The Evolution of the Ohh the Olden Days!

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of the Ohh the Olden Days! 50 million years ago The evolution of the Ohh the olden days! Well you could call it that, we’re somewhere between 58 and 40 million years ago, Hor e! phew it’s humid. 1. Look! Our first sign of the ancestor of the horse - Hyracotherium… Lets measure it! Hum, they’ve been here recently. Yes they have, I would say they are about the size of a Wow, how did you small dog and eat leaves not grass. know that? Because there’s one 2. 3. right behind you. 4. 35 - 20 million years ago Feeding style: Browser, forager Ah, that’s better. It’s not so humid here The environment sure has Oh changed. That breeze is so good. Oh, is that what we’re looking for? Size: 25 - 35 KG Period: Eocene Toe number: 3 on back feet, 4 on front feet 5. 6. Ah yes! It’s Mesohippus. It’s 9. grazing grass now and look at his It’s much more feet, it has split hooves Feeding style: Browser, forager horse-like now. It’s sort of large dog sized. Oh, can I throw a stick for it? Size: 100 KG Period: Oligocene Toe number: Split hooves, 3 toes on each foot 8. Sigh, I think we should see I wonder how fast 7. how it evolves, don’t you? it could go? 20 - 15 Million years ago Even its poo smells like a horses. W ng af O t P Wow, this must be It looks almost Merychippus! like a small horse. Trust you to find that! It’s because they’re digesting grass like horses do today. You can tell all sorts of 10. 11. things from poo, you know. Feeding style: Grazer, browser Size: 200 KG I wonder if it sounds like a horse, too? Period: Miocene But a cute high pitched horse. No time to find out. I want to show you the... Toe number: Hoof + two small side 'toes' on each foot 12. 13. To d a y That’s right, the modern 15. day horse! Let’s look at its feet. …Equus! Horses! Yep, proper hooves! 14. 16. Feeding style: Grazer. Hello horse. We’ve met your Size: 500 KG great, great, great, great… Period: Modern times a lot, grandparents! Toe number: One hoof on each foot Come on, let’s go for a ride! 17..
Recommended publications
  • Unit-V Evolution of Horse
    UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits.
    [Show full text]
  • Skeleton of the Oligocene (30 Million-Year-Old) Horse, Mesohippus, Is a Featured Exhibit at the New North Dakota Cowboy Hall of Fame in Medora
    Skeleton of the Oligocene (30 million-year-old) horse, Mesohippus, is a featured exhibit at the new North Dakota Cowboy Hall of Fame in Medora By John W. Hoganson Developers of the recently opened North Dakota Cowboy Hall of Fame contacted me about having a fossil exhibit in the new Hall in Medora. Of course, what would be more appropriate than an exhibit interpreting the evolution of the horse? Most people are under the false impression that horses did not inhabit North America until they were introduced by the Spaniards during the early days of conquest. But horses are indigenous to North America. Fossil remains of the earliest horse, referred to as Hyracotherium (or sometimes Eohippus), have been recovered from early Eocene (about 50 million years old) rocks in North America. In fact, they were some of the most abundant mammals that lived during that time. The fossil record of horses in North Dakota extends back to the Oligocene, about 30 million years ago, when the diminutive horse, Mesohippus roamed western North Dakota. Mesohippus was tiny, about the size of a sheep. The adults were only about 20 inches tall at the shoulder. They also had three toes on each foot compared to the modern horse Equus that has one. Mesohippus was also probably more of a browsing herbivore compared to the modern grazing horse. We have found many Mesohippus fossils in North Dakota but no complete skeletons. Consequently, the Mesohippus skeleton on exhibit at the Cowboy Hall of Fame is an exact cast replica. We have also found the remains of 50,000-year-old horses in North Dakota indicating that horses lived here during the last Ice Age.
