1 Hand irons D06F 75/00 Reciprocating piston steam engines F01B 17/04 Special rules of classification within this subclass Attention is drawn to the definition of "steam" and "vapour".
    [Show full text]
  • Steam Engines of Which We Have Any Knowledge Were
    A T H OROUGH AND PR ACT I CAL PR ESENT AT I ON OF MODER N ST EAM ENGI NE PR ACT I CE LLEWELLY DY N . I U M . E . V i P O F S S O O F X P M L G G P U DU U V S Y R E R E ERI ENTA EN INEERIN , R E NI ER IT AM ERICAN S O CIETY O F M ECH ANI C A L EN G INEERS I LL US T RA T ED AM ER ICA N T ECH N ICA L SOCIET Y C H ICAGO 19 17 CO PY GH 19 12 19 17 B Y RI T , , , AM ER ICA N T ECH N ICAL SOCIET Y CO PY RIG H TE D IN G REAT B RITAI N A L L RIGH TS RE S ERV E D 4 8 1 8 9 6 "GI. A INT RO DUCT IO N n m n ne w e e b e the ma es o ss H E moder stea e gi , h th r it j tic C rli , which so silently o pe rates the m assive e le ctric generators in f r mun a owe an s o r the an o o mo e w one o ou icip l p r pl t , gi t l c tiv hich t m es an o u omman s our uns n e pulls the Limited a sixty il h r , c d ti t d n And t e e m o emen is so f ee and e fe in admiratio .
    [Show full text]
  • Steam-Engine
    CHAPTER IV. .J.1JE MODERN STEAM-ENGINE. "THOSE projects which abridge distance bnve done most for the civiliza­ ..tion and happiness of our species."-MACAULAY. THE SECOND PERIOD OF APPLIC.ATION-18OO-'4O. STE.AM-LOCOMOTION ON RAILROADS. lNTRODUCTORY.-The commencement of the nineteenth century found the modern steam-engine fully developed in .. :.... �::�£:��r:- ::::. Fro. 40.-The First Railroad-Car, 1S25. a.11 its principal features, and fairly at work in many depart­ ments of industry. The genius of Worcester, and Morland, and Savery, and Dcsaguliers, had, in the first period of the · STEA�l-LOCOMOTION ON RAILROADS. 145 application of the po,ver of steam to useful ,vork, effected a beginning ,vhich, looked upon from a point of vie,v vvhich · exhibits its importance as the first step to,vard the wonder­ ful results to-day familiar to every one, appears in its true light, and entitles those great men to even greater honor than has been accorded them. The results actually accom­ plishecl, ho,vever, were absolutely. insignificant in compari­ son with those ,vhich marked the period of development just described. Yet even the work of Watt and of his con­ temporaries ,vas but a 1nere prelude to the marvellous ad­ vances made in the succeeding period, to which ,ve are now come, and, in · extent and importance, was insignificant in co1nparison ,vith that accomplishecl by tl1eir successors in · the development of all mechanical industries by the appli­ cation of the steam-engine to the movement of every kind of machine. 'fhe firstof the two periods of application saw the steam­ engine adapted simply to tl1e elevation of water and t,he drainage of mines ; during the second period it ,vas adapted to every variety of use£ul ,vork, and introduced ,vherever the muscular strength of men and animals, or the power of ,vind and of falling ,vater, ,vl1ich had previously been the only motors, had found application.
