Barinova et al., Expert Opin Environ Biol 2013, 2:2 http://dx.doi.org/10.4172/2325-9655.1000104 Expert Opinion on Environmental Biology

Research Article a SciTechnol journal

knowledge of regional algal distribution is far from exhaustive [1-39]. Ecological Adaptation to The Swat River Valley is located in an inaccessible mountainous area Altitude of Algal Communities and has therefore been insufficiently studied. Elevation plays a large role in regulating plant species richness in the Swat Valley (Hindu Cush patterns. The altitudinal studies of high-plant diversity distribution are very extensive, especially for rare species. But from a standpoint Mountains, ) of factors regulating distribution, studies of common species are S. Barinova1*, Naiz Ali2, Barkatullah2 and F.M. Sarim2 the most important [40]. The diversity-temperature relationship for high plants is well-known [41]. Altitude-diversity correlation was found for vascular plants, bryophytes, and lichens [42], whereas for Abstract freshwater algal communities, it is still not clear. Algal species diversity distribution and its relationships to altitude Our last study on algal diversity and altitude relationships [43,44] of aquatic habitats were studied on the Hindu Cush Mountain shows a complex correlation of species richness and divisional content communities of the Swat River Valley. The study describes in freshwater habitats of the Georgia Mountains. Nevertheless, the algal flora on 20 different sites and tries to correlate differences main trend of algal diversity in altitudes of habitats higher than 1000 to ecological key parameters, such as seasonal variation in m above sea level (a.s.l.) is an increase in species richness. temperature and pH, and altitude of the habitats which ranged from 1000 to 2000 m above sea level (a.s.l.). Altogether, 149 Methods used to reveal environmental impacts with the help species and infraspecies belonging to four taxonomical divisions of ecological indicators are: the community structure fluctuation were identified in 77 algological samples during 2005-2008 and analysis, bio-indication of major impacting factors, calculations of bio-indication, comparative floristic, and species-area relationships integral density-diversity indices, and statistical approaches linking were determined. Bio-indication analysis showed that algal species of the investigated communities inhabited water and soil the community structural and functional aspects with environmental and preferred temperate, intermediate organically enriched, slow fluctuation[ 45]. streaming, low-alkaline, and low-saline water. Photosynthetic Therefore, this work was aimed at taking inventory of the algal activity of algal communities was rather high as evidenced by prevailing of autotrophic species. Correlation between species diversity in this area and to compare species content in respect to richness and major climatic variables, calculated with the statistic the habitats’ altitude. We have assumed that a comparison of species programs Statistica 7.0 and GRAPHS, showed that algal species diversity of aquatic habitats will help in revealing trends of algal richness in the Swat Valley decreased with altitude. Communities diversity under climatic impacts. of cyanobacteria and green algae were prevailing in the valley while diatom and green algae communities were formed in the Study Area Description mountains. Statistical comparison helps us to reveal that obtained The Swat Valley has been divided in two administrative units: distribution was regulated by temperature higher than 19 °C and Tehsil Swat and Tehsil Matta. Both have their separate councils. altitude about 1800 m a.s.l. Finally we could show that mean water temperature plays a role in structuring the algal communities, but is located at 35° 5’ 37” North, 72° 18’ 47” East and has an the main factor driving the community structure is the altitude of altitude of 1,120 meters. The area of Tehsil Matta is called Bar Swat their habitat. (Upper Swat) in local vernacular. The total area of Tehsil Matta is about 683 square kilometer [46]. Keywords The Swat River is a river in Khyber-Pakhtunkhwa, Pakistan. Its Algae; Diversity; Ecology; Distribution; Altitude; Bio-indication; Hin- du Cush Mountains; Pakistan source is in the Hindu Kush Mountains, from where it flows through the Valley passing from Tehsil Matta and the . The elevation of the Swat River Valley, at the southern boundaries of Introduction the District is over 6,000 meters and rises rapidly toward the North. The summer season is short and moderate. It is warm in the lower The biodiversity of algal communities in the Hindu Cush Swat Valley but cool in the upper northern part. The hottest month Mountain areas was formed under natural climatic and anthropogenic is June, which means maximum and minimum temperatures are impacts. The algal diversity in the rivers of the southern Hindu Cush about 33°C and 16°C, respectively. The coldest month is January, region is, however, still under investigated. While algal communities with maximum and minimum mean temperatures of 11°C and -2°C, of some rivers and parks in Pakistan were sporadically studied, our respectively. Winter is long, from November to March. The highest rain fall recorded during the month of March is about 242 mm [46]. *Corresponding author: S. Barinova, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel, Tel: +97248249697; E-mail: barinova@ The geography of Tehsil Matta is divided into mountain and research.haifa.ac.il plain ranges. Mountain ranges consist of high mountains and hills spreading in western and northern directions. These mountains are Received: October 21, 2012 Accepted: June 11, 2013 Published: June 17, 2013 covered with snow in the winter seasons, but in summer seasons the

All articles published in Expert Opinion on Environmental Biology are the property of SciTechnol, and is protected by copyright International Publisher of Science, laws. Copyright © 2013, SciTechnol, All Rights Reserved. Technology and Medicine Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104 snow gradually decreases. The plain area of Tehsil Matta is a narrow range starting from the Shakardara valley and runs along the Swat River to the Ashary Valley. Over all, the Swat district is located in a temperate zone, where the climate is controlled by various factors including latitude, altitude, the Indian Summer Monsoon, and the Cyclonic current coming in from the Mediterranean Sea in winter. The average annual precipitation in the Swat district ranges from 1000 mm to 1200 mm, distributed among three rainy seasons (Table 1) [46]. Winter rains begin in the month of December and last until the end of February. Snowfalls occur from mid-January to the end of February in the plains areas, and from the beginning of December to the end of March in the mountainous areas. Spring rains begin from March to May, accompanied by thunderstorms, hail, and with larger raindrops than those that fall during the winter. Summer rains begin after the dry month of June, starting from the month of July till the end of September. Precipitation in this season is sporadic and is sometimes followed by thunderstorms and by sudden hailstorms. Tehsil Matta has diverse flora (Algae, bryophytes, pteridophytes, angiosperms, and gymnosperms) from a small herbaceous plant to large coniferous forests with plants of great medicinal value. Tehsil Matta is a lush green area with fertile soil, and the best irrigation and agricultural resources [47].

Materials and Methods Figure 1: Site of sampling in the Swat district, Pakistan. Algae were collected from 20 different localities of the Tehsil Matta, District Swat. These localities are the Lalko, Gharai, Sakhra, , Baghderi, Ashary, Bazkhela, Drushkhela, , collected algae were put in the bottles and preserved on the spot by Bamakhela, Pirkaly, , Shakardara, Shawar, , Rorengar, the addition of formalin at a rate of 3%. Aghal, Chuprial, Senpura, and Kharirai (Figure 1). Water pH values were measured on the spot to avoid potential For the purpose of collection, preservation, and the study of alterations over time. The parameters assessed to describe the physical some ecological aspects, the necessary equipment was carried to the properties of each sample location were water temperature (which research site. This equipment included a HANNA HI 9813 portable was measured with Celsius scale), pH (with a portable HANNA HI pH meter, a Celsius scale, and an Altimeter. Collection was carried 9813 pH meter) and altitude (taken with the help of an altimeter). The out with the help of the Apstein plankton net 25 mesh, knifes, by collected samples of algae were carried to the laboratory of phycology picking large algae with hands, tooth brush, etc. The algae were and were identified with the help of a microscope, according to G.W. scratched from stones in running water, stagnant water, springs Prescott [48], L.H. Tiffany, M.E. Britton [49], T.V. Desikachary [50], water, rice fields, etc. with the help of knives and tooth brushes. E.N. Transeau [51], E.G. Bellinger, and D.C. Sigee [52] and other Free-floating large planktons or colonies of planktons were collected available literature and experts [53-58]. directly from water surfaces and placed in the collecting bottles. The The ecological characteristics of algal species were obtained algae were also collected from moist soil surfaces. Epiphytic algae from the database compiled for freshwater algae of the world from were collected by separating it from aquatic plants with the help of multiple analyses of algal biodiversity by S.S. Barinova et al. [59], forceps. Filamentous large algae were collected by hand-picking. The with additions of C. Ter Braak [60] and H. van Dam [61], according to substrate preference, temperature, oxygenation, pH, salinity, Table 1: Mean monthly air temperature of the year [46]. organic enrichments, N-uptake metabolism, and trophic states. Air temperature The ecological groups were separately assessed according to their Month Maximum Minimum significance for bio-indications. Species that respond predictably to January 11.2 -2.39 environmental conditions were used as bio-indicators for particular February 12.07 -1.28 variables of aquatic ecosystems, the dynamics of which are related to March 16.23 3.09 environmental changes. April 22.41 7.67 For species diversity and ecological analysis, we applied the bio- May 27.59 11.56 June 32.52 15.67 indication methods frequently used in European countries under July 31.38 19.29 Framework Directive [62]. Our database for indicator species is August 30.24 18.54 published in S.S. Barinova et al. [59]. The statistical methods are September 29.04 13.60 those recommended by V. Heywood [45] for the development of October 25.05 7.62 floristic and taxonomic studies, namely, the GRAPHS program [63] November 19.94 2.55 for comparative floristic, the Statistica 7.0 Program for Stepwise December 13.83 -0.86 regression analysis, and Distance Weighted Least Squares calculation.