    [Show full text]
  • Paleobiology of Archaeohippus (Mammalia; Equidae), a Three-Toed Horse from the Oligocene-Miocene of North America
    PALEOBIOLOGY OF ARCHAEOHIPPUS (MAMMALIA; EQUIDAE), A THREE-TOED HORSE FROM THE OLIGOCENE-MIOCENE OF NORTH AMERICA JAY ALFRED O’SULLIVAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2002 Copyright 2002 by Jay Alfred O’Sullivan This study is dedicated to my wife, Kym. She provided all of the love, strength, patience, and encouragement I needed to get this started and to see it through to completion. She also provided me with the incentive to make this investment of time and energy in the pursuit of my dream to become a scientist and teacher. That incentive comes with a variety of names - Sylvan, Joanna, Quinn. This effort is dedicated to them also. Additionally, I would like to recognize the people who planted the first seeds of a dream that has come to fruition - my parents, Joseph and Joan. Support (emotional, and financial!) came to my rescue also from my other parents—Dot O’Sullivan, Jim Jaffe and Leslie Sewell, Bill and Lois Grigsby, and Jerry Sewell. To all of these people, this work is dedicated, with love. ACKNOWLEDGMENTS I thank Dr. Bruce J. MacFadden for suggesting that I take a look at an interesting little fossil horse, for always having fresh ideas when mine were dry, and for keeping me moving ever forward. I thank also Drs. S. David Webb and Riehard C. Hulbert Jr. for completing the Triple Threat of Florida Museum vertebrate paleontology. In each his own way, these three men are an inspiration for their professionalism and their scholarly devotion to Florida paleontology.
    [Show full text]
  • The Dinosaurs of North America
    FEOM THE SIXTEENTH ANNUAL KEPOKT OF THE U. S, GEOLOGICAL SURVEY THE DINOSAURS OF NORTH AMERICA OTHNIEL CHARLES MARSH TALE UNIVERSITY WASHINGTON 1896 ^33/^, I/BRAKt 4 ,\ . THE DINOSAURS OF NORTH AMERICA. BY OTHNIEL CHARLES MARSH. 133 CONTENTS. Pajje. Introduction 143 Part I. —Triassic dinosaurs 146 Theropoda 146 Anchisaurida? 147 Anchisaurus 147 The skull 148 The fore limbs 149 The hind limbs 149 Anchisaurus solus 149 Amniosaurus rTT 150 Eestoration of Anchisaurus 150 Dinosaurian footprints 151 Distribution of Triassic dinosaurs 152 Part II. —Jurassic dinosaurs 152 Theropoda : 153 Hallopus 153 Fore and hind limbs 154 Coelurus _ 155 The vertebra:- 155 The hind limbs 156 Ceratosaurus 156 The skull 157 The brain 159 The lower iaws 159 The vertebra: 159 The scapular arch 160 The pelvic arch 160 The metatarsals 162 Eestoration of Ceratosaurus 163 Allosaurus 163 European Theropoda 163 Sauropoda 164 Atlantosaurus beds 164 Families of Sauropoda 165 Atlantosauridie 166 Atlantosaurus 166 Apatosaurus 166 The sacral cavity 166 The vertebra- 167 Brontosaurus 168 The scapular arch 168 The cervical vertebra.- 169 The dorsal vertebree 169 The sacrum 170 The caudal vertebra- 171 The pelric arch 172 The fore limbs 173 The hind limbs 173 135 136 CONTENTS. Part II. —Jurassic dinosaurs—Continued. Page. Sauropoda—Continued. Atlantosaurida? —Continued. Restoration of Brontosaurus 173 Barnsaurus 174 Diplodoeida? 175 Diplodocus 175 The skull 175 The brain 178 The lower jaws 178 The teeth 179 The vertebra; 180 The sternal bones 180 The pelvic girdle 180 Size and habits 180 Morosaurida? 181 Morosaurus 181 The skull 181 The vertebra? 181 The fore limbs 182 The pelvis 182 The hind limbs 183 Pleuroccelida? : 183 Pleurocoelus 183 The skull 183 The vertebras 183 Distribution of the Sauropoda 185 Comparison with European forms 185 Predentata ».
