Hazardous Materials Submitted in Duplicate

Total Page:16

File Type:pdf, Size:1020Kb

Hazardous Materials Submitted in Duplicate 87510 Federal Register / Vol. 81, No. 233 / Monday, December 5, 2016 / Proposed Rules 40 CFR Part 160 for passengers and crew members. In Avenue SE., 2nd Floor, Washington, DC Environmental protection, addition to harmonization with 20590–0001. international standards, several of the Laboratories, Pesticides and pests, SUPPLEMENTARY INFORMATION: Reporting and recordkeeping proposals in this rule are responsive to requirements. petitions for rulemaking submitted by Table of Contents the regulated community. PHMSA 40 CFR Part 165 invites all interested persons to provide I. Background II. Overview of Proposals in This NPRM Environmental protection, Packaging comments regarding these proposed revisions. A. Transportation by Air Intermediate and containers, Pesticides and pests. Packaging Requirements for Certain Low DATES: Comments must be received by 40 CFR Part 168 and Medium Danger Hazardous February 3, 2017. Materials (P–1637) Environmental protection, ADDRESSES: You may submit comments B. Quantity Limits for Portable Electronic Administrative practice and procedure, by any of the following methods: Medical Devices Carried by Passengers, Advertising, Exports, Labeling, • Federal Rulemaking Portal: http:// Crewmembers, and Air Operators Pesticides and pests, Reporting and www.regulations.gov. Follow the online (P–1649) recordkeeping requirements. instructions for submitting comments. C. NOTOC Harmonization With the ICAO • 40 CFR Part 170 Fax: 1–202–493–2251. TI (P–1487) • Mail: Docket Management System; D. Amendments to Package Inspection Environmental protection, U.S. Department of Transportation, (P–1671) and Securing Requirements Agricultural worker, Employer, Farms, Dockets Operations, M–30, Ground III. Section-by-Section Review Forests, Greenhouses, Nurseries, Floor, Room W12–140, 1200 New Jersey IV. Regulatory Analyses and Notices Pesticide handler, Pesticides, Worker Avenue SE., Washington, DC 20590– A. Statutory/Legal Authority for This protection standard. 0001. Rulemaking • 40 CFR Part 172 Hand Delivery: To U.S. Department B. Executive Order 12866, Executive Order of Transportation, Dockets Operations, 13563, and DOT Regulatory Policies and Environmental protection, M–30, Ground Floor, Room W12–140, Procedures Intergovernmental relations, Labeling, 1200 New Jersey Avenue SE., C. Executive Order 13132 Pesticides and pests, Reporting and Washington, DC 20590–0001 between 9 D. Executive Order 13175 recordkeeping requirements, Research. a.m. and 5 p.m. Monday through Friday, E. Regulatory Flexibility Act, Executive Dated: November 28, 2016. except Federal holidays. Order 13272, and DOT Policies and Richard P. Keigwin, Jr., Instructions: Include the agency name Procedures Director, Office of Pesticide Programs. and Docket Number PHMSA–2015– F. Paperwork Reduction Act 0100 (HM–259) or RIN 2137–AF10 for G. Regulation Identifier Number (RIN) [FR Doc. 2016–29113 Filed 12–2–16; 8:45 am] this rulemaking at the beginning of your H. Unfunded Mandates Reform Act BILLING CODE 6560–50–P comment. Note that all comments I. Environment Assessment received will be posted without change J. Privacy Act to http://www.regulations.gov including K. Executive Order 13609 and International DEPARTMENT OF TRANSPORTATION any personal information provided. If Trade Analysis sent by mail, comments must be L. National Technology Transfer and Pipeline and Hazardous Materials submitted in duplicate. Persons wishing Advancement Act V. List of Subjects and Safety Administration to receive confirmation of receipt of Regulations Text their comments must include a self- 49 CFR Parts 172 and 175 I. Background addressed, stamped postcard. [Docket No. PHMSA–2015–0100 (HM–259)] Privacy Act: Anyone