    [Show full text]
  • The Conch Republic •Entertainment •Shopping •Lodging
    FREE •Dining The Conch Republic •Entertainment •Shopping •Lodging 101425 Overseas Hwy. • PMB #628 • Key Largo, FL 33037 • 305-304-2837 • [email protected] • Feb. 2007 Inside Pirate Treasure for your Wardrobe & Home A Key Largo Legacy ...The African Queen Attractions Entertainer of the Month ... Kim Bankston Restaurant of the Month ...The Fish House Encore Bartender of the Month ...Selina Henderson Artist of the Month ...Bruce Gorczycki Map Getting From Here to There Special Events The Cultured Conch- Art Events in the Keys Benefit for Bobbie Florida Keys Chili Cook-off Purple Isle Judge Show What’s Hot & What’s Not Sounds of the Keys All the Buzz Facing Problems: Running Away versus Moving Forward Football and Brownies ....Super bowl party plan You Can Find The Coconut Telegraph at over 100 locations from Photo by David "Steam" Smith Homestead to Key West 2 • The Coconut Telegraph • February 2007 The Coconut Telegraph • February 2007 • 3 of the Coconut Telegraph Deadline Articles Entertainer Month February 2007 for the Coconut Telegraph’s Entertainer of the Month ...................................................3 Kim Bankston Volume 4 Issue #4 February issue is Pirate Treasure for your Wardrobe & Home ............4 Thursday Prestige Publishing, LLC February 22, 2007 Purple Isle: Annual Members Judge Show......................5 101425 Overseas Highway Florida Keys Chili Cook-off .................................................6 PMB #628 Purine Dog Food Diet ............................................................7 Phone
    [Show full text]
  • Computer Aided Machine Drawing Assembly Drawing
    Computer Aided Machine Drawing Assembly Drawing Instructor: Mohamed Abdou Mahran Kasem, Ph.D. Aerospace Engineering Department Cairo University Assembly Drawing • A machine is an assembly of various links or parts. • It is necessary to understand the relation between the various parts of the unit for the purpose of design and production. • An assembly drawing is one which represents various parts of a machine in their working position. • These drawings are classified as design assembly drawings, working assembly drawings, sub-assembly drawings, installation assembly drawings. Assembly Drawing - Design assembly drawing is an assembly drawing made at the design stage while developing a machine. It is made to a larger scale so that the required changes or modifications may be thought of by the .appearance (جمالي) designer, keeping in view both the functional requirement and aesthetic - Working assembly drawing are normally made for simple machines, comprising small number of parts. Each part is completely dimensioned to facilitate easy fabrication. - A sub-assembly drawing is an assembly drawing of a group of related parts which form a part of a complicated machine. Thus, a number of such sub-assembly drawings are needed to make a complete unit. - An installation assembly drawing reveals the relation between different units of a machine, giving location and dimensions of few important parts. Assembly Drawing – Examples Box حشو Engine Parts – 1 Stuffing Function: - It is used to prevent loss of fluid such as steam, between sliding or turning parts of machine elements. - In a steam engine, when the piston rod reciprocates through the cylinder cover; stuffing box provided in the cylinder cover, prevents leakage of steam from the cylinder.
    [Show full text]
  • Boiler Plant Operation and Management
    IDC Technologies - Books - 1031 Wellington Street Phone: +61 8 9321 1702 - Email: books@idc- West Perth online.com,[email protected] WA 6005 BL-E - Boiler Plant Operation and Management Price: $139.94 Ex Tax: $127.22 Short Description This manual provides the most up-to-date information and practical understanding of the installation, operation, maintenance and management of boiler plants. It will give you the ability to recognize and solve boiler problems simply, easily and with confidence. Description This manual provides the most up-to-date information and practical understanding of the installation, operation, maintenance and management of boiler plants. It will give you the ability to recognize and solve boiler problems simply, easily and with confidence. Table of Contents Download Chapter List Table of Contents First Chapter Introduction to Practical Boiler Plant Operation and Management for Engineers and Technicians 1 Introduction This chapter commences with an introduction to the fundamentals of boiler operation and outlining what exactly happens in a boiler. This is followed by a discussion on the design & functional aspects of various boiler components such as shell, header, waterwall, flue, tube, combustion chamber etc. During the course of the discussion, an attempt is also made to obtain a clear understanding of different boiler terminologies & definitions. The chapter further provides a detailed overview of the common boiler types & configurations, along with their application. Learning objectives Boiler fundamentals and operation. Common terminologies and definitions associated with boilers. General requirements and selection criteria. Boiler components and functions. Packaged boiler types and their applications. 1.1 Fundamentals Boilers are closed vessels in which heat is applied to transform water under pressure, into steam.
    [Show full text]