Species : Oncomelania Hupensis Quadrasi

Total Page:16

File Type:pdf, Size:1020Kb

Species : Oncomelania Hupensis Quadrasi Draft risk assessment report addressing Terms of Reference Species : Oncomelania hupensis quadrasi 1. Taxonomy of the species Phylum Mollusca Class Gastropoda Family Pomatiopsidae Oncomelania hupensis quadrasi also known as Oncomelania quadrasi is a subspecies of Oncomelania hupensis – wild type strains only. Another subspecies (Oncomelania hupensis hupensis) is already on the Live Import List. 2. Status of species under CITES This species is prevalent in large numbers in several regions of the Philippines [1-4]. The species is not listed in CITES. The snails to be imported are derived from laboratory stocks maintained in the Philippines and/or the USA. The laboratory strain has been obtained from wild populations in the Philippines and has not been genetically modified. Occasionally, it may be necessary to source infected snails from wild populations to ensure the lab stocks do not become less pathogenic than endemic isolates. 3. Ecology of the species Oncomelania quadrasi is a tropical, freshwater snail that is operculated, amphibious and dioecious [1,2,4]. It feeds on green algae, diatoms and decaying vegetative matter. The snail lives in wet environments such as flood plain forests, swamps and sluggish streams, ones usually clogged with vegetation [1,2,4]. The species is susceptible to desiccation in the absence of moisture for prolonged periods [1,2,4]. Life Span: The snail can live for about 4-6 months in the wild, though it can live substantially longer in laboratory conditions. Those snails used to maintain the Schistosoma japonicum parasite life cycle in the laboratory will be crushed to harvest the parasite after 3 months post infection [1]. Size and Weight Range / Identification: The snails are small, dextral and generally dark brown in colour with the adult no bigger than 4-6mm in length with 4-6 whorls or spirals in the shell. Except for fine axial lines of growth the shell is rather thin and smooth (see illustration). Males are smaller than females [1,2]. Natural Geographic Range: Oncomelania quadrasi is known to occur over most of Mindanao Philippines except in oriental Misamis, in most of Samar, in northeastern Leyte, around Lake Naujan in Mindoro, in Sorsogon in Luzon, and on the island of Siargao northeast of Mindanao [1-4]. These areas have no distinct dry season. Within the endemic islands the distribution is related to topography, usually flat. Habitat: These are varied and include flood plain forests, swamps, ponds, water logged grasslands and small sluggish streams. They must be freshwater, definitely not brackish. Most often found at sea level elevation, they can occur at higher altitudes. The most noted characteristic of the snail inhabited areas is their flatness which promotes the retention of water. The snail is not migratory, remaining within its established habitat. It has been observed that adult Oncomelania hupensis quadrasi can withstand desiccation for about 3 months and there is evidence to suggest that the snail is able to hibernate as a survival mechanism during adverse weather/habitat conditions but, if these are prolonged, it eventually dies [1]. 1 Habitat Requirements: Includes vegetation which provides shade and shelter from sunlight. Defined level of water with sloping banks or water edge which provides breeding or egg laying sites and relative clarity of water. It is believed that well oxygenated water is essential, levels of 3.8 – 9.85ppm of dissolved oxygen. They do not like stagnant and foul water. They appear to prefer a relative neutral pH of soil and water. Oncomelania quadrasi is a tropical, fresh water snail so warmer, humid conditions are best. Humidity of around 70-80% and temperatures between 20-30 degrees celsius with optimum being 26 degrees celsius. Mortality increases significantly at much lower temperatures [1]. Social Groupings: The species does not form social groups but do tend to be found in colony clusters. Harm to Humans: The species in itself does not harm humans however, it is the intermediate host and therefore, if infected, a carrier of the parasite, Schistosoma japonicum, which causes the disease Schistosomiasis in humans [3]. Diet: Green algae, diatoms, decaying vegetative matter. 4. Reproductive Biology Oncomelania quadrasi is dioecious with separate male and female individuals. Reproduction therefore requires copulation between sexes. However, studies have shown that continuous presence of males is not necessary as females, once fertilised, can continue to lay fertile eggs for several months. Sexual maturity is reached at 10-16 weeks or approximately 3.5mm in size. Copulation occurs both day and night. Eggs are laid singly on solid objects in the water surface and at inter-phase between water and soil on sloping banks. A fertilised female can lay 2 eggs every 5 days. Hatching occurs 10-15 days after oviposition. There is no evidence to indicate that the snails are able to hybridise with other snail species [1,2,4]. 5. Feral Populations There is no record of feral populations of this species in Australia or in other parts of the world. Pest Status: This species is not considered a pest in its natural range. Much of the potential risk relates to the ability of the snail to carry disease causing parasites infective to humans. 6. Environmental Risk Assessment It is possible that Oncomelania quadrasi could adapt well to the conditions of the tropical north of eastern Australia if released and potential for the species to compete with other snails in the fresh water environment. It is also possible that prolonged periods of drought would have the potential to decimate any colonies. The snail’s role as a potential pest is primarily due to its ability to carry human disease causing parasites. This risk potential is considerably reduced through factors of better sanitation conditions in Australia and the lack of a present reservoir of infected mammals. However, this species will only be imported for scientific research purposes and will be maintained in Biosecurity approved quarantine premises under strict regulatory controls. The laboratory at QIMR Berghofer has maintained the Oncomelania quadrasi snails for 25 years. Last imported in 1999. Strict and diligent controls on the snails and the parasites have ensured that there has been no release of live snails or viable tissue from this laboratory. 