is able to search In consultation with the Federal the electronic form of any written Aviation Administration (FAA), RIN 2137–AF10 communications and comments PHMSA (also ‘‘we’’ or ‘‘us’’) proposes to received into any of our dockets by the Hazardous Materials: Notification of amend the Hazardous Materials name of the individual submitting the the Pilot-in-Command and Response Regulations (HMR; 49 CFR parts 171– document (or signing the document, if to Air Related Petitions for Rulemaking 180) to more closely align with certain submitted on behalf of an association, (RRR) provisions of the International Civil business, labor union, etc.). You may Aviation Organization’s Technical AGENCY: Pipeline and Hazardous review DOT’s complete Privacy Act Instructions for the Safe Transport of Statement in the Federal Register Materials Safety Administration Dangerous Goods (ICAO TI). This NPRM published on April 11, 2000 [65 FR (PHMSA), DOT. also responds to four petitions for 19477], or you may visit http:// ACTION: Notice of proposed rulemaking rulemaking submitted by the regulated (NPRM). www.regulations.gov. Docket: You may view the public community. The intended effect of these amendments is to update miscellaneous SUMMARY: In consultation with the docket online at http:// Federal Aviation Administration (FAA), www.regulations.gov or in person at the regulatory requirements for hazardous PHMSA proposes to amend the Docket Operations Office at the above materials offered for transportation, or Hazardous Materials Regulations (HMR) address (see ADDRESSES). transported, in commerce by aircraft. to align with current international FOR FURTHER INFORMATION CONTACT: The petitions are included in the docket standards for the air transportation of Aaron Wiener, Office of Hazardous for this proceeding and are discussed at hazardous materials. The proposals in Materials Standards, International length in Section II (‘‘Overview of this rule would amend certain special Standards, (202) 366–4579, Pipeline and Proposals in this NPRM’’) of this provisions, packaging requirements, Hazardous Materials Safety rulemaking. notification of pilot-in-command Administration, U.S. Department of (NOTOC) requirements, and exceptions Transportation, 1200 New Jersey VerDate Sep<11>2014 17:33 Dec 02, 2016 Jkt 241001 PO 00000 Frm 00025 Fmt 4702 Sfmt 4702 E:\FR\FM\05DEP1.SGM 05DEP1 sradovich on DSK3GMQ082PROD with PROPOSALS Federal Register / Vol. 81, No. 233 / Monday, December 5, 2016 / Proposed Rules 87511 II. Overview of Proposals in This requirements in special provisions A3 provision A6 for currently assigned NPRM and A6 be removed. solid materials or whether revisions to Section 173.27(d) establishes the type the packaging provisions for these A. Transportation by Air Intermediate of closure required for transportation of materials should be considered in a Packaging Requirements for Certain Low liquid hazardous materials by air. It future rulemaking and Medium Danger Hazardous states that the inner packaging for PG I Materials (P–1637) liquid hazardous materials must have a B. Quantity Limits for Portable Electronic Medical Devices Carried by The Dangerous Goods Advisory secondary means of closure applied. Passengers, Crewmembers, and Air Council petitioned PHMSA to remove The inner packaging for PG II or PG III Operators (P–1649) the additional intermediate packaging liquid hazardous materials must have a requirements found in special secondary closure applied unless the Phillips Healthcare petitioned provisions A3 and A6, see 49 CFR secondary closure is impracticable. If PHMSA to revise § 175.10(a)(18)(i) to 172.102(b)(2), by deleting these special the secondary closure is impracticable, increase the quantity limits applicable provisions and all references to them in the closure requirements for PG II and to the transportation