Sulfuric Acid

Total Page:16

File Type:pdf, Size:1020Kb

Sulfuric Acid Mineral Acids Course : ACCE-2221 2nd Year : Even Semester Group-A : Chapter-1 7 December 2015 Course Outline 1. Sources of sulphur 2. Mining of sulphur- Sicilian and Frasch processes 3. Manufacture of sulphuric acid- chamber and contact process 4. Oleum and uses 5. Production of hydrochloric acid and nitric acid- Properties & uses 7 December 2015 Mineral Acid A Mineral Acid is an acid derived from one or more inorganic compounds. One part of these acid comes from inorganic minerals, that is why these acids are known as mineral acid. Some mineral acids are- • HCl • HNO3 • H2SO4 • H3PO4 • H3BO3 • HClO4 • H4TiO4 7 December 2015 Sources of Sulfur • Volcanic deposits in Sicily (Italy) • Iron pyrite • Ammonium sulfate • Calcium sulfate • Fossil fuel • Zinc blend • Gypsum • Epsom salt 7 December 2015 Sources of Sulfur Sulfur Mining of Sulfur Mining of Sulfur 7 December 2015 Sources of Sulfur Sulfur can be collected by two major process: 1. Sicilian Process 2. Frasch Process 7 December 2015 Frasch process In the Frasch process, three concentric tubes are introduced into the sulfur deposit. Superheated water (165 °C, 2.5-3 MPa) is injected into the deposit via the outermost tube. Sulfur (m.p. 115 °C) melts and flows into the middle tube. Water pressure alone is unable to force the sulfur into the surface due to the molten sulfur's greater density, so hot air is introduced via the innermost tube to froth the sulfur, making it less dense, and pushing it to the surface. The sulfur obtained can be very pure (99.7 - 99.8%). In this form, it is light yellow in color. If contaminated by organic compounds, it can be dark-colored; further purification is not economic, and usually unnecessary. Using this method, the United States produced 3.89 million tons of sulfur in 1989, and Mexico produced 1.02 million tons of sulfur in 1991. 7 December 2015 Frasch process 7 December 2015 Frasch process 7 December 2015 Sulfuric Acid History Islamic alchemists Jābir ibn Hayyān and Jamal Din al-Watwat included vitriol in their mineral classification lists. Ibn Sina focused on its medical uses and different varieties of vitriol. Sulfuric acid was called "oil of vitriol" by medieval European alchemists because it was prepared by roasting "green vitriol" (iron (II) sulfate) in an iron retort. Sulfuric acid (alternative spelling sulphuric acid) is a highly corrosive strong mineral acid with the molecular formula H2SO4. It is a pungent-ethereal, colorless to slightly yellow viscous liquid which is soluble in water at all concentrations. Sometimes, it is dyed dark brown during production to alert people to its hazards.The historical name of this acid is oil of vitriol. 7 December 2015 Sulfuric Acid Production Process 1. Contact Process 2. Chamber Process 7 December 2015 Sulfuric Acid 1. Contact Process The contact process is the current method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was formerly employed as a catalyst for the reaction, but as it is susceptible to poisoning by arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V2O5) is now preferred. This process was patented in 1831 by British vinegar merchant Peregrine Phillips.In addition to being a far more economical process for producing concentrated sulfuric acid than the previous lead chamber process, the contact process also produces sulfur trioxide and oleum. 7 December 2015 Sulfuric Acid 1. Contact Process The process can be divided into five stages: 1. combining of sulfur and oxygen 2. purifying sulfur dioxide in the purification unit; 3. adding excess of oxygen to sulfur dioxide in presence of catalyst vanadium pentoxide, with temperatures of 450 degrees Celsius and pressure of 1-2 atm.; 4. sulfur trioxide formed is added to sulfuric acid which gives rise to oleum (disulfuric acid); 5. the oleum then is added to water to form sulfuric acid which is very concentrated. 