Josefine BICKEL

Total Page:16

File Type:pdf, Size:1020Kb

Josefine BICKEL Josefine BICKEL Phytochemische Analyse der Alge Dasycladus vermicularis DIPLOMARBEIT eingereicht an der LEOPOLD-FRANZENS-UNIVERSITÄT INNSBRUCK INSTITUT FÜR PHARMAZIE/PHARMAKOGNOSIE Zur Erlangung des akademischen Grades MAGISTRA DER PHARMAZIE Innsbruck, März 2018 Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis ............................................................................................................... 2 2 Einleitung ............................................................................................................................ 5 3 Abstract ............................................................................................................................... 7 4 Zusammenfassung ............................................................................................................... 8 5 Allgemeiner Teil ................................................................................................................. 9 5.1 Dasycladus vermicularis (Scropoli) Krasser .............................................................. 9 5.1.1 Klassifikation ......................................................................................................... 9 5.1.2 Nähere Beschreibung von Dasycladus vermicularis ........................................... 10 5.1.3 Cumarine .............................................................................................................. 11 5.1.4 Einteilung der Cumarine ...................................................................................... 11 5.1.5 Biosynthese der Cumarine ................................................................................... 12 5.1.6 Cumarine in der Alge Dasycladus vermicularis .................................................. 14 5.2 Phenolische Carbonsäuren ....................................................................................... 15 5.2.1 Biosynthese .......................................................................................................... 15 5.2.2 Sulfatierte Phenolcarbonsäuren ............................................................................ 15 5.3 Chromatografie ......................................................................................................... 17 5.3.1 Klassische Säulenchromatografie......................................................................... 18 5.3.2 Gelpermeationschromatografie ............................................................................ 19 5.3.3 HPLC .................................................................................................................... 20 5.3.4 Flash-Chromatografie ........................................................................................... 24 5.3.5 Präparative HPLC ................................................................................................ 25 5.4 NMR Spektroskopie ................................................................................................. 25 6 Spezieller Teil ................................................................................................................... 26 6.1 Herstellung des Wasser-Methanol-Extrakts ............................................................. 26 6.2 Dünnschichtchromatografische Vorversuche .......................................................... 26 6.2.1 Trennung des Wasser-Methanol Rohextraktes mittels Flash-Chromatografie .... 26 2 Inhaltsverzeichnis 6.2.2 HPLC Analysen der Fraktionen ........................................................................... 29 6.2.3 DasyA-W1 ............................................................................................................ 29 6.2.3.1 Fraktionen DasyA-W1-Rev8 und DasyA-W1-Rev9 .................................... 30 6.2.3.2 Fraktionen DasyA-W1-Rev10 und DasyA-W1-Rev11 ................................ 31 6.2.3.3 Fraktionen DasyA-W1-Rev12, DasyA-W1-Rev13 und DasyA-W1-Rev14 31 6.2.4 DasyA-W2 ............................................................................................................ 35 6.2.4.1 Fraktionen DasyA-W2-Rev6, DasyA-W2-Rev7 und DasyA-W2-Rev8 ...... 35 6.2.5 DasyA-W-4 .......................................................................................................... 37 6.2.5.1 Fraktionen DasyA-W4-Rev25, DasyA-W4-Rev31 und DaysA-W4-Rev32 38 6.2.5.2 Fraktion DasyA-W4-Rev45 ......................................................................... 39 6.3 Herstellung des Methanolextraktes .......................................................................... 40 6.3.1 Fraktion DasyA-M1-Se5 ...................................................................................... 41 6.3.2 Fraktion DasyA-M1-Se7 ...................................................................................... 43 6.4 Zuordnung der isolierten Substanzen ....................................................................... 44 6.5 Synthese der Cumarine ............................................................................................. 