of portable medical the Hazardous Materials Table (HMT) in PG III liquids may be satisfied by electronic devices (e.g., automated § 172.101. See P–1637.1 Special securely closing the inner packaging external defibrillators (AED); nebulizers; provisions A3 and A6 apply to certain and placing it in a leakproof liner or bag continuous positive airway pressure commodities as assigned in column (7) before placing the inner packaging in (CPAP) devices containing lithium of the HMT when transported by the outer packaging. metal batteries; and spare batteries) aircraft: Section 173.27(e) sets the absorbency carried on aircraft by passengers and 2 • Special provision A3 states that if requirements for PG I liquid hazardous crewmembers. See P–1649. The current glass inner packagings are used for materials of Classes 3, 4, or 8, or HMR requirements limit all lithium transportation of referenced Divisions 5.1 or 6.1, when the materials metal batteries carried on an aircraft by commodities, they must be packed with are packaged in glass, earthenware, passengers or crew for personal use to absorbent material in tightly closed plastic, or metal inner packagings and a lithium content of not more than 2 metal receptacles before being packed in offered or transport by air. It requires grams per battery. The ICAO TI allow outer packagings. that inner packagings be packed in a portable medical electronic devices containing lithium metal batteries and • Special provision A6 states that if rigid and leakproof receptacle or spare batteries for these devices to plastic inner packagings are used for intermediate packaging that that is sufficiently absorbent to absorb the contain up to 8 grams of lithium content transportation of referenced entire contents of the inner packaging per battery to be carried by passengers commodities, they must be packed in before the inner package is packed in with the approval of the operator. The tightly closed metal receptacles before the outer package. petitioner
Recommended publications
  • United States Patent Office Patented Sept
    3,149,913 United States Patent Office Patented Sept. 22, 1964 2 may vary over a wide range and may be as little as 1% 3,49,913 and as much as 50% and even higher. Particularly ad PROCESS FOR PRODUCING NETROSYL vantageous is the use of nitric acid in amounts such that SULFURECACE) d the resulting nitrosylsulfuric acid concentration approxi ALouis L. Ferstandig, El Cerrito, and Paul C. Condit, San 5 mates saturation values in order to afford maximum pro Asseino,poration, Calif.,San Francisco,assignors toCalif., California a corporation Research Cor of duction per unit reactor volume and yet avoid deposition Beavy are of solids. The solubility of nitrosylsulfuric acid in ap No Drawing. Fied June 14, 1961, Ser. No. 116,957 proximately 100% sulfuric acid ranges from about 48 3 (Caims. (CE. 23-39) grams per 100 grams of solution at 0° C. up to about 68 grams at 50 C. with, of course, a lesser solubility below This invention relates to a proces for the production of O 0 C. and a greater above 50° C. Although the presence nitrosylsulfuric acid. of the precipitated nitrosylsulfuric acid is usually a source Nitrosyisulfuric acid is particularly desirable for use of mechanical inconvenience, advantage may be taken of in the production of caprolactam from hexahydrobenzoic it by removal of the solid nitrosylsulfuric acid by filtra acid. Nitrosylsulfuric acid has long been known as an 5 tion and subsequent recycle of the mother liquor to the intermediate in connection with the lead-chamber sulfuric reaction Zone. acid process in which it is converted to Sulfuric acid with in general, the effective temperature range of the process concurrent liberation of nitric oxide in a reaction with is defined by the requirement that the reaction medium be sulfur dioxide.