7 December 2015 Sulfuric Acid 1. Contact Process H2S407 7 December 2015 Sulfuric Acid-Reaction -1 Sulfur dioxide and oxygen then react as follows: 2 SO2(g) + O2(g) ⇌ 2 SO3(g) : ΔH = -197 kJ mol According to the Le Chatelier's principle, a lower temperature should be used to shift the chemical equilibrium towards the right, hence increasing the percentage yield. However too low of a temperature will lower the formation rate to an uneconomical level. Hence to increase the reaction rate, high temperatures (450 °C), medium pressures (1-2 atm), and vanadium(V) oxide (V2O5) are used to ensure a 96% conversion. Platinum would be a more effective catalyst, but it is very costly and easily poisoned.The catalyst only serves to increase the rate of reaction as it does not change the position of the thermodynamic equilibrium. The mechanism for the action of the catalyst comprises two steps: 5+ 5+ 2- 4+ 1. Oxidation of SO2 into SO3 by V : 2 SO2 + 4V + 2 O → 2 SO3 + 4V 4+ 5+ 4+ 5+ 2- 2. Oxidation of V back into V by oxygen (catalyst regeneration): 4 V + O2 → 4 V + 2 O 7 December 2015 Sulfuric Acid Condition for maximum yield of SO3 1. Purification of gas 2. Oxygen supply 3. Temperature (450˚C) 4. Condition of catalyst 5. Pressure (1.5-1.7 atm.) 7 December 2015 Sulfuric Acid 2. Chamber Process Sulfur dioxide is introduced with steam and oxides of nitrogen into large chambers lined with sheet lead where the gases are sprayed down with water and chamber acid. The sulfur dioxide and nitrogen dioxide dissolve and over a period of approximately 30 minutes the sulfur dioxide is oxidized to sulfuric acid. The presence of nitrogen dioxide is necessary for the reaction to proceed. The process is highly exothermic, and a major consideration of the design of the chambers was to provide a way to dissipate the heat formed in the reactions. 7 December 2015 Sulfuric Acid 2. Chamber Process 7 December 2015 Sulfuric Acid 2. Chamber Process 7 December 2015 Sulfuric Acid 2. Chamber Process (Chemistry) Sulfur dioxide is generated by burning elemental sulfur or by roasting pyritic ore in a current of air: S8 + 8 O2 → 8 SO2 4 FeS2 + 11 O2 → 2 Fe2O3 + 8 SO2 Nitrogen oxides are produced by decomposition of niter in the presence of sulfuric acid or hydrolysis of nitrosylsulfuric acid: 2 NaNO3 + H2SO4 → Na2SO4 + H2O + NO + NO2 + O2 2 NOHSO4 + H2O → 2 H2SO4 + NO + NO2 7 December 2015 Sulfuric Acid 2. Chamber Process In the reaction chambers, sulfur dioxide and nitrogen dioxide dissolve in the reaction liquor. Nitrogen dioxide is hydrated to produce nitrous acid which then oxidizes the sulfur dioxide to sulfuric acid and nitric oxide. The reactions are not well characterized but it is known that nitrosylsulfuric acid is an intermediate in at least one pathway. The major overall reactions are: 2 NO2 + H2O → HNO2 + HNO3 SO2 (aq) + HNO3 → NOHSO4 NOHSO4 + HNO2 → H2SO4 + NO2 + NO SO2 (aq) + 2 HNO2 → H2SO4 + 2 NO 7 December 2015 Sulfuric Acid 2. Chamber Process Nitric oxide escapes from the reaction liquor and is subsequently reoxidized by molecular oxygen to nitrogen dioxide. This is the overall rate determining step in the process: 2 NO + O2 → 2 NO2 Nitrogen oxides are absorbed and regenerated in the process, and thus serve as a catalyst for the overall reaction: 2 SO2 + 2 H2O + O2 → 2 H2SO4 7 December 2015 Sulfuric Acid Comparison between Chamber process & Contact process Chamber Process Contact Process Dilute acid is produced (65-70%) Conc. Acid is produced Impure acid is produced Pure acid is produced SO2 is not use fully SO2 is used fully Purification of SO2 is not so necessary Purification