46 6.5.1 Synthese von 3,7-Dihydroxycumarin und 3,6-Dihydroxycumarin ...................... 46 6.5.2 Synthese von 3,6,7 Trihydroxycumarin ............................................................... 47 6.6 Sulfatierung .............................................................................................................. 51 6.6.1 Sulfatierung des 3,6,7-Trihydroxycumarins ......................................................... 51 6.6.2 Sulfatierung der 4-OH-Zimtsäure ........................................................................ 53 7 Zusammenfassung ............................................................................................................. 55 8 Experimenteller Teil ......................................................................................................... 57 8.1 Herkunft des Algenmaterials .................................................................................... 57 8.2 Durchführung der einzelnen Arbeitsschritte ............................................................ 57 8.2.1 Herstellung des Methanol-Wasser-Extrakts ......................................................... 57 8.2.2 Herstellung des Methanol Extrakts ...................................................................... 57 8.2.3 Dünnschichtchromatografie ................................................................................. 58 8.2.4 Flash-Chromatografie ........................................................................................... 58 3 Inhaltsverzeichnis 8.2.4.1 Auftrennung des Methanol- Wasser Extraktes ............................................. 58 8.2.4.2 Auftrennung der Fraktionen DasyA-W2-Rev6, DasyA-W2-Rev7 und DasyA- W2-Rev8 62 8.2.4.3 Auftrennung der Fraktionen DasyA-W4-Rev25, DasyA-W4-Rev31 und DasyA-W4-Rev32 ......................................................................................................... 62 8.2.4.4 Auftrennung der Fraktion DasyA-W4-Rev45 .............................................. 63 8.2.5 Gelpermeationschromatografie ............................................................................ 64 8.2.5.1 Auftrennung der Fraktionen DasyA-W1-Rev8 und DasyA-W1-Rev9 ........ 64 8.2.5.2 Auftrennung der Fraktionen DasyA-W1-Rev10 und DasyA-W1-Rev11 .... 65 8.2.5.3 Auftrennung der Fraktionen DasyA-W1-Rev13, DasyA-W1-Rev14 und DasyA-W1-Rev15 ......................................................................................................... 65 8.2.5.4 Methanol Extrakt .......................................................................................... 66 8.2.5.5 Aufreinigung des synthetisierten 3,6,7-Trihydroxycumarins ...................... 67 8.2.5.6 Aufreinigung des synthetisierten 6,7-Dihydroxycumarin-3-sulfats ............. 68 8.2.6 Analytische HPLC ................................................................................................ 69 8.2.7 Präparative HPLC ................................................................................................ 71 8.2.7.1 Fraktion DasyA-W9-Se4 .............................................................................. 71 8.2.7.2 Fraktion DasyA-M1-Se5 .............................................................................. 71 8.2.7.3 Fraktion DasyA-M1-Se7 .............................................................................. 72 8.2.8 Durchführung der Synthesen ................................................................................ 73 8.2.8.1 Aufbau der Reaktionsapparaturen ................................................................ 73 8.2.8.2 Herstellung der Reagenzien für die Synthesen............................................. 73 8.2.9 Chemikalienverzeichnis ....................................................................................... 74 8.3 Sonstiges ................................................................................................................... 75 9 Abkürzungsverzeichnis ..................................................................................................... 76 10 Lebenslauf ..................................................................................................................... 78 11 Danksagung ................................................................................................................... 79 12 References ..................................................................................................................... 80 4 Einleitung 2 Einleitung Zum Schutz vor Umweltschäden, vor
Recommended publications
  • Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach
    microorganisms Article Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach Veronika Sommer 1,2, Tatiana Mikhailyuk 3, Karin Glaser 1 and Ulf Karsten 1,* 1 Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; [email protected] (V.S.); [email protected] (K.G.) 2 upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany 3 National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 4 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community “biocrust” comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list.