    [Show full text]
  • New Synthesis Routes for Production of Ε-Caprolactam by Beckmann
    New synthesis routes for production of ε-caprolactam by Beckmann rearrangement of cyclohexanone oxime and ammoximation of cyclohexanone over different metal incorporated molecular sieves and oxide catalysts Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Anilkumar Mettu aus Guntur/Indien Berichter: Universitätprofessor Dr. Wolfgang F. Hölderich Universitätprofessor Dr. Carsten Bolm Tag der mündlichen Prüfung: 29.01.2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Dedicated to my Parents This work reported here has been carried out at the Institute for Chemical Technolgy and Heterogeneous Catalysis der Fakultät für Mathematik, Informatik und Naturwissenschaften in the University of Technology, RWTH Aachen under supervision of Prof. Dr. Wolfgang F. Hölderich between June 2005 and August 2008. ACKNOWLEDGEMENTS I would like to express my deepest sence of gratitude to my supervisor Prof. Dr. rer. nat. W. F. Hölderich for giving me the opportunity to do my doctoral study in his group. His guidance and teaching classes have allowed me to grow and learn my subject during my Ph.d. He has provided many opportunities for me to increase my abilities as a researcher and responsibilities as a team member. I am grateful for the financial support of this work from Sumitomo Chemicals Co., Ltd, Niihama, Japan (Part One) and Uhde Inventa-Fischer GmBH, Berlin (Part Two). Our collaborators at Sumitomo Chemicals Co., Ltd (Dr. C. Stoecker) and Uhde Inventa- Fischer GmBH (Dr. R. Schaller and Dr. A. Pawelski) provided thoughtful guidance and suggestions for each project.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Aug. 29, 1967 Yoshi KAZU ITO ETAL 3,338,887 PREPARATION of NITROSYL CHLORIDE Filed Dec
    Aug. 29, 1967 Yoshi KAZU ITO ETAL 3,338,887 PREPARATION OF NITROSYL CHLORIDE Filed Dec. 26, 1962 INVENTORS YOSHIKAZU ITO FUMO NS-KAWA 2%-42.TAKAO WAMURA ATTORNEY 3,338,887 United States Patent Office Patented Aug. 29, 1967 1. 2 3,338,887 be taken out of the cyclic system in order to maintain PREPARATION OF NITROSYL CHLORIDE its material balance, or, alternatively, the water has to Yoshikazu to, Mizuho-ku, Nagoya, and Fumio Nishi be taken out of the cyclic system by distillation of the kawa and Takao Iwamura, Minami-ku, Nagoya, Japan, spent liquor under reduced pressure. assignors to Toyo Rayon Kabushiki Kaisha, Tokyo, Japan, a corporation of Japan While the spent liquor which has been taken out to Filed Dec. 26, 1962, Ser. No. 246,914 the outside of the system by the above method can be Claims priority, application Japan, Dec. 26, 1961, used for other purposes as sulfuric acid by being con 36/46,743 verted thereto by the conventional nitric oxide process 1 Claim. (Cl. 260-239.3) for sulfuric acid manufacture, the recovery of the oxides 10 of nitrogen which are formed in this instance is a dis This invention relates to a method of preparing nitro advantage from the commercial standpoint. Furthermore, syl chloride which makes it possible to prepare nitrosyl since a small amount of hydrochloric acid is contained chloride cyclically with advantage and effectiveness on in the cycling spent liquor, hydrochloric acid is also a commercial scale, and in which the liquid portion which contained in the sulfuric acid formed.
    [Show full text]
  • Environmental Protection Agency § 712.30
    Environmental Protection Agency § 712.30 (2) A confidentiality statement § 712.30 Chemical lists and reporting signed and dated by an authorized per- periods. son located at the plant site or cor- (a)(1) Persons subject to this subpart porate headquarters of the respondent B must submit a Preliminary Assess- company. ment Information Manufacturer’s Re- (3) The specific chemical name and port for each chemical substance or Chemical Abstracts Service (CAS) Reg- mixture that is listed or designated in istry Number listed in 40 CFR 712.30. this section. (4) The name, company, address, city, State, ZIP code, and telephone number (2) Unless a respondent has already of a person who is submitting the form, prepared a Manufacturer’s Report in which may be a person located at a conformity with conditions set forth in plant site or corporate headquarters paragraph (a)(3) of this section, the in- that will serve as the respondent, and formation in each Manufacturer’s Re- will be able to answer questions about port must cover the respondent’s latest the information submitted by the com- complete corporate fiscal year as of the pany to EPA. A respondent to this sub- effective date. The effective date will part must include the appropriate Dun be 30 days after the FEDERAL REGISTER and Bradstreet Number for each plant publishes a rule amendment making site reported. the substance or mixture subject to (5) The plant site activities, such as this subpart B. the manufacturing of a chemical sub- (3) Persons subject to this subpart B stance, including the total quantity of need not comply with the requirements the chemical substance (in kilograms) of paragraph (a)(2) of this section if imported in bulk during the reporting they meet either one of the following period.