of SO2 is necessary Purification of acid is costly No need purification process Production process less costly Costly It is very critical to make conc. acid Conc. Acid is produced 7 December 2015 Sulfuric Acid Physical Properties : MP : 10°C BP : ~338 °C Density : 1.840 g/mL at 25 °C(lit.) Vapor density : <0.3 (25 °C, vs air) Vapor pressure : 1 mm Hg ( 146 °C) Storage temp. : Store at RT. Solubility : H2O: soluble Water Solubility : miscible Sensitive : Hygroscopic 7 December 2015 Sulfuric Acid Chemical Properties : 1. Reaction With Water 2. Reaction With Metals 3. Reaction With Salt 4. Reaction With Alkali 5. As oxidizing agent 6. Action of Heat 7 December 2015 Uses - Sulfuric Acid 1. Production of acid (HCl, HNO3, HF), Washing soda, salt, explosive, dying industry, petroleum purification industry etc. 2. Drying of wet gas 3. Medicine industry 4. Storage cells, plastic industry 5. As a reagent in laboratory. 7 December 2015 Uses - Sulfuric Acid 7 December 2015 Sulfuric Acid 7 December 2015 Oleum Oleum or fuming sulfuric acid, is a solution of various compositions of sulfur trioxide in sulfuric acid, or sometimes more specifically to disulfuric acid (also known as pyrosulfuric acid). Oleums can be described by the formula ySO3.H2O where y is the total molar sulfur trioxide content. The value of y can be varied, to include different oleums. They can also be described by the formula H2SO4.xSO3 where x is now defined as the molar free sulfur trioxide content. Oleum is generally assayed according to the free SO3 content by weight. It can also be expressed as a percentage of sulfuric acid strength Oleum is produced in the contact process, where sulfur is oxidized to sulfur trioxide which is subsequently dissolved in concentrated sulfuric acid. Sulfuric acid itself is regenerated by dilution of part of the oleum. Oleum is the term used to describe fuming sulfuric acids. Oleum is made in various strengths and consists of SO3 dissolved in 100% H2SO4. Thus, for example, 20% oleum contains 20% SO3 and 80% H2SO4 by weight.
Recommended publications
  • SULFUR TRIOXIDE -- Chemical Fact Sheet
    OLEUM/SULFUR TRIOXIDE -- Chemical Fact Sheet 1 What is it? Oleum is a cloudy, gray, fuming, oily, corrosive liquid with a sharp, penetrating odor. When Oleum comes into contact with air following a spill, it releases Sulfur Trioxide. Sulfur Trioxide is a white gas having the appearance of fog. It also has a sharp, penetrating odor that is detectable at low concentrations. Because of the tendency to liberate Sulfur Trioxide on contact with air, Oleum is also known as “fuming Sulfuric Acid”. Where does it Oleum is made by dissolving Sulfur Trioxide into Sulfuric Acid. Sulfur come from? Trioxide is made from Sulfur Dioxide in the presence of a catalyst. What are the It is used in the oil refining process to make crude oil distillates into higher quality materials. common uses for it? Manufacture of soap Manufacture of high purity Sulfuric Acid for the electronic industry Manufacture of catalyst used in production of Sulfuric Acid. How is it Oleum is shipped by truck and pipeline. transported in CCC? How is it stored Oleum is stored in covered tanks. in CCC? Health Hazards from Exposure Exposure Route Symptoms First Aid Inhalation Irritates nose, throat and Remove to fresh air. Seek (low concentrations) lungs medical attention if Burning Sensation symptoms persist. Sneezing, coughing Inhalation Burning sensation Remove to fresh air, get (high concentrations & prolonged exposure) Coughing, gagging medical attention including Chest tightness and pain, oxygen administration. Fluid in lungs Initiate CPR if breathing has Suffocation, death stopped. Eyes Severely irritates eyes Rinse eyes with water for at Burning/discomfort least 5 minutes.