    [Show full text]
  • Chloroplast Er
    Cambridge University Press 978-0-521-68277-0 - Phycology, Fourth Edition Robert Edward Lee Index More information CHLOROPLAST E.R.: EVOLUTION OF TWO MEMBRANES Index The most important page references are in bold, and page references that contain figures are in italics. abalone, 126 algal volatile compounds, 340 Antarctic, 513–4, Cryptophyta, 325; Acanthopeltis, 99 algicide, 66, 387 cyanobacteria, 61; Phaeophyta, Acarychloris marina, 43, 90 alginic acid, 10, 427–8, 458, 459, 466, 441, 464; Rhodophyceae, 89 accumulation body, 277, 297 470 Antarctic circumpolar current, Acetabularia, 22, 175–8; acetabulum, algology, 3 513–14 177; calyculus,176; crenulata, 176; alkadienes, 211 Antarctic coastal current, 513–4 kilneri, 176; mediterranea, 176 alkaloids, 65 Antarctic lakes, 515–6 acetate, 256 alkenes, 396 antheridium, Chlorophyta, 162, Achnanthes exigua, 393, 395; longipes, allantoin, 115 163–6; Rhodophyceae, 117–18, 378, 379; lanceolata, 395 allelochemical, 66, 513 125, 127, 155 acidic water, 155–7, 197, 258 allelopathic interactions, 66 Anthophysa, 342; vegetans, 337, 341 acritrachs, 277 alloparasite, 97 anthropogenic effects, 173, 189 Acrocarpia paniculata, 471 allophycocyanin, 17–18, 43, 90, 323 antibiotics, 68 Acrochaetiales, 107, 108, 115–16 alveolus, 310, 312 anticlinal division, 432, 446, 466 Acrochaetium, 96, 115; asparagopsis, ammonia, 26, 42–3, 47, 54, 72 anti-herbivore chemicals, 66 106; corymbiterum, 102 amnesic shellfish poisoning, 387–8, Antithamnion, 95; nipponicum, 106; acronematic flagellum, 7 509 plumula, 96; vesicular cell, 97
    [Show full text]
  • Study of Diversity of Freshwater Algae in Some Areas of Lahore City
    IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 5 (May. 2018), ||VII|| PP 61-79 Study of Diversity of Freshwater Algae in Some Areas of Lahore City Mehwish Jaffer1, Atiq Ur Rehman2 and Shahzad Gauhar3 1Ph.D. Scholar, Lahore college for women university 2M.Phil. student, Government College university Lahore 3M.Phil. student, education university, Lahore Corresponding author: Mehwish Jaffer ABSTRACT: Total 35 algal species belonging to 15 genera, 11 familes, 5 orders, 5 classes and 3 phylum Cyanophycota, Chlorophycota and Bacillariophycota. They were collected from freshwater of some areas (GCU and Nasir Bagh) of Lahore city during October 2017 to March 2018. All were taxonomically investigated upto specie level. Following species were identified: Aphanothece endophytica G.M. Smith, Aphanothece nidulans P. Richter Chroococcus limenticus var. distans G.M. Smith, Chroococcus minor (Kützing) Lemmermann, Chroococcus tenax (Kirchner) Hieronymus, Chroococcusturgidus (Kützing) Nägeli, Chroococus varius A. Braun, Anabaena affinis Lemmermann, Oscillatoria amoena (Kützing) Gomont, Oscillatoria amphibia C. Agardh ex Gomont, Oscillatoria angustissimaOscillatoria formosa Broy ex Gomont, Oscillatoria prolifica (Grev.) Gomont, Oscillatoria subbrevis Schmidle, Oscillatoria tenuis C. Agardh ex Gomont, Oscillatoria terebriformis C. Agardh, Spirulina subsala (Oersted) ex Gomont, Lyngbya arboricola Bruhlet Bruh, Lyngbya tylorii Drouet & Strickland, Calothrix fusca (Kützing) Bornet & Flahault, Ulothrix aequalis Kützing, Ulothrix tenuissima Kützing, Oedogonium behemicum Hirn, Cymbella ehrengbergii Kützing, Cymbella turgida, Cymbella venticosa, Navicula confervacea (Kützing) Grun. var. confervacea,Navicula knsnesis Meister,Navicula mutica Kützing var. mutica, Navicula lanceolata Kützing, Navicula viridula var. avenacea (Bréb. ex Grun.), Achanthes hungarica (Grunow) Grunow in Cleve et Grunow 1880, Achnanthes minutissima (Kützing) Cleve, Cyclotella operculata (C.A.