    [Show full text]
  • Crude Ticl4 Purification: a Review of the Current State of the Art and Future Opportunities
    Crude TiCl4 purification: a review of the current state of the art and future opportunities L. Hockaday and A. Kale Mintek, Randburg, South Africa Raw titanium tetrachloride (TiCl4) is produced by chlorination of titania feedstock. Prior to its utilization in the manufacture of titanium dioxide pigment or titanium metal, the TiCl4 is purified by adding reagents that react with the impurities in the crude TiCl4, followed by distillation of the mixture. The current state of the art in purification of crude TiCl4 was surveyed. Tests were conducted at the laboratory scale to assess the efficiency of various additives used in the purification process to minimize the vanadium content in the distillate. The effects of various reagents, namely oleic acid, sodium oleate, potassium oleate, and copper on the purification of crude TiCl4 were compared. The purified TiCl4 was water-clear in aspect and analysed < 2 ppm vanadium for all reagents tested. Possible reactions between the impurities in the crude TiCl4 and the reagents are investigated thermodynamically with the FactSage program. INTRODUCTION Titanium tetrachloride (TiCl4) is obtained by the chlorination of a titanium-bearing mineral such as ilmenite and rutile, as well as from titanium slag. The chlorination process usually takes place in a fluidized bed in the presence of chlorine gas and a reducing agent such as petroleum coke, resulting in crude titanium tetrachloride. TiCl4 is an intermediate product in the production of titanium dioxide (TiO2) pigment and titanium metal. The pure form of titanium dioxide is used in the pigment industry for paints, food colouring etc., and titanium metal is widely used in the aerospace, medicine, sport, and semiconductor production industries.
    [Show full text]
  • United States Patent (19) 11) 4,182,708 Landler Et Al
    United States Patent (19) 11) 4,182,708 Landler et al. 45 Jan. 8, 1980 54 PROCESS FOR THE PREPARATION OF 58) Field of Search ............ 260/144 P, 208, 174-193, AZO PIGMENTS BY DAZOTIZING INA 260/157, 162, 163, 155, 203, 204; 106/308, 288 DIPOLARAPROTC ORGANIC SOLVENT AND AZO PIGMENTS OBTANED Q THEREFROM (56) References Cited U.S. PATENT DOCUMENTS 75 Inventors: Josef Landler, Hofheim; Klatis 2,683,708 2/1954 Dickey et al. ....................... 260/158 Htinger, Kelkheim; Erhard Wörfel, 2,790,791 4/1957 Towne et al......................... 260/158 Hattersheim, all of Fed. Rep. of 3,213,080 10/1965 Bloom et al. .... ... 260/155 Germany 3,382,228 5/1968 Ferrari et al. ........................ 260/158 3,642,769 2/1972 Moritz et al. ... 260/207 73) Assignee: Hoechst Aktiengesellschaft, 3,711,461 1/1973 Pretzer et al. ... 260/154 Frankfurt am Main, Fed. Rep. of 3,781,266 12/1973 Dietz et al. .. ... 260/157 Germany 3,793,305 2/1974 Balon ................................... 260/154 Primary Examiner-Floyd D. Higel (21) Appl. No.: 761,071 Attorney, Agent, or Firm-Curtis, Morris & Safford 57 ABSTRACT 22 Filed: Jan. 21, 1977 Azo pigments are obtained by diazotizing a diazotizable aromatic amine without solubilizing groups in anhy Related U.S. Application Data drous dipolar aprotic water-miscible solvents with the 63 Continuation-in-part of Ser. No. 619,460, Oct. 3, 1975, stoichiometric amount or a small excess of nitrosylsulfu abandoned, which is a continuation of Ser. No. ric acid or nitrosyl chloride, coupling the diazonium 325,549, Jan. 22, 1973, abandoned.