    [Show full text]
  • United States Patent Office Patented Sept
    3,149,913 United States Patent Office Patented Sept. 22, 1964 2 may vary over a wide range and may be as little as 1% 3,49,913 and as much as 50% and even higher. Particularly ad PROCESS FOR PRODUCING NETROSYL vantageous is the use of nitric acid in amounts such that SULFURECACE) d the resulting nitrosylsulfuric acid concentration approxi ALouis L. Ferstandig, El Cerrito, and Paul C. Condit, San 5 mates saturation values in order to afford maximum pro Asseino,poration, Calif.,San Francisco,assignors toCalif., California a corporation Research Cor of duction per unit reactor volume and yet avoid deposition Beavy are of solids. The solubility of nitrosylsulfuric acid in ap No Drawing. Fied June 14, 1961, Ser. No. 116,957 proximately 100% sulfuric acid ranges from about 48 3 (Caims. (CE. 23-39) grams per 100 grams of solution at 0° C. up to about 68 grams at 50 C. with, of course, a lesser solubility below This invention relates to a proces for the production of O 0 C. and a greater above 50° C. Although the presence nitrosylsulfuric acid. of the precipitated nitrosylsulfuric acid is usually a source Nitrosyisulfuric acid is particularly desirable for use of mechanical inconvenience, advantage may be taken of in the production of caprolactam from hexahydrobenzoic it by removal of the solid nitrosylsulfuric acid by filtra acid. Nitrosylsulfuric acid has long been known as an 5 tion and subsequent recycle of the mother liquor to the intermediate in connection with the lead-chamber sulfuric reaction Zone. acid process in which it is converted to Sulfuric acid with in general, the effective temperature range of the process concurrent liberation of nitric oxide in a reaction with is defined by the requirement that the reaction medium be sulfur dioxide.
    [Show full text]
  • New Synthesis Routes for Production of Ε-Caprolactam by Beckmann
    New synthesis routes for production of ε-caprolactam by Beckmann rearrangement of cyclohexanone oxime and ammoximation of cyclohexanone over different metal incorporated molecular sieves and oxide catalysts Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Anilkumar Mettu aus Guntur/Indien Berichter: Universitätprofessor Dr. Wolfgang F. Hölderich Universitätprofessor Dr. Carsten Bolm Tag der mündlichen Prüfung: 29.01.2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Dedicated to my Parents This work reported here has been carried out at the Institute for Chemical Technolgy and Heterogeneous Catalysis der Fakultät für Mathematik, Informatik und Naturwissenschaften in the University of Technology, RWTH Aachen under supervision of Prof. Dr. Wolfgang F. Hölderich between June 2005 and August 2008. ACKNOWLEDGEMENTS I would like to express my deepest sence of gratitude to my supervisor Prof. Dr. rer. nat. W. F. Hölderich for giving me the opportunity to do my doctoral study in his group. His guidance and teaching classes have allowed me to grow and learn my subject during my Ph.d. He has provided many opportunities for me to increase my abilities as a researcher and responsibilities as a team member. I am grateful for the financial support of this work from Sumitomo Chemicals Co., Ltd, Niihama, Japan (Part One) and Uhde Inventa-Fischer GmBH, Berlin (Part Two). Our collaborators at Sumitomo Chemicals Co., Ltd (Dr. C. Stoecker) and Uhde Inventa- Fischer GmBH (Dr. R. Schaller and Dr. A. Pawelski) provided thoughtful guidance and suggestions for each project.
    [Show full text]
  • Sulfur (IV) Isotopic Exchange Reaction in Aqueous and Concentrated Acid
    THE KINETICS OF THE SULFtJR(IV) - suLFuR(vI) ISOTOPIC EXCHANGE REACTION IN AQUEOUS AND CONCTRATED ACID )LUTIONS by RAY LOCKE McDONALD A THESIS submitted to OHEGON STATE COLLEGE In parti1 fulfillment of the requirements for the degree of DOCTOR 0F PHW)SOPHY June 196]. flIiY1i$IT Redacted for Privacy Professor of Chemistry In Charge of Major Red acted f or P rivacy Chairman of Department of Cnemistry Redacted for Privacy Chairman of School Graduate Committee Redacted for Privacy Dean of Graduate School nate thesis is presented Typed by LeAnna kiarris tffi*ffimffi Fcar rdsrmo ad mflss. dte rU egestr d lilt rretc Mlr1 tb lutEm'rprm [ilr;r* dffi tldr te EufUe ?. E. I*1ill. TABLE OF CONTENTS Page I. INTRODUCTION ...................... i II. E(PERIMENTAL ...................... 7 A. General Procedure ................. 7 B. Radioactivity Analysis ............... 9 C. Chemical Analysis ................ il D, Preparation of Materials and Reactant Solutions 13 1. General ................. 13 2. Sulfur Dioxide ................ 1.3 3. Labeled Aqueous Sulfuric Acid ......... i1 )4. Labeled Concentrated Sulfuric cid ....... 15 ;. Labeled 100% Sulfuric Acid ........... 16 6. Labeled Fuming Sulfuric Acid .......... 16 7. Labeled Aqueous Sodium Bisulfate ........ 16 8. Lat.ed Sodium Bisulfate in Aqueous Sulfuric Acid .................. 17 9. Labeled Sodium Bisulfate in Concentrated . Sulfuric Acid .................. 17 10. Labeled Sodium Sulfate ............. 17 li. Labeled Sodium Sulfate in Aqueous Sodium Bisulfate ................ 18 12. Labeled Elemental Sulfur ............ 18 III. RUN PROCEDURE AND DATA ................ 19 A. Sulfur(IV) - Sulfur(VI) Exchange in Basic Media . 19 B, - Sulfur(IV) Sulfur(VI) Exchange in Acidic Media . .23 1. Radiosulfur Ecchsuge Experiments Between Sulfur Dioxìe and Aqueous Sulfuric Acid of High Specific Activity ...........