    [Show full text]
  • Freshwater Algae of the Central Death Valley Desert1-2
    No. 1 POLLEN SEQUENCE FROM WELLS MASTODON SITE, INDIANA 11 FRESHWATER ALGAE OF THE CENTRAL DEATH VALLEY DESERT1-2 CAROLE MORGAN BROWN Department of Botany and Plant Pathology, The Ohio State University, Columbus 10 ABSTRACT The Central Death Valley desert was investigated at seasonal intervals between 1959 and 1961 to determine the algae indigenous to its freshwater ponds and streams. Myxophyceae, Chlorophyceae, and Bacillariophyceae were represented by substantial populations throughout the year. Blue-green algae were especially predominant under the thermophilic conditions. Thirty-two previously unrecorded species were also found in the survey. Deserts are not often considered suitable habitats for an algal flora. Because of the severe environmental conditions of Death Valley National Monument, California, therefore, it would seem almost impossible to find very many, if any, algae, especially those indigenous to an aquatic habitat. However, in March, 1959, I found a substantial bloom of algae, macroscopically identified as belonging Papers from the Departmeent of Botany and Plant Pathology, The Ohio State University, No. 688. 2Manuscript received August 3, 1963. THE OHIO JOURNAL OF SCIENCE 65(1): 11, January, 1965. 12 CAROLE MORGAN BROWN Vol. 65 to the Zygnemataceae, growing in a swampy area near Eagle Borax Mine (fig. 1). This initial discovery stimulated further trips to that and other areas and the eventual amassment of a representative algal collection. Until July, 1962, when Durrel reported on the algae, no concentrated attempt was made to survey Death Valley specifically for these plants. Although the flowering plants of the Monument have been studied and classified since Merriam's initial expedition (U.S.D.A., 1893), little attention was paid to the aquatic flora of the freshwater ponds and streams located throughout the Monument.
    [Show full text]
  • Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan)
    Barinova et al., Expert Opin Environ Biol 2013, 2:2 http://dx.doi.org/10.4172/2325-9655.1000104 Expert Opinion on Environmental Biology Research Article a SciTechnol journal knowledge of regional algal distribution is far from exhaustive [1-39]. Ecological Adaptation to The Swat River Valley is located in an inaccessible mountainous area Altitude of Algal Communities and has therefore been insufficiently studied. Elevation plays a large role in regulating plant species richness in the Swat Valley (Hindu Cush patterns. The altitudinal studies of high-plant diversity distribution are very extensive, especially for rare species. But from a standpoint Mountains, Pakistan) of factors regulating distribution, studies of common species are S. Barinova1*, Naiz Ali2, Barkatullah2 and F.M. Sarim2 the most important [40]. The diversity-temperature relationship for high plants is well-known [41]. Altitude-diversity correlation was found for vascular plants, bryophytes, and lichens [42], whereas for Abstract freshwater algal communities, it is still not clear. Algal species diversity distribution and its relationships to altitude Our last study on algal diversity and altitude relationships [43,44] of aquatic habitats were studied on the Hindu Cush Mountain shows a complex correlation of species richness and divisional content communities of the Swat River Valley. The study describes in freshwater habitats of the Georgia Mountains. Nevertheless, the algal flora on 20 different sites and tries to correlate differences main trend of algal diversity in altitudes of habitats higher than 1000 to ecological key parameters, such as seasonal variation in m above sea level (a.s.l.) is an increase in species richness.
    [Show full text]
  • An Ulstrastructural Study of Acetabularia Acetabulum Rachel Vangilder
    University of Richmond UR Scholarship Repository Master's Theses Student Research Spring 5-2000 An ulstrastructural study of Acetabularia acetabulum Rachel VanGilder Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Biology Commons Recommended Citation VanGilder, Rachel, "An ulstrastructural study of Acetabularia acetabulum" (2000). Master's Theses. Paper 1117. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. An Ultrastructural Study of Acetabularia acetabulum By Rachel VanGilder B.A., Augustana College, 1992 A Thesis Submitted to the Graduate Faculty of the University of Richmond in Candidacy for the degree of MASTER OF SCIENCE m Biology May, 2000 Richmond, Virginia Approval Page I certify that I have read this thesis and find that, in scope and quality, it satisfies the requirements for the degree of Master of Science. ~~\{ ~~~ Dr. R · ·nglsey Dr. rad Goodner TABLE OF CONTENTS List of Figures ................................................................................ iv Acknowledgements .......................................................................... vi Abstract ....................................................................................... vii Introduction ...................................................................................