    [Show full text]
  • Deepak Nitrite Limitd
    Deepak Nitrite Ltd Technical Data Sheet Nitrosylsulphuric acid (NSA) ( Domestic ) 1. Introduction Nitrosylsulfuric acid is the chemical compound with the formula NOHSO4. It is a colourless solid that is used industrially in the production of caprolactam. 1. Product: Nitrosylsulphuric acid (NSA) 2. CAS No: 7782-78-7 3. Molecular Formula: HNO5S 4. Molecular Weight: 127.08 2. Physical Properties: Physical state: viscous liquid Appearance: Clear yellow to green viscous liquid Melting Point : -10 °C Stability: Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Handle and store under inert gas. Density 1.890 – 1.895 g/cm3 ( at 20 °C ) Boiling point :- Decomposes Solubility in water :- Decomposes Solubility :- Soluble in H2SO4 Effective Date : 21.11.2012 Page 1 of 4 Deepak Nitrite Ltd 3. Product Quality Specification: Sr Parameter Standard Grade Un coated Number 01 Physical Clear yellow to greenish viscous liquid Appearance 02 Nitrosylsulphuric 35.0 to 40.0 %w/w acid (NSA) 03 Acidity as H2SO4 54.0 %w/w Min. Our products are not meant for use as food or drug additives. 4. Packing Information: Sr. Grade Packing Secondary Packing Number 01 Liquor In Tanker DNL Can customize packing for different quantities. 5.PRODUCT USES Chemical Properties Yellowish viscous liquid Usage Nitrosylsulfuric acid is used for diazotisation, nitrosation, oxidation and oximation reactions. Product Data Sheet General Description Shipped in solution with sulfuric acid (solutions are usually 40% Nitrosylsulfuric acid and 54% sulfuric acid (Hawley)). Solution is a straw-colored oily liquid with a sharp odor.
    [Show full text]
  • Thin Films for Smart Windows: Synthesis of Temperature-Responsive Vanadium Oxide for Energy-Efficient Glazing Applications
    Thin films for Smart Windows: Synthesis of Temperature-Responsive Vanadium Oxide for Energy-Efficient Glazing Applications Delphine Malardé A thesis submitted to University College London in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry University College London 2019 Declaration ‘I, Delphine Malardé, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' Delphine Malardé 2 Abstract The material presented in this thesis highlights different ways of producing temperature-responsive monoclinic VO2 [VO2(M)] for energy-efficient glazing applications, and the improvement of their thermochromic properties. VO2(M) has been widely studied due to its specific thermochromic properties, which make it a promising material to use in home and commercial façade glazing for reducing energy consumptions. VO2(M) thin films were deposited on glass substrate using atmospheric chemical vapour deposition (APCVD) - a well-known deposition process commonly used in industry. The thermochromic properties of the films were optimised, which resulted in a doubling of the visible light transmittance (TLUM) and a fivefold increase in the solar modulation efficiency (ΔTSOL). Further improvements of the thermochromic properties were carried out by the synthesis of VO2-based multilayers. Aerosol-assisted chemical vapour deposition (AACVD) was also used to produce VO2(M) thin films from a newly produced vanadium alkoxide precursor. Furthermore, this precursor showed to be ideal for the formation of V2O3 films with bixbyite structure, which had interesting gas sensing properties. This is the first time that bixbyite-type V2O3 has been synthesised as thin films using AACVD.