Volume 2 • Issue 2 • 1000104 • Page 2 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

Results and Discussion In the first step of our analysis we outline the catchment basins for each habitat of the sample collection. Therefore, we can see 20 districts (Figure 1) on the Swat Valley basin. These catchment basins reflect the eco-regions, which are homogenous according to their landscape and natural environment. The water temperature was dependent on climatic seasons of the sampling habitats (Figure 2). Winter temperature fluctuated between 9 °C and 17 °C. Highest temperature was found in summer, which fluctuated between 21 °C and 27 °C. Figure 2 shows that water temperature is negatively correlated with altitude throughout the year. A total of 149 algae species were identified in the studied river systems of the Swat Valley (Table 2). The taxonomic structure of algal communities is represented in Table 2. The Swat Valley algal flora belongs to four taxonomic divisions (Figure 3a) from which diatoms prevail (40%), followed by Cyanobacteria (27%), then Charophyta (24%), and greens (9%). It is remarkable that Charophyta algae represent about a quarter of the algal flora and the most diverse of all was Spirogyra with 24 species. Species richness of the Swat Valley fluctuated over climatic seasons and was richer in summer and spring with about 150 species (Figure 3b). Bio-indication of major environmental variables (Table 3, Figure 3c-m) show that revealed algal species inhabit water and soil (Figure 3d) with diverse environmental variables and prefer temperate (Figure 3c), intermediate organically enriched (Figure 3e), slow streaming (Figure 3f), alkaline (Figure 3g), and low saline (Figure 3h) water. Algal communities are represented by active photosynthetic nitrogen-autotrophic taxa, tolerant of organic pollution (Figure 3k) and reflect diversity of trophic state ecosystems in which eutrophic taxa prevail (Figure 3m). We found ecological preferences of some species which were revealed during present study and ecology of which were known not enough. Therefore, measurements of water pH in present study help us to enrich our data base for ecological ranges of pH for more than ten species (Table 3). Figure 3: Bio-indication of major environmental variables by the algal floras Fluctuation of species richness over altitude of eco-regions is of the Swat Valley. (a) Species richness of taxonomic divisions; (b) Species richness in climatic seasons; (c) cool = cool-water, temp = temperate, eterm represented in Figure 4. It can be seen that summer communities are = eurythermic, warm = warm-water; (d) P = planktonic, P-B = plankto-benthic, richer compared to winters but both seasons reflect the stability of B = benthic, Ep = epiphyte, S = soil; (e) sx = saproxenes, es = eurysaprobes, sp = saprophiles; (f) st = standing water, str = streaming water, st-str = low streaming water, ae = aerophiles; (g) alb = alkalibiontes, alf = alkaliphiles, ind = indifferents, acf = acidophiles; (h) hb = oligohalobes-halophobes, i = oligohalobes-indifferent, mh = mesohalobes, hl = halophiles; (k) ats = nitrogen- autotrophic taxa, tolerating very small concentrations of organically bound nitrogen, ate = nitrogen-autotrophic taxa, tolerating elevated concentrations of organically bound nitrogen, hce = obligately nitrogen-heterotrophic taxa, needing continuously elevated concentrations of organically bound nitrogen; (m) ot = oligotraphentic, o-m = oligo-mesotraphentic, m = mesotraphentic, me = meso-eutraphentic, e = eutraphentic, he = hypereutraphentic, o-e = oligo- to eutraphentic (hypereutraphentic).Diagrams c-m are organized according to indicator groups with increases in variables from left to right.

environmental variables whereas spring and autumn communities fluctuate (Figure 4). Distribution of species richness over altitude of habitats shows a negative correlation as the most diverse are communities of the lowermost habitats. As can be seen in Figure 5, species richness appears to be correlated with water temperature. The critical altitude for both species richness

Figure 2: Seasonal fluctuation of water temperature over altitude of sampling and temperature is about 1400 m a.s.l. Communities of the Darmai site. region and those in the highest communities up to the Lalko high

Volume 2 • Issue 2 • 1000104 • Page 3 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

Table 2: Algae and cyanobacteria species distribution over the Swat valley ecoregions (ranged in respect of their approx altitude from 1 to 20 as in figure 1) and climatic seasons.

No Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Spring Summer Autumn Winter Cyanobacteria 1 Anabaena aequalis Borge 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Aphanizomenon flosaquae Ralfs ex Bornet & 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Flahault 3 Aphanocapsa elachista West & GS West 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 4 Aphanothece microscopica Nägeli 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 5 Aphanothece naegelii Wartmann 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 6 Aphanothece nidulans Richter 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Blennothrix lyngbyacea (Kützing ex Gomont) 7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Anagnostidis & Komárek 8 Chroococcus varius A Braun 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 9 Cyanothece aeruginosa (Nägeli) Komárek 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 Dolichospermum affine (Lemmermann) P 10 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Wacklin, L Hoffmann & J Komárek 11 Geitlerinema earlei (NL Gardner) Anagnostidis 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 12 Gloeocapsa compacta Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 13 Heteroleibleinia maior (Geitler) Anagnostidis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 14 Leibleinia willei (Setchell & Gardner) PC Silva 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Leptolyngbya polysiphoniae (Frémy) 15 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Anagnostidis Leptolyngbya tenuis (Gomont) Anagnostidis & 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Komárek 17 Microcoleus paludosus (Kützing) Gomont 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 Microcoleus vaginatus (Vaucher) Gomont ex 18 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 Gomont 19 Microcystis aeruginosa (Kützing) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 20 Nostoc linckia (Roth) Bornet ex Bornet & Flahault 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 21 Nostoc paludosum Kützing ex Bornet & Flahault 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Nostoc spongiaeforme C Agardh ex Bornet & 22 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Flahault 23 Oscillatoria curviceps C Agardh ex Gomont 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 24 Oscillatoria princeps Vaucher ex Gomont 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 25 Oscillatoria subbrevis Schmidle 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Phormidium acutum (Brühl & Biswas) 26 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Anagnostidis & Komárek 27 Phormidium ambiguum Gomont 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Phormidium animale (C Agardh ex Gomont) 28 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Anagnostidis & Komárek Phormidium autumnale (C Agardh) Trevisan ex 29 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Gomont Phormidium corallinae (Gomont ex Gomont) 30 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Anagnostidis & Komárek Phormidium formosum (Bory de Saint-Vincent ex 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Gomont) Anagnostidis & Komárek Phormidium laetevirens (PL Crouan & HM 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Crouan ex Gomont) Anagnostidis & Komárek Phormidium martinii (Frémy) Anagnostidis & 33 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 Komárek Phormidium nigroviride (Thwaites ex Gomont) 34 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Anagnostidis & Komárek Phormidium okenii (C Agardh) Anagnostidis & 35 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Komárek Planktothrix rubescens (De Candolle ex Gomont) 36 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Anagnostidis & Komárek Pseudophormidium purpureum (Gomont) 37 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 Anagnostidis & Komárek 38 Schizothrix rivularis (Wolle ex Forti) Drouet 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Volume 2 • Issue 2 • 1000104 • Page 4 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