    [Show full text]
  • Aug. 29, 1967 Yoshi KAZU ITO ETAL 3,338,887 PREPARATION of NITROSYL CHLORIDE Filed Dec
    Aug. 29, 1967 Yoshi KAZU ITO ETAL 3,338,887 PREPARATION OF NITROSYL CHLORIDE Filed Dec. 26, 1962 INVENTORS YOSHIKAZU ITO FUMO NS-KAWA 2%-42.TAKAO WAMURA ATTORNEY 3,338,887 United States Patent Office Patented Aug. 29, 1967 1. 2 3,338,887 be taken out of the cyclic system in order to maintain PREPARATION OF NITROSYL CHLORIDE its material balance, or, alternatively, the water has to Yoshikazu to, Mizuho-ku, Nagoya, and Fumio Nishi be taken out of the cyclic system by distillation of the kawa and Takao Iwamura, Minami-ku, Nagoya, Japan, spent liquor under reduced pressure. assignors to Toyo Rayon Kabushiki Kaisha, Tokyo, Japan, a corporation of Japan While the spent liquor which has been taken out to Filed Dec. 26, 1962, Ser. No. 246,914 the outside of the system by the above method can be Claims priority, application Japan, Dec. 26, 1961, used for other purposes as sulfuric acid by being con 36/46,743 verted thereto by the conventional nitric oxide process 1 Claim. (Cl. 260-239.3) for sulfuric acid manufacture, the recovery of the oxides 10 of nitrogen which are formed in this instance is a dis This invention relates to a method of preparing nitro advantage from the commercial standpoint. Furthermore, syl chloride which makes it possible to prepare nitrosyl since a small amount of hydrochloric acid is contained chloride cyclically with advantage and effectiveness on in the cycling spent liquor, hydrochloric acid is also a commercial scale, and in which the liquid portion which contained in the sulfuric acid formed.
    [Show full text]
  • United States Patent Office Patented Jan
    3,297,748 United States Patent Office Patented Jan. 10, 1967 1. 2 was found to have superior odor qualities, based upon 3,297,748 ALKYLBENZENE SULFONATE COLOR AND odor ratings made by subjective panel testing. ODOR INHIBITION By sulfonation is meant the treatment of alkylbenzenes John B. Wilkes, Albany, Calif., assignor to Chevron Re with concentrated sulfuric acid, and particularly with search Company, a corporation of Delaware concentrated sulfuric acid-sulfur trioxide mixtures, there No Drawing. Filed June 13, 1963, Ser. No. 287,489 by to produce the corresponding alkylbenzene sulfonic 2 Claims. (CI. 260-505) acids. Preferably, the present process contemplates the use of oleum having from about 5 to 28 percent sulfur This invention relates to an improved method for the trioxide content, by weight. In general, sulfonation reac preparation of branched-chain alkylbenzene sulfonate de 0 tion temperatures useful in the process range from about tergents. More specifically, this invention relates to the 50 to 150 F.; and, as is known in the art, from about a preparation of branched side-chain alkylbenzene sulfo stoichiometric amount to about a 20 percent excess of nate detergent by the sulfonation of branched-chain alkyl the sulfonating agent, based upon the alkylbenzene, is benzenes with oleum in the presence of color and odor preferably used. Usually, the sulfur trioxide in the oleum inhibiting amounts of acetic acid and a lower alkylben mixture is the sulfonation agent consumed, although the ZCle. sulfuric acid may also be consumed to the point where The active ingredient in most detergents in household the residual sulfuric acid medium has been reduced use are alkylated aryl sulfonates.