    [Show full text]
  • United States Patent Office Patented Sept
    3,467,637 United States Patent Office Patented Sept. 16, 1969 1. 2 diene (hereinafter called “bicycloheptadiene'). The reac 3,467,637 tion is carried out using a transition metal catalyst of the LOW MOLECULAR WEIGHT OLEFIN INTER Ziegler type. POLYMERS PREPARED IN THE PRESENCE OF The process described and the copolymers produced in BICYCLO2.2.1]HEPTA-2,5-DIENE Paul J. Prucna, Cheswick, Pa., assignor to PPG Indus the above manner have several distinguishing and ad tries, Inc., a corporation of Pennsylvania Vantageous characteristics. These include: No Drawing. Filled June 1, 1965, Ser. No. 460,551 (a) The process produces low molecular weight co int. C. C08f 15/40, 1/42 s polymer in good yields using easily practised reaction U.S. C. 260-80,78 8 Claims conditions; (b) Varying ratios of ethylene to the other monoolefin O can be employed, permitting variation in product struc ture and properties; ABSTRACT OF THE DISCLOSURE (c) The products are essentially linear and homogene This invention relates to low molecular weight poly ous in structure; mers of ethylene and other alpha monoolefins produced 5 (d) The copolymers are readily dissolved in common by reacting said monomers in the presence of a Ziegler organic Solvents, this being true even with copolymers catalyst and small amounts of bicyclo[2.2.1]hepta-2,5- containing low proportions (e.g., below 20 percent) of diene. The copolymers are useful inter alia in coatings, propylene or other comonomer, whereas ordinarily such adhesives and as tackifying resins. copolymers are quite crystalline and insoluble; and 20 (e) The copolymers are stable and have good aging Stacteristics, attributable to their saturated linear back Oe, This invention relates to low molecular weight co The preferred comonomer with ethylene is propylene, polymers of ethylene and other monoolefins, and, more but other terminal monoolefins such as butylene or iso particularly, to such copolymers produced in the presence 25 butylene can also be utilized.
    [Show full text]
  • Toxicological Review of Vanadium Pentoxide (V2o5)
    DRAFT – DO NOT CITE OR QUOTE EPA/635/R-11/004A www.epa.gov/iris TOXICOLOGICAL REVIEW OF VANADIUM PENTOXIDE (V2O5) (CAS No. 1314-62-1) In Support of Summary Information on the Integrated Risk Information System (IRIS) September 2011 NOTICE This document is an External Review draft. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications. U.S. Environmental Protection Agency Washington, DC. DISCLAIMER This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is a draft for review purposes only and does not constitute Agency policy. ii DRAFT – DO NOT CITE OR QUOTE CONTENTS – TOXICOLOGICAL REVIEW OF VANADIUM PENTOXIDE (CAS No. 1314-62-1) LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ....................................................................................................................
    [Show full text]
  • Fedex Ground Hazardous Materials Shipping Guide Is Intended to Simplify Title 49 CFR
    FedEx Ground Package Systems Inc. is committed to the safe transportation of hazardous materials. It is very important that each person engaged in the transportation of hazardous materials has the proper training and is thoroughly familiar with the Title 49CFR (Code of Federal Regulations) and/or USPS Publication 52. This guide is intended only to assist you in your preparation of hazardous materials shipped via FedEx Ground Package Systems Inc. It is the shipper’s responsibility to ensure each hazardous material package is in compliance with applicable Department of Transportation (D.O.T.) regulations and FedEx Ground Package Systems Inc. requirements. Failure to comply with these regulations and requirements may subject the shipper and carrier to fines and penalties. Improperly prepared hazmat packages or documentation may be subject to an additional charge(s) due to the unexpected hanlding associated with these shipments. Due to the changing nature of D.O.T. regulations and other information, it is impossible to guarantee absolute accuracy of the material contained in this guide. FedEx Ground Package Systems Inc., therefore, cannot assume any responsibility for omissions, errors, misprinting, or ambiguity contained within this guide and shall not be held liable in any degree for any loss or injury caused by such omission or error presented in this publication. Shippers should consult the most current version of the hazardous material regulations. Training is mandatory for those shipping hazardous materials, including limited quantity and other exceptions. The www.shipsafeshipsmart.com battery and hazmat training programs offer shippers an economical source of basic ground battery and/or hazardous materials shipping as well as addressing FedEx Ground specific issues.
    [Show full text]