39 Scytonema arcangelii Bornet & Flahault 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 Symplocastrum purpurascens (Gomont ex 40 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Gomont) Anagnostidis Ochrophyta Achnanthidium minutissimum (Kützing) 41 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 Czarnecki 42 Amphipleura pellucida (Kützing) Kützing 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 43 Amphora arenicola Grunow 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 44 Amphora behringensis Cleve 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 45 Amphora ovalis (Kützing) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Aneumastus tuscula (Ehrenberg) DG Mann & 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 AJ Stickle 47 Caloneis alpestris (Grunow) Cleve 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 48 Cocconeis pediculus Ehrenberg 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 49 Cocconeis placentula Ehrenberg 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 50 Craticula ambigua (Ehrenberg) DG Mann 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 51 Cymbella affinis Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 52 Cymbella aspera (Ehrenberg) Cleve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Cymbella cistula (Hemprich & Ehrenberg) O 53 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 Kirchner 54 Cymbella cymbiformis C Agardh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 55 Cymbella laevis Nägeli 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 56 Cymbella lanceolata Kirchner 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 57 Cymbella leptoceros (Ehrenberg) Grunow 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 58 Cymbella parva (W Smith) Kirchner 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59 Cymbella tumida (Brébisson) van Heurck 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 60 Cymbella turgida W Gregory 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 61 Cymbopleura amphicephala (Nägeli) Krammer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Cymbopleura naviculiformis (Auerswald ex 62 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 Heiberg) K Krammer 63 Denticula kuetzingii Grunow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 64 Diatoma anceps (Ehrenberg) Kirchner 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 65 Diatoma vulgaris Bory de Saint-Vincent 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 66 Encyonema prostratum (Berkeley) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 67 Fragilaria capucina Desmazières 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 68 Fragilaria crotonensis Kitton 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 69 Fragilaria harrissonii var. rhomboides Grunow 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Fragilariforma virescens (Ralfs) DM Williams & 70 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 Round Gomphonema constrictum var. capitatum 71 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 Ehrenberg 72 Gyrosigma attenuatum (Kützing) Rabenhorst 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 73 Gyrosigma scalproides (Rabenhorst) Cleve 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 74 Halamphora normanii (Rabenhorst) Levkov 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 75 Mastogloia smithii var. amphicephala Grunow 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 76 Meridion circulare (Greville) C Agardh 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 77 Navicula cryptocephala Kützing 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 78 Navicula cryptonella Lange-Bertalot 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 Navicula dicephala var. elginensis (W Gregory) 79 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Cleve 80 Navicula elginensis (Gregory) Ralfs 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 81 Navicula exilis Kützing 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 82 Navicula oblonga (Kützing) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 83 Navicula protracta (Grunow) Cleve 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

Volume 2 • Issue 2 • 1000104 • Page 5 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

Navicula tripunctata (OF Müller) Bory de Saint- 84 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 Vincent 85 Neidium iridis (Ehrenberg) Cleve 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 86 Nitzschia linearis (C Agardh) W Smith 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 87 Nitzschia palea (Kützing) W.Smith var. palea 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 88 Nitzschia palea var. tenuirostris Grunow 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 89 Pinnularia appendiculata (C Agardh) Cleve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 90 Pleurosigma angulatum (Queckett) W Smith 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 91 Stauroneis anceps Ehrenberg 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 92 Stauroneis phyllodes Ehrenberg 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 93 Staurosira construens Ehrenberg 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Staurosirella pinnata (Ehrenberg) DM Williams 94 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 & Round 95 Synedra dorsiventralis Otto Müller 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 96 Tryblionella hungarica (Grunow) Frenguelli 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 97 Ulnaria acus (Kützing) M Aboal 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 Ulnaria danica (Kützing) Compère & 98 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 Bukhtiyarova 99 Ulnaria ulna (Nitzsch) P Compère var. ulna 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 100 Ulnaria ulna var. aequalis (Kützing) M Aboal 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 Charophyta 101 Chara vulgaris Linnaeus 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 102 Cosmarium biretum Brébisson ex Ralfs 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 103 Cosmarium botrytis Meneghini ex Ralfs 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 104 Cosmarium formosulum Hoff 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 105 Cosmarium nitidulum De Notaris 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 106 Cosmarium punctulatum Brébisson 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 107 Mougeotia robusta (De Bary) Wittrock 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 108 Mougeotia sphareocarpa Wolle 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 109 Nitella flexilis (Linnaeus) C Agardh 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 110 Nitella tenuissima (Desvaux) Kützing 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 111 Spirogyra aequinoctialis GS West 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 112 Spirogyra circumlineata Transeau 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 113 Spirogyra corrugata Transeau 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 114 Spirogyra crassa (Kützing) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 115 Spirogyra daedaleoides Czurda 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 116 Spirogyra dictyospora CC Jao 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 117 Spirogyra ellipsospora Transeau 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 118 Spirogyra fluviatilis Hilse 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 119 Spirogyra gratiana Transeau 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 120 Spirogyra insignis (Hassall) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 121 Spirogyra maravillosa Transeu 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 122 Spirogyra micropunctata Transeau 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 123 Spirogyra nyctigama Transeau 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 124 Spirogyra pratensis Transeau 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 125 Spirogyra protecta H.C.Wood 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 126 Spirogyra punctiformis Transeau 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 127 Spirogyra rectangularis Transeau 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 128 Spirogyra schmidtii West & GS West 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 129 Spirogyra scrobiculata (Stockmayer) Czurda 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 130 Spirogyra setiformis (Roth) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 131 Spirogyra tetrapla Transeau 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1

Volume 2 • Issue 2 • 1000104 • Page 6 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

132 Spirogyra turfosa F Gay 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 133 Spirogyra varians (Hassall) Kützing 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 134 Spirogyra visenda Transeau 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 135 Zygnema pectinatum (Vaucher) C Agardh 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 136 Zygogonium ericetorum Kützing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 137 Cladophora conglomerata Pilger 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 138 Dactylococcus infusionus Nägeli 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Hydrodictyon reticulatum (Linnaeus) Bory de 139 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 Saint-Vincent 140 Oedogonium anomalum Hirn 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 141 Oedogonium illinoisense Transeau 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 142 Oedogonium wolleanum f. insigne (Nordstedt) Hirn 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 143 Rhizoclonium africanum Kützing 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 144 Rhizoclonium hieroglyphicum (C Agardh) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 145 Schizomeris leibleinii Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 146 Stigeoclonium tenue (C Agardh) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 147 aequalis Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 148 Ulothrix cylindrica Prescott 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 149 Ulothrix tenerrima (Kützing) Kützing 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0

Table 3: Algae and cyanobacteria in the Swat district of the Hindu Cush Mountains aquatic habitats with species ecology and pH ranks distribution. pH Aut- pH No Species Sub T Oxy D S Sap Sal pH Tro range Het 6.0 6.5 6.8 7.0 7.2 7.5 7.8 8.0 8.2 Cyanobacteria 1 Anabaena aequalis Borge P-B - st - 1.5 o-b - ind 6.0-8.0 - - - + + + + + + + - Aphanizomenon flosaquae Ralfs ex Bornet & 2 P - - - 2.2 b hl alf 7.0-8.2 - - - - - + + + + + + Flahault 3 Aphanocapsa elachista West & G.S.West P warm - - - - - ind 7.0-8.0 - - - - - + + + - + - 4 Aphanothece microscopica Nägeli B,Ep,S temp - - 1.0 o hb alf 7.0-8.2 - - - - - + + + + + + 5 Aphanothece naegelii Wartmann ------ind 6.0-7.2 - - + + + + + - - - - 6 Aphanothece nidulans Richter P-B,S - - - 1.5 o-b - ind 6.0-7.2 - - + + + + + - - - - Blennothrix lyngbyacea (Kützing ex Gomont) 7 ------alf 7.0-8.2 - - - - - + + + + + + Anagnostidis & Komárek 8 Chroococcus varius A.Braun B,S - - - - o-b - ind 6.0-8.2 - - + + + + + + + + + 9 Cyanothece aeruginosa (Nägeli) Komárek P - - - 2.5 b-a - alf 7.0-8.2 - - - - - + + + + + + Dolichospermum affine (Lemmermann) P.Wacklin, 10 P - - - 2.1 b i ind 7.0-8.2 - - - - - + + + + + + L.Hoffmann & J.Komárek 11 Geitlerinema earlei (N.L.Gardner) Anagnostidis ------12 Gloeocapsa compacta Kützing S ------alf 7.0-8.2 - - - - - + + + + + + 13 Heteroleibleinia maior (Geitler) Anagnostidis - - - - 2.0 b - ind 6.0-8.2 - - + + + + + + + + + 14 Leibleinia willei (Setchell & Gardner) P.C.Silva Ep - - - - - mh alf 7.0-8.2 - - - - - + + + + + + 15 Leptolyngbya polysiphoniae (Frémy) Anagnostidis ------ind 6.0-8.2 - - + + + + + + + + + Leptolyngbya tenuis (Gomont) Anagnostidis & st- 16 B,S - - 2.4 b-a i ind 6.0-8.2 - - + + + + + + + + + Komárek str 17 Microcoleus paludosus (Kützing) Gomont B,S - st - 1.0 o - ind 6.0-7.5 - - + + + + + + - - - Microcoleus vaginatus (Vaucher) Gomont ex 18 B,S - st - - - hl alf 7.0-8.2 - - - - - + + + + + + Gomont 19 Microcystis aeruginosa (Kützing) Kützing P - - - 1.8 o-a hl ind 6.0-7.8 - - + + + + + + + - - 20 Nostoc linckia (Roth) Bornet ex Bornet & Flahault B - - - 1.8 o-a - alf 7.0-8.2 - - - - - + + + + + + 21 Nostoc paludosum Kützing ex Bornet & Flahault P-B,S - st - - - - ind 6.0-8.0 - - + + + + + + + + - Nostoc spongiaeforme C.Agardh ex Bornet & 22 ------ind 6.8-7.8 - - - - + + + + + - - Flahault st- 23 Oscillatoria curviceps C.Agardh ex Gomont P-B - - 1.55 o-b i ind 6.0-8.2 - - + + + + + + + + + str st- 24 Oscillatoria princeps Vaucher ex Gomont P-B,S - - 2.9 b-p - ind 6.0-8.2 - - + + + + + + + + + str 25 Oscillatoria subbrevis Schmidle ------ind 6.0-8.0 - - + + + + + - + + -