    [Show full text]
  • Determination of Sulfuric Acid and Oleum Concentration Relevant For: Chemical Industry / Sulfuric Acid Production
    Determination of Sulfuric Acid and Oleum Concentration Relevant for: Chemical industry / Sulfuric acid production Sulfuric acid is widely used in the chemical industry, plastics industry and petrochemistry, for the production of phosphoric acid as a starting material for fertilizers, in the metal industry (e.g. in etching baths), and in accumulators. Dissolving sulfur trioxide, SO3, in concentrated sulfuric acid results in a fuming solution called oleum (or "fuming sulfuric acid"). Oleum is used in the chemical industry, for example for the production of intermediate materials or chemical fibers. 2.2. Conventional: Titration - a tedious method The conventional method for determination of sulfuric acid concentration is titration. However, titration is not only time-consuming and hazardous, but also includes a range of error prone operation steps even for skilled 1. Quality control in sulfuric acid production laboratory staff. The titration of sulfuric acid or oleum is carried out Sulfuric acid (H2SO4) is a high production volume with a base, commonly sodium hydroxide, NaOH. The chemical and plays an important role in various acid sample has to be diluted prior to titration - a time- industries. Sulfuric acid is a colorless and odorless consuming and hazardous operation. The accuracy of oily liquid which is highly hygroscopic. Depending on the results is influenced by several factors such as the its concentration the acid is used for different skill of the operator, the quality of the standard base purposes. solution, the precision of the burettes, the quality of The production of sulfuric acid proceeds in several the indicator used, etc. In routine analysis accuracies of 0.1 % w/w to 0.5 % w/w H SO can be attained.
    [Show full text]
  • NIOSH Method 7903: Acids, Inorganic
    ACIDS, INORGANIC 7903 (1) HF; (2) HCl; (3) H3PO4; MW: Table 1 CAS: Table 1 RTECS: Table 1 (4) HBr; (5) HNO3; (6) H2SO4 METHOD: 7903, Issue 2 EVALUATION: FULL Issue 1: 15 February 1984 Issue 2: 15 August 1994 OSHA : Table 1 PROPERTIES: Table 1 NIOSH: Table 1 ACGIH: Table 1 SYNONYMS: (1) hydrofluoric acid; hydrogen fluoride (5) nitric acid; aqua fortis (2) hydrochloric acid; hydrogen chloride (6) sulfuric acid; oil of vitriol (3) phosphoric acid; ortho-phosphoric acid; meta-phosphoric acid (4) hydrobromic acid; hydrogen bromide SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: ION CHROMATOGRAPHY (washed silica gel, 400 mg/200 mg with ­ ­ 3­ ­ ­ 2­ glass fiber filter plug) ANALYTE: F , Cl , PO4 , Br , NO3 , SO4 FLOW RATE: 0.2 to 0.5 L/min DESORPTION: 10 mL 1.7 mM NaHCO3/1.8 mM Na2CO3 VOL-MIN: 3 L -MAX: 100 L INJECTION LOOP VOLUME: 50 µL SHIPMENT: routine ELUENT: 1.7 mM NaHCO3/1.8 mM Na2CO3; SAMPLE 3 mL/min STABILITY: stable at least 21 days @ 25 °C [1] COLUMNS: HPIC-AS4A anion separator, BLANKS: 2 to 10 field blanks per set HPIC-AG4A guard, anion micro membrane suppressor [2] CONDUCTIVITY ACCURACY SETTING: 10 µS full scale RANGE STUDIED: see EVALUATION OF METHOD RANGE: see EVALUATION OF METHOD BIAS: see EVALUATION OF METHOD ESTIMATED LOD: see EVALUATION OF METHOD OVERALL PRECISION (S ˆ ): see EVALUATION OF PRECISION (S ): see EVALUATION OF METHOD METHOD rT r ACCURACY: ± 12 to ± 23% APPLICABILITY: The working range is ca. 0.01 to 5 mg/m 3 for a 50-L air sample (see EVALUATION OF METHOD).