    [Show full text]
  • A Preliminary Survey of the Algae of Cheyenne Bottoms in Kansas Henry J
    Fort Hays State University FHSU Scholars Repository Fort Hays Studies Series 1964 A Preliminary Survey of the Algae of Cheyenne Bottoms in Kansas Henry J. McFarland Fort Hays State University Edward A. Brazda Fort Hays State University Ben H. McFarland Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/fort_hays_studies_series Part of the Biology Commons Recommended Citation McFarland, Henry J.; Brazda, Edward A.; and McFarland, Ben H., "A Preliminary Survey of the Algae of Cheyenne Bottoms in Kansas" (1964). Fort Hays Studies Series. 58. https://scholars.fhsu.edu/fort_hays_studies_series/58 This Book is brought to you for free and open access by FHSU Scholars Repository. It has been accepted for inclusion in Fort Hays Studies Series by an authorized administrator of FHSU Scholars Repository. McFarland, Henry J. Brazda, Edward A. McFarland, Ben H. A Preliminary Survey of the Algae of Cheyenne Bottoms in Kansas fort hays studies-new series science series no. 2 october, 1964 Fort Hays Kansas State College Hays, Kansas Fort Hays Studies Committee STOUT, ROBERTA Marc T. Campbell, chairman SPANGLER, ROBERT J. WALKER, M. V. KEMPER, ROBERT Copyright 1964 by Fort Hays Kansas State College Library of Congress Card Catalog No. 64-63577 ii Biographical Sketch of the Authors Henry J. McFarland received his Bachelor of Science and hi Master of Science Degree from Kansas State Teacher College, Emporia. He pre- viously held positions at Dodge City Junior College, Peru State Teacher College and Oklahoma City Univer- ity. He joined the taff as A i tant Profe sor of Biology at Fort Hay Kan- sa State College in 1948.
    [Show full text]
  • An Updated List of Marine Green Algae (Chlorophyta, Ulvophyceae) from the Biosphere Reserve of Sian Ka’An, Quintana Roo, Mexico
    12 3 1886 the journal of biodiversity data 13 May 2016 Check List LISTS OF SPECIES Check List 12(3): 1886, 13 May 2016 doi: http://dx.doi.org/10.15560/12.3.1886 ISSN 1809-127X © 2016 Check List and Authors An updated list of marine green algae (Chlorophyta, Ulvophyceae) from the Biosphere Reserve of Sian Ka’an, Quintana Roo, Mexico Julio Adulfo Acosta-Calderón*, Luz Elena Mateo-Cid and Ángela Catalina Mendoza-González National School of Biological Science, Department of Botany, Prolongacion de Carpio y Plan de Ayala s/n, Casco de Santo Tomas, Z.C. 11340, Mexico, D.F. * Corresponding author. E-mail: [email protected] Abstract: In spite of it is baseline importance for been well explored, this may suggest that the species comparative studies with the past and present data, an richness of green seaweeds is underestimated. There updated list of marine green algal taxa for the Biosphere are few phycological surveys for the study area, and Reserve of Sian Ka’an is not yet available. The aim of this most of the phycological knowledge occurred during paper is to present an updated list of marine green algal 1989–1992 and, the last contribution was reported taxa for the Sian Ka’an Reserve based on literature and fifteen years ago (Aguilar-Rosas et al. 2001). Until the collections made by the authors in 17 localities during present, 74 infrageneric taxa of marine green algae 2011–2012. Fifty-five taxa are new records for the study have been cited (Taylor 1960; Aguilar-Rosas et al. 1989; area and thus the list has increased to 129.