    [Show full text]
  • Horse Evolution ‐ Extended for the Classroom ‐
    Horse Evolution ‐ Extended for the Classroom ‐ GRADE LEVELS • 5‐8 TIME • 30‐40 minutes LEARNING OBJECTIVES • Environmental pressures can cause small changes in an animal’s physiology. • These small changes are called adaptations. • The accumulation of these small changes over time can drastically change an animal. This is known as evolution. MATERIALS • Air dry clay • Horse feet models • Large ink pads • Warm soap and water (for clean up) BACKGROUND INFORMATION • The first horse ancestor, Eohippus, appeared in North America 60 million years ago. • Changes in the environment over time led to changes in the horses’ anatomy, especially the hoof. • These adaptations caused by environmental pressures are integral in the evolution of the horse. Darwin2009: Partnership for Education – www.sepa.duq.edu/darwin SET UP 1. On a large flat table, display the 4 horse feet models. 2. Before class starts, separate the clay into balls (about the size of a baseball). 3. Have the ink pads close by the horse feet models. INTRODUCTION 1. Have students gather around the table and introduce the activity. Encourage the students to study the horse feet: a. What are some of the differences between the feet? b. What do you think the environment was like? c. Can you guess how old is the oldest skeleton? d. How do you imagine the horse behaved then and now? For example, what would the ancient horse do if he saw a predator (probably hide), versus the modern horse (probably run). 2. Point out the marked difference in the feet of the horses. The feet of the horses provide great insight into how the horse has evolved.
    [Show full text]
  • Othniel Charles Marsh
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XX-FIRST MEMOIR BIOGRAPHICAL hlEhlOIR OE OTHNIEL CHARLES MARSH BY CHARLES SCHUCHEKT PRESENTED TO THE -4C.4DEhlY AT THE ASSU.\L JIEETIPU'G, 1938 OTHNIEL CHARLES MARSH BY CHARLES SCHUCIIERT Othniel Charles Marsh, for ,twelve years president of the National r\caderny of Sciences, was born to Caleb Marsh and Mary Gaines Peabody on October 29, 1831, in Lockport, New York, and died in New Haven, Connecticut, on March 18, 1899. One of the three founders of the science of vertebrate paleon- tology in America, his career furnishes an outstanding exatnple of the indomitable spirit that drives men on to a determined goal. His motto might well have been. "\l.That 1 have, I hold." He asked no quarter, and gave none. :It home around a camp fire or in an army tent, formal as a presiding officer or in society, at times austere and autocratic, at others a raconteur of note, he left a lasting impression on his chosen 111-anch of science. Summarizing his work statistically, it may be said that he- tween 1861 and 1899 he published about 300 papers, reports, and books. Of new genera he described 225, and of new species, 496; of new families 64, of su1)orders 8, of orders 19, and of subclasses I. Of his work on vertebrate fossils in general, Osbom says that he "carried out the most intensive field esl)loration known to science ant1 pul~lishetl a large num1)er of 1)reliminary papcrs, which fairly revol~~tionizedour knowledge." ANCESTRY AKD TIZ:\INISG John hlarsh of Salem, the first of his name recorded as emigrating from England to America, is believctl to have reached In the preparation of this memorial, the writer has been aided greatly by the excellent skctches of Professor Marsh writtcn by George Bird Grinnell, Charles E.
    [Show full text]
  • An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of 2010 An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains David M. Masciale University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Masciale, David M., "An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains" (2010). Dissertations & Theses in Earth and Atmospheric Sciences. 11. https://digitalcommons.unl.edu/geoscidiss/11 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS by David M. Masciale A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professors Ross Secord and Robert M. Hunt, Jr. Lincoln, NE April, 2010 AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS David M. Masciale, M.S. University of Nebraska, 2010 Advisers: Ross Secord and Robert M.