Volume 2 • Issue 2 • 1000104 • Page 7 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

Phormidium acutum (Brühl & Biswas) Anagnostidis 26 ------& Komárek st- 27 Phormidium ambiguum Gomont B,S eterm - 2.0 b i ind 6.0-8.2 - - + + + + + + + + + str Phormidium animale (C.Agardh ex Gomont) 28 P-B,S cool str - 1.1 o - ind 6.0-7.8 - - + + + + + + + - - Anagnostidis & Komárek Phormidium autumnale (C.Agardh) Trevisan ex st- 29 B,S - - 2.1 b - ind 6.0-7.5 - - + + + + + + + - - Gomont str Phormidium corallinae (Gomont ex Gomont) 30 ------Anagnostidis & Komárek Phormidium formosum (Bory de Saint-Vincent ex 31 P-B,S - st - 2.8 b-p - ind 6.0-8.0 - - + + + + + + + + - Gomont) Anagnostidis & Komárek Phormidium laetevirens (P.L.Crouan & H.M.Crouan 32 ------ind 6.0-7.5 - - + + + + + + - - - ex Gomont) Anagnostidis & Komárek Phormidium martinii (Frémy) Anagnostidis & 33 ------Komárek Phormidium nigroviride (Thwaites ex Gomont) 34 ------acf 6.0-6.8 - - + + + ------Anagnostidis & Komárek Phormidium okenii (C.Agardh) Anagnostidis & 35 - sulf - - 1.8 o-a hl ind 6.0-7.2 - - + + + + + - - - - Komárek Planktothrix rubescens (De Candolle ex Gomont) 36 P cool - - 1.8 o-a - ind 6.0-7.8 - - + + + + + + + - - Anagnostidis & Komárek Pseudophormidium purpureum (Gomont) 37 B - str - - - - neu 6.0-7.2 - - + + + + + - - - - Anagnostidis & Komárek 38 Schizothrix rivularis (Wolle ex Forti) Drouet ------alf 7.0-8.2 - - - - - + + + + + + 39 Scytonema arcangelii Bornet & Flahault ------ind 6.0-7.8 - - + + + + + + + - - Symplocastrum purpurascens (Gomont ex Gomont) 40 ------alf 7.0-8.2 - - - - - + + + + + + Anagnostidis Ochrophyta st- 41 Achnanthidium minutissimum (Kützing) Czarnecki B eterm es 2.2 b i alf 6.8-8.2 ate o-e - - + + + + + + + str 42 Amphipleura pellucida (Kützing) Kützing B - st - 2.6 a-b i alf 7.0-7.9 ate o-m - - - + + + + + - 43 Amphora arenicola Grunow ------neu 7.0-8.2 - - - - - + + + + - - 44 Amphora behringensis Cleve ------ind 6.8-8.2 - - - - + + + + + + + st- 45 Amphora ovalis (Kützing) Kützing B temp sx 2.7 a-b i alf 6.2-9.0 ate e - - - + + + + + - str Aneumastus tuscula (Ehrenberg) D.G.Mann & 46 P-B - - - 0.7 o-x i alf 7.0-7.8 - o-e - - - + + + + - - A.J.Stickle 47 Caloneis alpestris (Grunow) Cleve B - str - 1.0 o i alf 7.0-7.8 ats m - - - + + + + + - st- 48 Cocconeis pediculus Ehrenberg B - sx 1.8 o-a i alf 7.0-8.2 ate e - - - + + + + + + str st- 49 Cocconeis placentula Ehrenberg P-B temp es 1.4 o-b i alf 5.5-9.0 ate e - - - - - + + + + str 50 Craticula ambigua (Ehrenberg) D.G.Mann B warm st es 1.2 o i ind 5.5-8.0 - - - - - + + + + + - st- 51 Cymbella affinis Kützing B temp sx 1.7 b-o i alf 7.2-8.2 ats e - - - - + + + + + str st- 52 Cymbella aspera (Ehrenberg) Cleve B - es 1.6 b-o i alf 7.0-8.2 ats o-e - - - + + + + + + str Cymbella cistula (Hemprich & Ehrenberg) st- 53 B - sx 1.5 o-b i alf 7.0-8.0 ats e - - - + + + + - - O.Kirchner str 54 Cymbella cymbiformis C.Agardh B temp str sx - o i neu 6.2-9.0 ats o-m - - - + + + + - - 55 Cymbella laevis Nägeli B cool - sx - - i ind 6.3-8.2 - - - - + + + + + + + 56 Cymbella lanceolata Kirchner B - str sx 1.3 o i alf 7.0-8.2 ats o-e - - - + + + + + + 57 Cymbella leptoceros (Ehrenberg) Grunow B temp st sx - o i alf 6.3-9.0 ats ot - - - + + + + + - 58 Cymbella parva (W.Smith) Kirchner B ------alf 7.0-8.2 - - - - - + + + + + + 59 Cymbella tumida (Brébisson) van Heurck B temp str sx 0.2 x i alf 6.8-9.0 ats me - - - + + + + + - 60 Cymbella turgida W.Gregory B temp st es - - i alf 5.5-9.0 - - - - - + + + + + - 61 Cymbopleura amphicephala (Nägeli) Krammer B - str sx 1.5 o-b i alf 7.0-8.2 ats o-m - - - + + + + + + Cymbopleura naviculiformis (Auerswald ex Heiberg) st- 62 B - es 1.3 o i ind 6.8-7.8 ate e - - + + + + + - - K.Krammer str 63 Denticula kuetzingii Grunow P-B - str es 0.8 x-b i alf 7.0-8.2 ats m - - - + + + + + + st- 64 Diatoma anceps (Ehrenberg) Kirchner P-B cool sx 2.1 b hl alf 7.8-8.2 ------+ + + str st- 65 Diatoma vulgaris Bory de Saint-Vincent P-B - sx 2.4 b-a i ind 6.2-7.5 ate me - - + + + + + + + str

Volume 2 • Issue 2 • 1000104 • Page 8 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