7. Likelihood that the species could establish a breeding population in Australia. Oncomelania quadrasi could potentially establish a breeding colony if released from human control in a suitable fresh water habitat in a tropical region of adequate rainfall and humidity such as the tropical north east area of Queensland. However, there are several factors that may limit the snails ability to thrive and spread here in Australia. The snail is susceptible to desiccation in prolonged dry periods where the shallow 2 waters which it inhabits dry up [1]. The young snails, upon hatching, are primarily aquatic for the first two weeks becoming amphibious later [1,2,4]. It is at this stage that the snails are most vulnerable to dry conditions, though the adults have the ability to survive longer as they are able to aestivate in dry conditions. It does not thrive at colder temperatures, the optimum being around 26 degrees celsius and mortality increases significantly when temperatures drop below 10 degrees [1]. It does not tolerate stagnant, foul water, requiring well oxygenated water of relative clarity. The snails are not compatible with fast currents, requiring slow, sluggish water movement [1]. Unlike a number of snail species which are hermaphrodite and thus capable of self fertilisation, the Oncomelania quadrasi is dioecious with separate male and female individuals requiring copulation between sexes to breed. This can be a major limiting factor. 8. Potential impact of the species should it become established in Australia The species feeds on green algae, diatoms and decaying vegetative matter in freshwater locations. In such a habitat it could compete with other small aquatic snails. The species is unlikely to affect agriculture or contribute to land degradation. The risk to humans from this species lie in its capacity as an intermediate host to the pathogenic blood fluke Schistosoma japonicum which causes the disease Schistosomiasis. These parasites infect humans by penetration of the skin in freshwater environments. Though very host specific with regard to the snail host it is not limited to humans as the primary mammalian host, being infective to several mammalian species including cows, pigs, dogs, goats, rats and mice, rabbits and hares. It is possible that it may also be infective to several native species. Maintenance of the life cycle of Schistosoma japonicum in natural environments in Australia is highly unlikely as it would require 1. An established colony of Oncomelania quadrasi 2. Infected human or animal to defecate into the body of water where the snail host occurs. 3. Frequent visits of potential mammalian hosts to that water body. While it is likely that humans in Australia carry the disease, the prevalence is quite low (limited to travellers or immigrants from the endemic areas of the Philippines) and too low to sustain a viable risk. It is extremely unlikely that there are any infected animals present in Australia outside the strict controls of Biosecurity containment facilities at research institutes. 9. Restrictions This species should only be imported for the purposes of research where strict Biosecurity controls are enforced. The parasites will be sourced from laboratory maintained stocks that have not been genetically modified. It may be necessary on occasion to refresh these stocks with wild sourced infected snails to ensure that the life cycles that the research is being conducted on do not become less pathogenic than that occurring in the natural environment. The snails should be transported by approved couriers or accredited Biosecurity approved persons in approved biological containers which meet IATA standards.
Recommended publications
  • D3e097ea14fe7310d91c1490e1
    RESEARCH ARTICLE Comparative Phylogenetic Studies on Schistosoma japonicum and Its Snail Intermediate Host Oncomelania hupensis: Origins, Dispersal and Coevolution Stephen W. Attwood1,2*, Motomu Ibaraki3, Yasuhide Saitoh4, Naoko Nihei5,6, Daniel A. Janies7 1 State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China, 2 Department of Life Sciences, The Natural History Museum, London, United Kingdom, 3 School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America, 4 Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan, 5 Laboratory of Parasitology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan, 6 Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan, 7 Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America * [email protected] OPEN ACCESS Abstract Citation: Attwood SW, Ibaraki M, Saitoh Y, Nihei N, Janies DA (2015) Comparative Phylogenetic Studies on Schistosoma japonicum and Its Snail Intermediate Background Host Oncomelania hupensis: Origins, Dispersal and Coevolution. PLoS Negl Trop Dis 9(7): e0003935. Schistosoma japonicum causes major public health problems in China and the Philippines; doi:10.1371/journal.pntd.0003935 this parasite, which is transmitted by freshwater snails of the species Oncomelania hupen- Editor: Joanne P. Webster, Imperial College London, sis, causes the disease intestinal schistosomiasis in humans and cattle. Researchers work- UNITED KINGDOM ing on Schistosoma in Africa have described the relationship between the parasites and Received: April 30, 2015 their snail intermediate hosts as coevolved or even as an evolutionary arms race. In the present study this hypothesis of coevolution is evaluated for S.