    [Show full text]
  • TNT Rri Rrrniteotoluenes AND
    TNT rri rRrNITEOTOLUENES AND MONO- AND DINITBOTOLUENES THEIR MANUFACTURE AND PROPERTIES BY G. CARLTON SMITH, B.S. Instructor in General Chemistry, School of Applied Science, Carnegie Institute of Technology, Pittsburgh, Pa, LONDON CONSTABLE AND COMPANY, LIMITED 10 ORANGE ST., LEICESTER SQ., W. C. 1918 Copyright, 1918, by VAN NOSTRAND COMPANY WHOSE SACRIFICES AND LOVE HAVE MADE POSSIBLE MY EDUCATION THIS BOOK IS AFFECTIONATELY DEDICATED ACKNOWLEDGMENT THE writer wishes to thank all those who have so kindly aided him in the preparation of this book. He is especially grateful for the valued comments and criticisms offered by the members of the Staff of the Department of Chemical Engineering, Carnegie Institute of Technology; for the facts which form the basis of Chapter X, by Dr. Samuel Haythorn of the Singer Memorial Laboratory, Allegheny General Hos- pital; and for data on TNT manufacture by Mr. Robert M. Crawford of the Grasselli Powder Co. The Chemical and Industrial Journals have been consulted freely, and much valuable material has been extracted therefrom. Department of Chemical Engineering, Carnegie Institute of Technology, PITTSBURGH, PA., May, 1918. TABLE OF CONTENTS CHAPTER I PAGE INTKODUCTION 1 CHAPTER II HISTORICAL 6 CHAPTER III THE THEORY OF THE NITRATION OF TOLUENE 20 CHAPTER IV THE MANUFACTURE OF TNT 29 CHAPTER V THE PURIFICATION OF TNT 52 CHAPTER VI INSPECTION AND TESTING OF TNT 61 CHAPTER VII PROPERTIES OF THE TRINITROTOLUENES 77 CHAPTER VIII PROPERTIES OF THE MONO- AND DINITROTOLUENES 95 CHAPTER IX ACCIDENTS IN TNT PLANTS 106 CHAPTER X TNT DISEASES 112 TRINITROTOLUENE CHAPTER I INTRODUCTION THE almost universal adoption of trinitrotoluene as the most efficient explosive in modern warfare; the development and refinement of its manufacture, and the interesting chemistry of its compounds, as well as those of the lower nitro-derivatives of toluene has prompted quite extensive research as to their composition, structure, manufacture, properties and uses.
    [Show full text]
  • Safety in University Chemistry Courses; an Introduction for Students
    Information Safety in University Chemistry Courses An Introduction for Students BGI/GUV-I 8553 E October 2009 Published by: Deutsche Gesetzliche Unfallversicherung (DGUV) Mittelstraße 51, 10117 Berlin Tel.: +49 30 288763800 Fax: +49 30 288763808 E-Mail: [email protected] Internet: www.dguv.de In cooperation with the Gesellschaft Deutscher Chemiker (GDCh) and the Berufsgenossenschaft Rohstoffe und chemische Industrie (BG RCI), formerly BG Chemie. This brochure is permanently being updated by the DGUV working team “Gefahrstoffe”. Translated by the Chevalier Dr. Dr. Rüdiger Marcus Flaig © October 2009 The October 2009 edition corresponds to the German version of the brochure “Sicheres Arbeiten in chemischen Laboratorien” (BGI/GUV-I 8553), October 2009. All rights reserved. No part may be reprinted or copied without the publisher’s prior consent. BGI/GUV-I 8553 E can be obtained from your competent accident insurance provider. The addresses are to be found at www.dguv.de Information Safety in University Chemistry Courses An Introduction for Students BGI/GUV-I 8553 E October 2009 Table of Contents 1 Introduction to lab safety 64 Chemical equipment 26 4.1 Handling laboratory glassware 26 2 Before beginning 4.2 Setting up chemical equipment 27 the practical course 94.3 Heating of equipment 28 2.1 Where are important 4.4 Cooling 30 installations and accessories? 9 4.5 Special information 31 2.2 How to learn about dangerous 4.6. Special methods 31 properties of substances and 4.6.1 Work under reduced pressure 31 safety-relevant parameters 10 4.6.2 Working