66 Encyonema prostratum (Berkeley) Kützing B - str es 1.9 o-a i alb 4.7-9.0 ats e - - + + + + + + + 67 Fragilaria capucina Desmazières B - - es 1.0 o i neu 6.8-8.2 - m - - + + + + + + + 68 Fragilaria crotonensis Kitton P - st es 2.7 a-b hl alf 6.8-8.2 ate m - - + + + + + + + 69 Fragilaria harrissonii var. rhomboides Grunow ------alf 7.0-8.2 - - - - - + + + + + + Fragilariforma virescens (Ralfs) D.M.Williams & 70 P-B - st es 1.3 o i alf 6.8-8.2 ats o-m - - - + + + + + + Round Gomphonema constrictum var. capitatum 71 B temp - sx - b i alf 6.8-8.2 - - - - + + + + + + + Ehrenberg 72 Gyrosigma attenuatum (Kützing) Rabenhorst P-B - st - 0.3 x i alf 7.0-8.2 ate e - - - + + + + + + 73 Gyrosigma scalproides (Rabenhorst) Cleve B - - es 0.4 x-o i alf 7.5-8.2 ------+ + + + 74 Halamphora normanii (Rabenhorst) Levkov B - ae - 2.4 b-a hb alf 6.8-8.2 ats m - - + + + + + + + 75 Mastogloia smithii var. amphicephala Grunow B - - - - - hl alf 7.0-8.0 - - - - - + + + + + - 76 Meridion circulare (Greville) C.Agardh B - str es 1.5 o-b i neu 7.0-7.8 - - - - - + + + + - - st- 77 Navicula cryptocephala Kützing P-B temp es 2.7 a i alf 7.0-8.0 ate o-e - - - + + + + + - str 78 Navicula cryptonella Lange-Bertalot B - - es 1.4 o-b i alf 7.0-8.0 - - - - - + + + + + + Navicula dicephala var. elginensis (W.Gregory) 79 B - - sx - - i alf 7.0-8.2 - - - - - + + + + + + Cleve st- 80 Navicula elginensis (Gregory) Ralfs B - sx 0.5 x-o i alf 7.0-8.0 ate e - - - + + + + + + str 81 Navicula exilis Kützing B - - es 0.8 o oh alb - - - st- 82 Navicula oblonga (Kützing) Kützing B - sx 2.0 b i alf 7.0-8.2 ate e - - - + + + + + + str st- 83 Navicula protracta (Grunow) Cleve B - es 0.9 x-b mh alf 7.0-8.2 ate e - - - + + + + + + str Navicula tripunctata (O.F.Müller) Bory de Saint- st- 84 B - es 2.3 b i alf 7.0-8.0 ate e - - - + + + + + - Vincent str 85 Neidium iridis (Ehrenberg) Cleve B - st es 0.6 o-x i alf 6.9-8.2 ats m - - - + + + + + + st- 86 Nitzschia linearis (C.Agardh) W.Smith B temp es 0.0 x i alf 7.0-8.2 ate me - - - + + + + + + str 87 Nitzschia palea (Kützing) W.Smith P-B temp - sp 2.75 o-x i alf 7.0-8.2 hce he - - - + + + + + + 88 Nitzschia palea var. tenuirostris Grunow B - - - - - i alf 7.0-8.2 - - - - - + + + + + + 89 Pinnularia appendiculata (C.Agardh) Cleve B - str es 0.3 x i ind 7.0-7.8 ats o-m - - - + + + + - - 90 Pleurosigma angulatum (Queckett) W.Smith B - - - - - hl ind 7.0-8.0 - - - - - + + + + + - st- 91 Stauroneis anceps Ehrenberg P-B - sx 0.3 x i alf 6.1-8.2 ate me - - - + + + + + + str 92 Stauroneis phyllodes Ehrenberg ------ind 6.8-8.0 - - - - + + + + + + - st- 93 Staurosira construens Ehrenberg P-B temp sx 1.3 o i alf 5.5-9.0 ats me - - - + + + + + - str Staurosirella pinnata (Ehrenberg) D.M.Williams & st- 94 B temp es - b-a hl alf 6.2-9.3 ate o-e - - + + + + + + - Round str 95 Synedra dorsiventralis Otto Müller - - - es - - - alf 7.0-8.2 - - - - - + + + + + + 96 Tryblionella hungarica (Grunow) Frenguelli P-B - - sp 2.6 a-b mh alf 7.0-7.8 ate e - - - + + + + - - st- 97 Ulnaria acus (Kützing) M.Aboal P - es 2.2 b i alf 6.8-8.0 - - - - + + + + + + - str 98 Ulnaria danica (Kützing) Compère & Bukhtiyarova P-B temp - es 0.8 x-b i alf 7.0-8.2 - - - - - + + + + + + st- 99 Ulnaria ulna (Nitzsch) P.Compère P-B temp es 1.9 b-o i alf 5.0-9.2 ate o-e - - - + + + + + + str 100 Ulnaria ulna var. aequalis (Kützing) M.Aboal B - - sp - b i alf 7.0-8.0 - - - - - + + + + + - Charophyta st- 101 Chara vulgaris Linnaeus B - - 1.1 o - alf ------str 102 Cosmarium biretum Brébisson ex Ralfs ------alf 7.0-8.2 - - - - - + + + + + + st- 103 Cosmarium botrytis Meneghini ex Ralfs P - - 2.3 b i ind 7.0-8.0 - - - - - + + + + + - str 104 Cosmarium formosulum Hoff - - - - 1.8 o-a - ind 7.0-8.0 - - - - - + + + + + - 105 Cosmarium nitidulum De Notaris ------alf 7.0-8.2 - - - - - + + + + + + 106 Cosmarium punctulatum Brébisson P-B - - - 1.3 o hb alf 7.0-8.2 - - - - - + + + + + + 107 Mougeotia robusta (De Bary) Wittrock ------ind 7.0-8.0 - - - - - + + + + + - 108 Mougeotia sphareocarpa Wolle ------ind 7.0-8.0 - - - - - + + + + + - 109 Nitella flexilis (Linnaeus) C.Agardh B - st - 1.3 o - ind 6.8-8.0 - - - - + + + - + + - 110 Nitella tenuissima (Desvaux) Kützing B - st - 0.8 x-b - ind 6.8-8.2 - - - - + + + + + + +

Volume 2 • Issue 2 • 1000104 • Page 9 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

111 Spirogyra aequinoctialis G.S.West ------ind 7.0-8.0 - - - - - + + + + + - 112 Spirogyra circumlineata Transeau ------alf 7.0-8.2 - - - - - + + + + + + 113 Spirogyra corrugata Transeau ------alf 7.0-8.2 - - - - - + + + + + + 114 Spirogyra crassa (Kützing) Kützing B - - - 2.0 b - alf 7.0-8.2 - - - - - + + + + + + 115 Spirogyra daedaleoides Czurda ------alf 7.0-8.2 - - - - - + + + + + + 116 Spirogyra dictyospora C.C.Jao ------ind 7.0-8.0 - - - - - + + + + + - 117 Spirogyra ellipsospora Transeau ------alf 7.0-8.2 - - - - - + + + + + + 118 Spirogyra fluviatilis Hilse P-B - - - 0.8 x-b oh ind 7.0-8.0 - - - - - + + + + + - 119 Spirogyra gratiana Transeau ------alf 7.0-8.2 - - - - - + + + + + + 120 Spirogyra insignis (Hassall) Kützing B - st - 0.9 x-b - alf 7.0-8.2 - - - - - + + + + + + 121 Spirogyra maravillosa Transeu ------alf 7.0-8.2 - - - - - + + + + + + 122 Spirogyra micropunctata Transeau ------ind 7.0-7.8 - - - - - + + + + - - 123 Spirogyra nyctigama Transeau ------alf 7.0-8.2 - - - - - + + + + + + 124 Spirogyra pratensis Transeau ------alf 7.0-8.2 - - - - - + + + + + + 125 Spirogyra protecta H.C.Wood ------alf 7.0-8.2 - - - - - + + + + + + 126 Spirogyra punctiformis Transeau ------ind 7.0-8.0 - - - - - + + + + + - 127 Spirogyra rectangularis Transeau ------alf 7.0-8.2 - - - - - + + + + + + 128 Spirogyra schmidtii West & G.S.West ------alf 7.0-8.2 - - - - - + + + + + + 129 Spirogyra scrobiculata (Stockmayer) Czurda ------ind 7.0-8.0 - - - - - + + + + + - 130 Spirogyra setiformis (Roth) Kützing ------alf 7.0-8.2 - - - - - + + + + + + 131 Spirogyra tetrapla Transeau ------alf 7.0-8.2 - - - - - + + + + + + 132 Spirogyra turfosa F.Gay ------alf 7.0-8.2 - - - - - + + + + + + 133 Spirogyra varians (Hassall) Kützing P-B - - - 2.5 b-a oh ind 7.0-7.8 - - - - - + + + + + - 134 Spirogyra visenda Transeau ------ind 6.8-8.2 - - - - + + + + + + + st- 135 Zygnema pectinatum (Vaucher) C.Agardh B - - - - oh neu 7.0-7.8 - - - - - + + + + - - str 136 Zygogonium ericetorum Kützing ------Chlorophyta st- 137 Cladophora conglomerata Pilger P-B - - 1.7 b-o i alf 6.8-8.2 - - - - + + + + + + + str 138 Dactylococcus infusionus Nägeli ------alf 7.0-8.2 - - - - - + + + + + + Hydrodictyon reticulatum (Linnaeus) Bory de Saint- 139 P-B - st - 1.8 o-a - alf 7.0-8.2 - - - - - + + + + + + Vincent 140 Oedogonium anomalum Hirn ------ind 7.0-8.0 - - - - - + + + + + - 141 Oedogonium illinoisense Transeau ------142 Oedogonium wolleanum f. insigne (Nordstedt) Hirn ------alf 7.0-8.0 - - - - - + + + + + - 143 Rhizoclonium africanum Kützing ------alf 7.0-8.2 - - - - - + + + + + + st- 144 Rhizoclonium hieroglyphicum (C.Agardh) Kützing B - - 1.3 o hl alf 7.0-8.2 - - - - - + + + + + + str 145 Schizomeris leibleinii Kützing - - - - 2.4 b-a - ind 6.8-8.0 - - - - + + + + + + - st- 146 Stigeoclonium tenue (C.Agardh) Kützing B - - 2.8 b-p - ind 6.8-8.2 - - - - + + + + + + + str 147 Ulothrix aequalis Kützing B - - - 1.4 o-b - alf 7.0-8.2 - - - - - + + + + + + 148 Ulothrix cylindrica Prescott ------alf 7.0-8.2 - - - - - + + + + + + 149 Ulothrix tenerrima (Kützing) Kützing B - st - 1.8 o-a i alf 7.0-8.2 - - - - - + + + + + + Note: Ecological types (Sub):- B: benthic; P: planktic; P–B: planktic benthic; Ep: epiphyte; S: soil. Temperature (T):- cool: cool water; temp: temperate; sulf: enriched by sulfides; warm: warm water; eterm: eurythermic; sulph: sulphides.Streaming and oxygenation (Oxy):- st: standing water; st-str: standing streaming; str: streaming water; ae: aerophiles. Saprobity [64] (D):- sx: saproxen, es: eurysaprob; sp: saprophil. Halobity (Sal) [65]:- mh: mesohalobe; i: oligohalobious-indifferent; hl: oligohalobious-halophilous; hb: oligohalobious-halophobous. Acidity (pH) [66]:- alb: alkalibiont; ind: indifferent; alf: alkaliphil; acf: acidophil. Species specific index of organic pollution [67] (S). Saprobity [67] (Sap):- o: oligosaprob; o-b: oligo-beta-mesosaprob; b: beta-mesosaprob; b-o: beta-oligomesosaprob; b-a: beta-alfa-mesosaprob; a: alfa-mesosaprob; a-b: alfa-beta-mesosaprob; x: xenosaprob; x-o: xeno-oligosaprob; o-x: oligo-xenosaprob; x-b: xeno-beta mesosaprob; o-a: oligo-alfa-mesosaprob; b-p: beta-polysaprob. Nitrogen uptake metabolism (Aut Het) [61]:- ats: nitrogen autotrophic taxa, tolerating very small concentrations of organically bound nitrogen; ate: nitrogen autotrophic taxa, tolerating elevated concentrations of organically bound nitrogen; hce: obligately nitrogen-heterotrophic taxa, needing continuously elevated concentrations of organically bound nitrogen. Trophic state (Tro) [61]:- ot: oligotraphentic; o-m: oligo-mesotraphentic; m: mesotraphentic; me: meso-eutraphentic; e: eutraphentic; he: hypereutraphentic; o-e: oligo- to eutraphentic (hypereutraphentic). mountain region have lower species diversity. their environment relationships. A comparative floristic approach provides the grouping of freshwater floras of the studied Swat valley A comparative floristic approach areas in respect to their taxonomic similarity and phytogeographic affinities. This approach helps determine diversity and climatic Because algal communities of studied habitats are rather rich, we variable relationships in algal species located in the Caucasian used several statistical approaches to evaluate species distribution and Mountains, Kazakhstan, Turkey, India, and Israel [43,44,68-70].