    [Show full text]
  • Evolution of Horse
    UNIT 11 EVOLUTION OF HORSE Structure____________________________________________________ 11.1 Introduction 11.3 Role of Climate in the Evolution of Horse Expected Learning Outcomes 11.4 Activity 11.2 Evolution of Horse 11.5 Summary Systematic Palaeontology 11.6 Terminal Questions Place and Time of Origin 11.7 References Major Evolutionary Transitions 11.8 Further/Suggested Readings Phylogeny of Horse 11.9 Answers 11.1 INTRODUCTION Vertebrates are a diverse group of organisms ranging from lampreys to human beings. The group includes animals with backbone, such as fishes, amphibians, reptiles, birds and mammals. The dinosaurs that have caught public attention by making their appearance in several films and books too are vertebrates. Vertebrates have a long geological history on the planet Earth beginning more than 500 million years (Myr) ago, starting from the Cambrian to the present. They first appeared in the fossil record during the Cambrian period of the Palaeozoic era. Fishes, amphibians and reptiles were the most dominant groups of vertebrates in the Palaeozoic and Mesozoic eras. In the Mesozoic era, dinosaurs- a group of reptiles, and mammals made their appearance. Dinosaurs had a wide geographic distribution, being reported from all continents and were the largest animals to roam the Earth during the Mesozoic era. The mammals began to diversify only after the demise of dinosaurs at the close of the Mesozoic era at around 66 Myr ago. In the Cenozoic era, mammals rapidly occupied every niche and corner of the globe and therefore, the Cenozoic era is also known as the “Age of Mammals”. Introduction to Palaeontology Block……………………………………………………………………………………………….….............….…........ 3 Mammals of the Cenozoic era belong to three groups: placentals (that give birth to young ones), marsupials (in which an offspring after birth continues to develop within the pouch of the mother) and monotremes (egg laying mammals).
    [Show full text]
  • INTRODUCTION to HORSE EVOLUTION: ANATOMICAL CHARACTERISTICS, CLASSIFICATION, and the STRATIGRAPHIC RECORD © 2008 by Deb Bennett, Ph.D
    INTRODUCTION TO HORSE EVOLUTION: ANATOMICAL CHARACTERISTICS, CLASSIFICATION, AND THE STRATIGRAPHIC RECORD © 2008 by Deb Bennett, Ph.D. The impetus for producing this educational article was a telephone conversation with a man whom I normally enjoy. He’s a cowboy, and grew up on a ranch. He’s a kind fellow who has done a good job with not only a lot of horses, but also his kids, who are likewise very fine people. He’s a Christian – a commitment that I respect – and his children were not only raised in their church, but have gone on to attend Bible College. At the same time, this fellow knows that I’m a paleontologist interested in fossil horses. In our recent conversation, at one point he suddenly burst out, “I can’t understand it! Belief in evolution is simply stupid!” I was quite taken aback at his lack of respect for my point of view, because his attitude invalidates my experience and beliefs in a way that I would never impose in return – not to mention that it goes against nearly every piece of advice that St. Paul ever gave. What could possibly cause an otherwise reasonable man to make such a statement so vehemently to someone he knows it is going to offend? Why of course — because the fellow cares about me; he wants my soul to be saved, even at the cost of his own. Why does he think my soul is in danger of damnation? Because he Dr. Deb’s favorite image of “stupid believes that the words he reads in the Bible are to be taken paleontologists” (Moe, Larry, and Curly absolutely literally – no room for metaphorical interpretations, of the Three Stooges) textual criticism, or alternative readings.