    [Show full text]
  • United States Patent (19) 11) 4,182,708 Landler Et Al
    United States Patent (19) 11) 4,182,708 Landler et al. 45 Jan. 8, 1980 54 PROCESS FOR THE PREPARATION OF 58) Field of Search ............ 260/144 P, 208, 174-193, AZO PIGMENTS BY DAZOTIZING INA 260/157, 162, 163, 155, 203, 204; 106/308, 288 DIPOLARAPROTC ORGANIC SOLVENT AND AZO PIGMENTS OBTANED Q THEREFROM (56) References Cited U.S. PATENT DOCUMENTS 75 Inventors: Josef Landler, Hofheim; Klatis 2,683,708 2/1954 Dickey et al. ....................... 260/158 Htinger, Kelkheim; Erhard Wörfel, 2,790,791 4/1957 Towne et al......................... 260/158 Hattersheim, all of Fed. Rep. of 3,213,080 10/1965 Bloom et al. .... ... 260/155 Germany 3,382,228 5/1968 Ferrari et al. ........................ 260/158 3,642,769 2/1972 Moritz et al. ... 260/207 73) Assignee: Hoechst Aktiengesellschaft, 3,711,461 1/1973 Pretzer et al. ... 260/154 Frankfurt am Main, Fed. Rep. of 3,781,266 12/1973 Dietz et al. .. ... 260/157 Germany 3,793,305 2/1974 Balon ................................... 260/154 Primary Examiner-Floyd D. Higel (21) Appl. No.: 761,071 Attorney, Agent, or Firm-Curtis, Morris & Safford 57 ABSTRACT 22 Filed: Jan. 21, 1977 Azo pigments are obtained by diazotizing a diazotizable aromatic amine without solubilizing groups in anhy Related U.S. Application Data drous dipolar aprotic water-miscible solvents with the 63 Continuation-in-part of Ser. No. 619,460, Oct. 3, 1975, stoichiometric amount or a small excess of nitrosylsulfu abandoned, which is a continuation of Ser. No. ric acid or nitrosyl chloride, coupling the diazonium 325,549, Jan. 22, 1973, abandoned.
    [Show full text]
  • Deepak Nitrite Limitd
    Deepak Nitrite Ltd Technical Data Sheet Nitrosylsulphuric acid (NSA) ( Domestic ) 1. Introduction Nitrosylsulfuric acid is the chemical compound with the formula NOHSO4. It is a colourless solid that is used industrially in the production of caprolactam. 1. Product: Nitrosylsulphuric acid (NSA) 2. CAS No: 7782-78-7 3. Molecular Formula: HNO5S 4. Molecular Weight: 127.08 2. Physical Properties: Physical state: viscous liquid Appearance: Clear yellow to green viscous liquid Melting Point : -10 °C Stability: Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Handle and store under inert gas. Density 1.890 – 1.895 g/cm3 ( at 20 °C ) Boiling point :- Decomposes Solubility in water :- Decomposes Solubility :- Soluble in H2SO4 Effective Date : 21.11.2012 Page 1 of 4 Deepak Nitrite Ltd 3. Product Quality Specification: Sr Parameter Standard Grade Un coated Number 01 Physical Clear yellow to greenish viscous liquid Appearance 02 Nitrosylsulphuric 35.0 to 40.0 %w/w acid (NSA) 03 Acidity as H2SO4 54.0 %w/w Min. Our products are not meant for use as food or drug additives. 4. Packing Information: Sr. Grade Packing Secondary Packing Number 01 Liquor In Tanker DNL Can customize packing for different quantities. 5.PRODUCT USES Chemical Properties Yellowish viscous liquid Usage Nitrosylsulfuric acid is used for diazotisation, nitrosation, oxidation and oximation reactions. Product Data Sheet General Description Shipped in solution with sulfuric acid (solutions are usually 40% Nitrosylsulfuric acid and 54% sulfuric acid (Hawley)). Solution is a straw-colored oily liquid with a sharp odor.
    [Show full text]