Volume 2 • Issue 2 • 1000104 • Page 10 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

A similarity tree of floristic composition is constructed in the GRAPHS program [63] for the Swat Valley eco-regions (Figure 6), showing four species diversity clusters at the similarity level 50%. Cluster 1 includes the richest lower altitude floras; Cluster 2 includes two floras of anthropogenically impacted areas; Cluster 3 comprises the floras of piedmonts, and Cluster 4 includes high mountain floras. Therefore, we can see that algal communities are most similar in similar environments and altitudes of habitats. The dendrite of taxonomic overlap in the GRAPHS program [63] (Figure 7) shows that the algal flora of the Shakardara region shares species with many other floras (about 90%) and is therefore placed in the center of the left part of the dendrite and is called the Shakardara floristic core. The Shakardara region is located in the Swat River Valley at the lower altitude of the study site. This region is affected Figure 5: Fluctuation of mean water temperature and maximal algal species not only by agricultural activities but also by settlements. Shakardara richness over altitude of sampling site. algal flora is most similar to floras of lower altitude regions of the study site. The floras with minimal overlap are placed on the right side of the dendrite (Gharai core, cut off by dashed line), included lower species-rich communities of piedmonts and high mountains. Therefore, we can conclude that a comparative floristic analysis reveals not only the climatic but also the anthropogenic impact on the algal communities of the Swat Valley. To clarify this conclusion we toned clusters of statistical analysis of Figure 7 on the Swat Valley regional map (Figure 1). As can be seen in Figure 8, toned eco-regions are related to the altitude of the sampling sites. Therefore, distribution of algal species diversity is strongly regulated by climatic conditions of their environment in which the water temperature is the major influence Figure( 5). Relationships between higher/lower taxa ratios for vascular plants can characterize the floristic region. Diversity ratios in Asian floras Figure 6: Dendrite of comparative floristic approach of algal communities parity are higher due to the temperate-tropical taxa [71]. The index of in the Swat district sampling sites based on Euclidean Distance and Ward infraspecies variation in the Swat Valley algal floras calculated on the methods. The four groups of highest similarity are marked 1-4. basis of data from Table 2 is rather low, less than 1.06, which means that only a few species from the total species list of each reserve are divided into taxonomic varieties. A calculated index is similar to others for closely related regions such as Turkey (1.09) and Israel (1.09). In the line of freshwater algal floras of Eurasia the Swat Valley flora index remains in the lower part of distribution 44[ ]. Therefore, our calculation of variability for the Swat Valley algal communities

Figure 7: Dendrite of algal species lists comparing similarity levels of more than 50%.

confirms that the Index of infraspecies/species decreased from north to south. It can be related to climate changes [43,44] and can be used also as criteria of determining future warming. Species diversity-altitude relationships We analyzed species diversity-altitude relationships on the divisional level for revealed taxa, which are more sensitive to altitudes. As can be seen in Figure 9, close related are cyanobacteria and diatom Figure 4: Seasonal fluctuation of algal species richness over altitude of taxa. When cyanobacteria species rate is decreased with increasing sampling site. altitude, the diatom rate is increased and vice versa.

Volume 2 • Issue 2 • 1000104 • Page 11 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

The correlation between species richness and major climatic condition variables was calculated by Distance Weighted Least Squares in Statistica 7.0 Program. Figure 10 presents relationships of species richness, especially Chlorophyta numbers, and altitude of the studied territory. This plot confirms that species richness can increased with altitude with increasing of Chlorophyta species number as was found for the Caucasian Mountains algal communities’ distribution over altitude [43]. As can be seen, species richness was dependent on altitude on the one hand, but water temperature depended on altitude on the other hand. Surface plot of this correlation in Figure 11 shows two different types of communities with high species numbers, which are regulated by temperatures higher than 19 °C and divided on altitude about 1800 m a.s.l. Figure 12 reveals which temperature level is critical for these two types of communities dividing. The lower habitat communities are Figure 10: Correlation plot of species richness and number of Chlorophyta enriched by cyanobacteria and greens, whereas diatoms and greens species in communities of the Swat valley with increasing altitude. prevail at the top of the mountains. As can be seen on the plot, the

Figure 11: Surface plot of species richness in communities of the Swat Valley with increasing altitude and mean water temperature. Figure 8: Floristic cores of algal communities in the Swat Valley sampling sites map- colored according to dendrite (Figure 7) data. water temperature at about 16°C in contour in the middle of the graph divided species richness with increasing altitude. The analysis, thus, reveals a strong climatic control over the major diversity estimates in the Swat Valley district. The mean water temperature is shown to be the critical factor in particular for the high altitude algal communities and 16 °C is a critical temperature level. Stepwise regression analysis We tried to calculate what variables were most important for algal diversity in the Swat Valley environment with help from the Stepwise regression analysis in Statistica 7.0 Program. Table 4 represents the results of calculation where it can be seen that mean water temperature is important, but algal communities are most impacted by the altitude of their habitat. Conclulsions Our study, conducted during 2005-2008 in the Hindu Cush Figure 9: Distribution of algal taxonomic divisions in communities of the Swat mountain habitats of the Swat district in Pakistan, identifies 149 Valley sampling sites on the basis of Table 3 data. species of algae and Cyanobacteria from 77 algological samples.