    [Show full text]
  • Order PERISSODACTYLA – Equids, Rhinoceroses, Tapirs
    Order PERISSODACTYLA Order PERISSODACTYLA – Equids, Rhinoceroses, Tapirs Perissodactyla Owen, 1848. Quarterly Journal of the Geological Society of London 4: 103–141. Upper toothrows in altungulate Radinskya (late Paleocene) and Hyracotherium (Eocene). Tentative phylogenetic tree of Perissodactyla after Beninda-Emonds, 2007. Equidae (1 genus, 4 species) Asses, Zebras p. xx Rhinocerotidae (2 genera, 2 Rhinoceroses p. xx for true horses. North America became the centre of evolution of species) true horses, which occasionally migrated to other continents. The The perissodactyls are the order of herbivorous ‘odd-toed’ hoofed descendants of Protorohippus (once called Hyracotherium; Froehlich mammals that includes the living horses, zebras, asses, tapirs, 2002) evolved into many different lineages living side by side. The rhinoceroses and their extinct relatives. They were originally named collie-sized three-toed horses Mesohippus and Miohippus (from beds by Richard Owen (1848) as a group including horses, rhinos, tapirs dated about 30–37 mya) were once believed to be sequential segments and hyraxes, although no recent authors have accepted the inclusion on the unbranched trunk of the horse evolutionary tree. However, of hyraxes in Perissodactyla. Perissodactyls are recognized by a number they coexisted for millions of years, with five different species of two of unique specializations (Hooker 2005), but their single most diagnostic genera living at the same time and place. From Miohippus-like ancestors, feature is the structure of their feet. Most perissodactyls have either horses diversified into many different ecological niches. One major one or three toes on each foot, and the axis of symmetry of the foot lineage, the anchitherines, retained low-crowned teeth, presumably runs through the middle digit.
    [Show full text]
  • Evolution of Horse
    EVOLUTION OF HORSE Horses are one of the oldest forms of mammals. Evolution of horse dates back to Eocene epoch, more million than 50 million years ago. Primary centre of evolution were Great Plains of North America, from where species migrated to Europe and Asia from time to time. Horses became extinct in North America by the end of Pleistocene epoch but their offshoots in Europe and Asia flourished. Evolution of horse was triggered by a change in the climate and vegetation during lower coenozoic period, when grasslands in most parts of the world replaced forests. The main modifications in the body of horses can be outlined as follows: · 1. Increase in the size and height of the body from a small, rabbit-like animal to 6 feet tall grassland animal. 2. Gradual enlargement and better development of the third digit (median digit) and reduction of the other lateral digits. 3. Lengthening of the limbs and perfection of the hoof for fast running in open grasslands. 4. Reduction of ulna bone in the fore leg and fibula in the hind leg and strengthening of radius and tibia. 5. Change from digitigrade to unguligrade locomotion for fast running. 6. Elongation of the preorbital or facial region of the skull and migration of eyes to the top of head. 7. Modification of teeth from brachydont (low-crowned) to hypsodont (high crowned) to withstand tougher food (grass). 8. Increase in the size and complexity of the brain for superior intelligence. 9. Reduction in pectoral girdle and disappearance of the weak clavicle. 10. Body became streamlined, muscles tight, without loose fat, for long and sustained running.
    [Show full text]
  • Paleo Primer 2 North Dakota’S Cretaceous Underwater World
    Paleo Primer 2 North Dakota’s Cretaceous Underwater World Becky M. S. Barnes, Clint A. Boyd, and Jeff J. Person North Dakota Geological Survey Educational Series #35 All fossils within this publication that reside in the North Dakota State Fossil Collection are listed with their catalog numbers. North Dakota Geological Survey 600 East Boulevard Bismarck, ND 58505 https://www.dmr.nd.gov/ndfossil/ Copyright 2018 North Dakota Geological Survey. This work is licensed under a Creative Commons Attribution - NonCommercial 4.0 International License. You are free to share (to copy, distribute, and transmit this work) for non-commercial purposes, as long as credit is given to NDGS. Cover: Mosasaur, 2017, by Becky Barnes Paleo Primer 2: North Dakota’s Cretaceous Underwater World Becky M. S. Barnes, Clint A. Boyd, and Jeff J. Person North Dakota Geological Survey Educational Series #35 1 Water water everywhere... North Dakota is a landlocked state – dry land on all sides. In prehistoric times, that wasn’t always the case. The amount of ice locked in polar glaciers determines how much water is available in the world’s oceans. We live in a time when there is quite a lot of ice locked away, which means more land is available to live on. The amount of ice at the poles has changed many times; during warm periods when the polar ice caps were absent, our oceans expanded to fill areas that today are above sea-level. One such expansion was called the Western Interior Seaway. This seaway was so large it split North America in two, connecting the Arctic Ocean with the Gulf of Mexico.
    [Show full text]