    [Show full text]
  • PHYLUM Chlorophyta Phylum Chlorophyta to Order Level
    PHYLUM Chlorophyta Phylum Chlorophyta to Order Level P Chlorophyta C Bryopsidophyceae Chlorophyceae Nephroselmidophyceae Pedinophyceae Pleurastrophyceae Prasinophyceae Trebouxiophyceae Ulvophyceae O Bryopsidales Chlorocystidales Nephroselmidales Pedinomonadales Pleurastrales Pyramimonadales Chlorellales Cladophorales Volvocales Scourfieldiales Mamiellales Oocystales Codiolales Chaetopeltidales Chlorodendrales Prasiolales Trentepohliales Tetrasporales Prasinococcales Trebouxiales Ulotrichales Chlorococcales Pseudo- Ulvales Sphaeropleales scourfieldiales Siphonocladales Microsporales Dasycladales Oedogoniales Chaetophorales P Chlorophyta C Nephroselmidophyceae Pedinophyceae Pleurastrophyceae O Nephroselmidales Pedinomonadales Scourfieldiales Pleurastrales F Nephroselmidaceae Pedinomonadaceae Scourfieldiaceae Pleurastraceae G Anticomonas Anisomonas Scourfieldia Microthamnion Argillamonas Dioriticamonas Pleurastrosarcina Bipedinomonas Marsupiomonas Pleurastrum Fluitomonas Pedinomonas Hiemalomonas Resultor Myochloris Nephroselmis Pseudopedinomonas Sinamonas P Chlorophyta Prasinophyceae C O Pyramimonadales Mamiellales Chlorodendrales Prasinococcales Pseudoscourfieldiales F Polyblepharidaceae Mamiellaceae Chlorodendraceae Prasinococcaceae Pycnococcaceae Halosphaeraceae Monomastigaceae Mesostigmataceae G Polyblepharides Bathycoccus Prasinocladus Prasinococcus Pycnococcus Selenochloris Crustomastix Scherffelia Prasinoderma Pseudoscourfieldia Stepanoptera Dolichomastix Tetraselmis Sycamina Mamiella Mantoniella Prasinochloris Micromonas Protoaceromonas
    [Show full text]
  • Xerox University Microfilms
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Photo-Atlas of Living Dasycladales
    Sigrid BERGER - Systematics and age of the Dasycladales The order Dasycladales of the green algae includes macroalgae which grow in the shallow waters of tropical and subtropical shores as far north as the Mediterranean Sea. They are rarely found in deep water but have been observed to a depth of 20 m. Dasycladales are now classified as members of the Class Ulvophyceae (GRAHAM et WILCOX, 2000), although VAN DEN HOEK et alii (1993), due to their unique combination of features, placed them in a discrete class, the Dasycladophyceae. Dasycladales are unicellular algae which can grow to a length of 200 mm in the major dimension. They may have been even larger in past geological times. This is an enormous size for a unicell. Multicellular organisms gain stability by constructing walls of differentiated cells to demarcate their several functional elements, while some of the huge unicellular organisms gain stability by surrounding themselves with a calcareous coating. This is how the long unicellular Dasycladales gain enough stability to grow upright. When a calcified alga dies the coating may be preserved in the sediment as an impression of a once-living structure. Consequently, fossils of these coated algae exist, sometimes in great numbers, over relatively long periods of time. One of these long-enduring groups is the algal order called Dasycladales. It had already been in existence a long time at the dawn of the Cambrian period, about 570 million years ago. The fact that the Dasycladales have survived for so long a time with but few changes in distinctive features has led us to call them "living fossils".
    [Show full text]
  • Biodiversity of Algae from the Tajan River Basin (Mazandaran-Iran)
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 - 6131 Vol. 21(4): 33-51 (2017) ejabf.journals.ekb.eg Biodiversity of Algae from the Tajan River Basin (Mazandaran-Iran) Abdol Ghaffar Ebadi* and Hikmat Hisoriev Institute of Botany, Plant Physiology and Genetics, Tajikistan Academy of Sciences, Republic of Tajikistan. E-mail:[email protected] ARTICLE INFO ABSTRACT Article History: The objective of this study is to investigate the biodiversity of Received: Oct. 15, 2017 phytoplankton and to identify the algal species as bio-indicators for Accepted: Dec. 20, 2017 water quality in Tajan River of Mazandaran Province (North of Iran). Available online: Jan, 2018 A total of about 600 samples were collected from 9 stations; from _______________ Keywords: Solayman Tange Dam to Caspian Sea during the period 2011- 2017. 305 Biodiversity species under 86 genera and 23 subspecies (totally 328 taxa) were water quality identified under five algal divisions. The highest number of species was Algae belonging to the Bacillariophyta including 71 species, and the lowest was for Streptophyta including 56 species. Also, the percentages of Tajan River species in different algal divisions were about 21, 20, 22, 20, and 17% Iran for Cyanoprokaryota, Euglenophyta, Bacillariophyta, Chlorophyta, and Streptophyta, respectively. Results showed that order Euglenales had the highest biodiversity (59 species). The Oscillatoriaceae was a dominant family with 3 genera and 35 species, while Oscillatoria was a dominant genus including 22 species. Referring to the stations, the highest number of Cyanoprokaryota was recorded at stations 1 & 2 (48 species), station 7 for Euglenophyta (44 species), station 5 for Bacillariophyta (41 species) and Chlorophyta (52 species), and finally station 2 for Streptophyta with 26 species.
    [Show full text]