Volume 2 • Issue 2 • 1000104 • Page 12 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

Gharai core included lower species-rich communities of piedmonts and high mountains. The calculated index of infraspecies variation for the Swat Valley is 1.06 and is similar to closely related regions, such as Turkey (1.09) and Israel (1.09). Index variation over latitude of Eurasia [44] is related to climate changes and can be used also as the criteria to determine future warming. Correlation between species richness and major climatic condition variables show that algal species richness in the Swat Valley decreased with altitude, formed communities with cyanobacteria and greens prevailing in the valley, and diatoms and greens in the mountains, which are regulated by temperature higher than 19 °C and altitude about 1800 m a.s.l. Stepwise regression analysis shows that mean water temperature is important, but algal communities are most impacted by the altitudes of their habitat. As was deduced from DNA sequences of different level organisms [75] the putative ice age refugia and possible expansion routes of Figure 12: Correlation plot of species richness in communities of the Swat species area are related to altitude of habitats. High altitude refugia Valley with increasing altitude and mean water temperature. inhabitants are rapidly distributed after climatic impact. Therefore, we can assume that diatoms and charophytes received preferences to Table 4: Multiple regression coefficients 2(R ) relating diversity estimates as survive in the climatic changes. dependent variables to climatic factors, which are independent variables

(abbreviations: Alt – Altitude, TWin – Minimal Winter Water Temperature years As a result, our analysis reveals strong climatic control over averages, T – Maximal Summer Water Temperature years averages, T – Sum mean algal diversity in the Swat River Valley of Pakistan. The patterns Mean Water Temperature years averages, N – Species richness). Sp of algal diversity in the Swat Valley depend on altitude and local Stepwise Model by Climatic Factors Diversity Estimates climatic conditions in which the mean temperature of water is most Step 1 Step 2 Step 3 Step 4 important. Therefore, we came to conclude that the temperature, Alt Alt, T Alt, T , T T , Alt,T ,T , N , Species Richness mean mean Sum mean Sum Win which was strongly related with habitat altitude, is a major variable Sp 0.883*** 0.885*** 0.887*** 0.892*** Note: *, **, *** = statistically significant at p<0.05, p<0.01, and p<0.001, that impacted evolutionary process in freshwater communities. respectively Acknowledgements

Species diversity was mostly enriched by diatoms. It is remarkable This work has been partially funded by the Israel Ministry of Absorption. that Charophyta represent about a quarter of the algal flora and the References most diverse was Spirogyra with 24 species. Algal communities were 1. Aisha K, Shameel M (1995) Some fresh water green algae near Balochistan most diverse in summer. Winter communities had the lowest species coast of Pakistan. Pak J Bot 27: 41-48. richness, likely as a result of decreased temperature. Bio-indication 2. Akhtar P, Rehman SR (2009) Some members of from Jalala, analysis showed that algal species in studied communities inhabit District Mardan, Pakistan. Pak J Pl Sci 15: 19-30. water and soil and preferred temperate, intermediate organically 3. Ali ST, Zarina A, Hasan M, Shameel M (2006) Taxonomic studies on enriched, slowly streaming, low-alkaline, and low-saline water. Nitzschia (bacillariophyta) from kasur and lahore districts of Pakistan. Proc Photosynthetic activity of algal communities was rather high as Pakistan Acad Sci 43: 151-155. shown on the species abundance of studied communities. Ecosystems 4. Ali ST, Zarina A, Hasan M, Shameel M (2006) Taxonomic studies on Navicula were tolerant towards organic pollution and reflected a diversity of (bacillariophyta) from certain areas of the Punjab, Pakistan. Pak J Bot 38: trophic states in which eutrophic conditions prevail. 435-441. In the studied area algal species richness decreased with altitude 5. Ali ST, Zarina A, Hasan M, Shameel M (2006) Diversity of Pinnularia and formed two different types of communities, which were divided by (bacillariophyta) in the North-Eastern areas of Pakistan. Pak J Bot 38: 1249- 1255. the altitude. High altitude communities were enriched by the number of diatom, Charophyta and Chlorophyta species. In high mountain 6. Ali ST, Zarina A, Hasan M, Shameel M (2006) Taxonomic studies on Cymbella (bacillariophyta) from Punjab and Azad Kashmir. Pak J Bot 38: 161-167. habitats of closely related regions such as Turkey [72-74], Georgia [43], and Israel [44,68] the algal floras are, as a whole, enriched by 7. Ali ST, Zarina A, Hasan M, Shameel M (2007) Occurrence of the family non-diatom algae but species richness increased with altitude, in Pinnulariaceae (bacillariophyta) in various Districts of the Punjab, Pakistan. Pak J Bot 39: 1797-1805. contrast with our results found in the Swat valley. As a whole, species richness in studied communities of the Hindu Cush had lower species 8. Ali ST, Hasan M, Shameel M (2008) Occurrence of Pennate diatoms (bacillariophyta) in the Punjab and N. W. F. P., Pakistan. Pak J Bot 40: 841- numbers, whereas the Caucasian aquatic communities were enriched 847. with altitude gradient. 9. Ali ST, Hasan M, Shameel M (2009) Diversity of the genera of Pennate A similarity tree of floristic composition shows four species diatoms in the Punjab. Pak J Bot 41: 2551-2561. diversity clusters related by similar environments and altitudes of 10. Ali ST, Hasan M, Shameel M (2009) Diversity of Euglenophycota and habitats. The dendrite of taxonomic overlap shows that the algal flora Bacillarophycota in the North-Eastern areas of Pakistan. Proc Pakistan Acad of the Shakardara region shares species with many other floras and Sci 46: 117-130. can be named as the Shakardara floristic core of the river valley. The 11. Ali A, Shinwari ZK, Sarim FM (2010) Contribution to the algal flora

Volume 2 • Issue 2 • 1000104 • Page 13 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

(Chlorophyta) of fresh waters of District Swat. N.W.F.P., Pakistan. Pak J Bot Zygnema from North-Eastern areas of Pakistan. Pak J Bot 38: 425-433. 42: 3457-3462. 37. Zarina A, Hasan M, Shameel M (2006) Occurrence of the Genus Chara 12. Balasingh GSR, Esakki G, Jemi RJ (2008) Phytoplankton diversity in (Charophyta) in Sheikhupura District of Pakistan. Pak J Bot 38: 751-755. Koonthankulam bird sanctuary, Tirunelveli District - Tamil Nadu, India. J Bas Appl Biol 2: 19-22. 38. Zarina A, Hasan M, Shameel M (2007) Diversity of the genus Spirogyra (Zygnemophyceae Shameel) in the North-Eastern areas of Pakistan. Proc 13. [13] Ghazala B, Habib A (2011) Distribution of family Fragilaraceae Pakistan Acad Sci 44: 225-248. (bacillarophycota) in the region of Multan, Pakistan. Pak J Bot 43: 15-27. 39. Zarina A, Hasan M, Shameel M (2009) Diversity of freshwater green 14. Gul R, Zarina A, Hasan M, Shameel M (2007) Taxonomic study of green macroalgae in the Punjab and neighbouring areas of Pakistan. Pak J Bot 41: macroalgae from Sialkot, Pakistan. Int J Phycol Phycochemistry 3: 135-146. 277-291.

15. Hussain F, Masud, Shah SM, Hadi F, Zaman A, Wazir SM (2009) Some Blue 40. Jaccard P (1912) The distribution of the flora in the alpine zone. New green algae from rice fields of Asota Sharif, District Swabi, Pakistan. Pak J Pl Phytologist 11: 37-50. Sci 15: 45-57. 41. Qian H, White PS, Song JS (2007) Effects of regional vs. ecological factors 16. Islam AKMN (1969) A preliminary report on the phytoplankton and other algal on plant species richness: an intercontinental analysis. Ecology 88: 1440- flora of Chittagong Hill-Tract. J Asiat Soc Pak 14: 343-363. 1453.

17. Lashari KH, Sahato A, Korai AL, Kazi TG (2008) Taxonomic Study of 42. Qian H, White PS, Klinka K, Chourmouzis C (1999) Phytogeographical and Chroocophyceae (Cyanophyta) in Keenjhar Lake, Distt: Thatta, Sindh, community similarities of alpine tundras of Changbaishan Summit, China, Pakistan. Res J Fish Hydrobiol 3: 11-21. and Indian Peaks, USA. J Vegetation Sci 10: 869-882.

18. Leghari SM (2001) Fresh water algae of Sindh. The Desmid from the lake and 43. Barinova SS, Kukhaleishvili L, Nevo E, Janelidze Z (2011) Diversity and Ponds of Sind, Pakistan. Online J Biol Sci 1: 456-460. ecology of algae in the Algeti National Park as a part of the Georgian system of protected areas. Turk J Bot 35: 729-774. 19. Leghari SM (2001) Some fresh water green filamentous algae (Chlorophyta) and Dinoboron cylindrica (Chrysophyta) from Lakes and Riverin Ponds of 44. Barinova S (2011) The effect of altitude on distribution of freshwater algae in Sindh, Pakistan. Online J Biol Sci 1: 145-149. continental Israel. Current Topics in Plant Biology 12: 89-95.

20. Leghari MK, Bushra SB, Leghari MY (2001) Ecological study of algal flora of 45. Heywood V (2004) Modern approaches to floristics and their impact on the Kunhar River of Pakistan. Pak J Bot 33: 629-636. region of SW Asia. Turk J Bot 28: 7-16.

21. Leghari MK, Shah M, Leghari MY (2002) Ecological Study of Algal Flora of 46. Department of Geography and Urban Planning (1998) District census report. Jhelum River - Azad Kashmir. J Drainage Wat Management 6: 33-48. University of Peshawar, Pakistan.

22. Mahar MA, Jafri SIH, Leghari SM, Khuhawar MY, Noor AA (2000) Studies 47. Islam M, Ahmad H, Rashid A, Razzaq A, Akhtar N, et al. (2006) Weeds and on the fresh water poisonous planktonic Cyanobacteria (Blue green algae) of medicinal plants of Shawar Valley, District Swat. Pak J Weed Sci Res 12: 83- Manchar lake Dadu, Sindh, Pakistan. Pak J Biol Sci 3: 1973-1975. 88.

23. Naz S, Hasan M, Shameel M (2004) Biodiversity of Oscillatoria 48. Prescot GW (1951) Algae of western great lake area, Cranbrook. Inst (Nostocophyceae, Cyanophyta) from Northern areas of Pakistan. Pak J Bot Bloomfield Hills, Michigan. U.S.A. 36: 503-530. 49. Tiffany LH, Britton ME (1952) The Algae of Illinois. Chicago Univ, Chicago 24. Naz S, Hasan M, Shameel M (2004) Taxonomic study of Anabaina Bory Press. U.S.A. (Nostocophyceae, Cyanophyta) from Northern areas of Pakistan. Pak J Bot 36: 283-295. 50. Desikachary TV (1959) Cyanophyta. Indian Council of Agriculture Research, New Delhi. 25. Naz S, Hasan M, Shameel M (2004) Taxonomic study of Chroocophyceae (Cyanophyta) from Northern areas of Pakistan. Pak J Bot 36: 247-281. 51. Transeau EN (1951) The Zygnemataceae (Fresh-water conjugate algae). The Ohio State University Press, Columbus. 26. Sarim FM, Nisa K, Shaheen K (2007) Some Chaetophorales and Cladophorales from District Nowshera, Pakistan. Pak J Pl Sci 13: 39-44. 52. Bellinger EG, Sigee DC (2010) Freshwater Algae (Identification and use as bioindicators). John Wiley and Sons Ltd, Chippenham, Wilts. 27. Sarim FM, Nisa K, Afzal N (2008) Some fresh water algae of Tarbela Dam, Pakistan. Pak J Pl Sci 14: 35-39. 53. Komárek J, Anagnostidis K (1998) Cyanoprokaryota. Teil 1. Chroococcales. Süsswasserflora von Mitteleuropa 19/1. Gustav Fisher, Jena, Stuttgard, 28. Sarim FM, Jehan M, Nisa K (2009) Genera Oedogonium and Bulbochaete Lübeck, Ulm. (order Oedogoniales) of Peshawar valley, Pakistan. Pak J Pl Sci 15: 107-113. 54. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. Teil 2. Oscillatoriales. 29. Sarim FM, Sultana N, Nisa K (2009) Fresh water Algae of River Sardaryab, Süsswasserflora von Mitteleuropa 19/2, Elsevier, München. District Charsadda, Pakistan. Pak J Pl Sci 15: 69-74. 55. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae, 1. Naviculaceae. 30. Sarim FM, Ali A, Akhtar P, Rehman SR, Zia A, Nisa K (2010) Algae recorded Süßwasserflora von Mitteleuropa, 2/1. G. Fischer, Jena, Stuttgart, Lübeck, from Wah garden Hassan Abdal, Pakistan. Pak J Pl Sci 16: 21-23. Ulm. 31. Shanaz A, Zarina A, Hassan M, Shameel M (2008) Taxonomic study of 56. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae, 2. Bacillariaceae, chlorophyta from Lahore, Pakistan. Int J Phycol Phycochem 4: 79-90. Epithemiaceae, Surirellaceae. Süßwasserflora von Mitteleuropa, 2/2. G. 32. Zaman A, Hussain F, Sarim FM (2009) Genus Spirogyra from Peshawar Fischer, Jena, Stuttgart, Lübeck, Ulm. valley, Pakistan. Pak J Pl Sci 15: 115-122. 57. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae, 3. Centrales, 33. Zarina A, Hasan M, Shameel M (2005) Taxonomic study of the order Fragilariaceae, Eunotiaceae. Süßwasserflora von Mitteleuropa, 2/3. G. Ulotrichales (Chlorophyta) from North-Eastern areas of Pakistan. Pak J Bot Fischer, Stuttgart, Jena. 37: 797-806. 58. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae, 4. Achnanthaceae, 34. Zarina A, Hasan M, Shameel M (2006) Taxonomic study of the class Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema (Chlorophyta) from certain areas of the Punjab, Pakistan. Proc Gesammtliteraturverzeichnis, 1-4. Süßwasserflora von Mitteleuropa, 2/4. G. Pakistan Acad Sci 43: 229-240. Fischer, Stuttgart, Jena.

35. Zarina A, Hasan M, Shameel M (2006) Taxonomic study of the class 59. Barinova SS, Medvedeva LA, Anissimova OV (2006) Diversity of algal Siphonocladophyceae Shameel from North-Eastern areas of Pakistan. Pak indicators in environmental assessment, Pilies Studio, Tel Aviv. J Bot 38: 151-159. 60. Ter Braak CJF, van Dame H (1989) Inferring pH from diatoms: a comparison 36. Zarina A, Hasan M, Shameel M (2006) Taxonomic studies of the Genus of old and new calibration methods. Hydrobiologia 178: 209-223.

Volume 2 • Issue 2 • 1000104 • Page 14 of 15 • Citation: Barinova S, Ali N, Barkatullah, Sarim FM (2013) Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert Opin Environ Biol 2:2.

doi:http://dx.doi.org/10.4172/2325-9655.1000104

61. Van Dame H, Martens A, Sinkeldam J (1994) A coded checklist and monitoring in the river ecosystems of the eastern Mediterranean. Nova ecological indicator values of freshwater diatoms from the Netherlands. Neth Science Publishers, New York, U.S.A. J Aquat Ecol 28: 117-133. 69. Barinova SS, Petrov A, Nevo E (2011) Comparative analysis of algal 62. European Parliament (2000) Directive 2000/60/EC of the European biodiversity in the rivers of Israel. Cent Eur J Bio 6: 246-259. Parliament and of the Council establishing a framework for community action in the field of water policy. OJL 327: 1-72. 70. Barinova SS, Nevo E, Bragina TM (2011) Ecological assessment of wetland ecosystems of northern Kazakhstan on the basis of hydrochemistry and algal 63. Novakovsky AB (2004) Abilities and base principles of program module biodiversity. Acta Bot Croat 70: 215–244. “GRAPHS”. Scientific reports of Komi Scientific Center, Ural Division of the Russian Academy of Sciences 27: 1-28. 71. White PS (1983) Eastern Asian-Eastern North American floristic relations: the plant community level. Ann Missouri Bot Garden 70: 734-747. 64. Watanabe T, Asai K, Houki A (1986) Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - diatom 72. Kolayli S, Şahin B (2009) Benthic algae (except Bacillariophyta) and their assemblage index (DAIpo). Sci Tot Envir 55: 209-218. seasonal variations in Karagöl Lake (Borçka, Artvin-Turkey). Turk J Bot 33: 27-32. 65. Hustedt F (1938-1939) Systematische und okologische Untersuchungen über die Diatomeenflora von Java, Bali und Sumatra. Archiv für Hydrobiologie 73. Şahin B (2009) Contribution to the desmid flora of Turkey. Turk J Bot 33: 457- Suppl 15: 131-177. 460.

66. Hustedt F (1957) Die Diatomeenflora des Flüßsystems der Weser im Gebiet 74. Şahin B, Akar B, Bahceci İ (2010) Species composition and diversity of der Hansestadt Bremen. Abhandl Naturwiss Ver Brem 34: 181-440. epipelic algae in Balık Lake (Şavşat-Artvin, Turkey). Turk J Bot 34: 441-448.

67. Sládeček V (1986) Diatoms as indicators of organic pollution. Acta Hydrochim 75. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in Hydrobiol 14: 555-566. divergence and speciation. Biol J Linn Soc 58: 247-276.

68. Barinova S (2011) Algal diversity dynamics, ecological assessment, and

Author Affiliations Top 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel 2Department of Botany, University of Peshawar, Jamrud Road, 25120, Pakistan

Submit your next manuscript and get advantages of Sci Technol submissions ™™ 50 Journals ™™ 21 Day rapid review process ™™ 1000 Editorial team ™™ 2 Million readers ™™ More than 5000 ™™ Publication immediately after acceptance ™™ Quality and quick editorial, review processing

Submit your next manuscript at ● www.Sci Technol.com/submission

Volume 2 • Issue 2 • 1000104 • Page 15 of 15 •