    [Show full text]
  • In Bahia, Brazil
    Volume 52(40):515‑524, 2012 A NEW GENUS AND SPECIES OF CAVERNICOLOUS POMATIOPSIDAE (MOLLUSCA, CAENOGASTROPODA) IN BAHIA, BRAZIL 1 LUIZ RICARDO L. SIMONE ABSTRACT Spiripockia punctata is a new genus and species of Pomatiopsidae found in a cave from Serra Ramalho, SW Bahia, Brazil. The taxon is troglobiont (restricted to subterranean realm), and is characterized by the shell weakly elongated, fragile, translucent, normally sculptured by pus‑ tules with periostracum hair on tip of pustules; peristome highly expanded; umbilicus opened; radular rachidian with 6 apical and 3 pairs of lateral cusps; osphradium short, arched; gill filaments with rounded tip; prostate flattened, with vas deferens inserting subterminally; penis duct narrow and weakly sinuous; pallial oviduct simple anteriorly, possessing convoluted by‑ pass connecting base of bulged portion of transition between visceral and pallial oviducts with base of seminal receptacle; spermathecal duct complete, originated from albumen gland. The description of this endemic species may raise protective environmental actions to that cave and to the Serra Ramalho Karst area. Key-Words: Pomatiopsidae; Spiripockia punctata gen. nov. et sp. nov.; Brazil; Cave; Tro- globiont; Anatomy. INTRODUCTION An enigmatic tiny gastropod has been collected in caves from the Serra Ramalho Kars area, southwestern The family Pomatiopsidae is represented in the Bahia state, Brazil. It has a pretty, fragile, translucent Brazilian region by only two species of the genus Id‑ shell in such preliminary gross anatomy, which already iopyrgus Pilsbry, 1911 (Simone, 2006: 94). However, reveals troglobiont adaptations, i.e., depigmentation, the taxon is much richer in remaining mainland ar- lack of eyes and small size. The sample has been brought eas, with both freshwater and semi-terrestrial habits by Maria Elina Bichuette, who is specialized in subter- (Ponder & Keyzer, 1998; Kameda & Kato, 2011).
    [Show full text]
  • Oncomelania Hupensis Robertsoni
    Hauswald et al. Parasites & Vectors 2011, 4:206 http://www.parasitesandvectors.com/content/4/1/206 RESEARCH Open Access Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area Anne-Kathrin Hauswald1, Justin V Remais2,3, Ning Xiao4, George M Davis5, Ding Lu4, Margaret J Bale2 and Thomas Wilke1* Abstract Background: Oncomelania hupensis robertsoni is the sole intermediate host for Schistosoma japonicum in western China. Given the close co-evolutionary relationships between snail host and parasite, there is interest in understanding the distribution of distinct snail phylogroups as well as regional population structures. Therefore, this study focuses on these aspects in a re-emergent schistosomiasis area known to harbour representatives of two phylogroups - the Deyang-Mianyang area in Sichuan Province, China. Based on a combination of mitochondrial and nuclear DNA, the following questions were addressed: 1) the phylogeography of the two O. h. robertsoni phylogroups, 2) regional and local population structure in space and time, and 3) patterns of local dispersal under different isolation-by-distance scenarios. Results: The phylogenetic analyses confirmed the existence of two distinct phylogroups within O. h. robertsoni.In the study area, phylogroups appear to be separated by a mountain range. Local specimens belonging to the respective phylogroups form monophyletic clades, indicating a high degree of lineage endemicity. Molecular clock estimations reveal that local lineages are at least 0.69-1.58 million years (My) old and phylogeographical analyses demonstrate that local, watershed and regional effects contribute to population structure. For example, Analyses of Molecular Variances (AMOVAs) show that medium-scale watersheds are well reflected in population structures and Mantel tests indicate isolation-by-distance effects along waterways.
    [Show full text]
  • Transcriptome Sequencing and Differential Gene Expression
    www.nature.com/scientificreports OPEN Transcriptome sequencing and diferential gene expression analysis of the schistosome- Received: 26 May 2017 Accepted: 7 November 2017 transmitting snail Oncomelania Published: xx xx xxxx hupensis inhabiting hilly and marshland regions Jin-Song Zhao1, An-Yun Wang2, Hua-Bin Zhao3 & Yan-Hong Chen3 The freshwater snail Oncomelania hupensis is the unique intermediate host of the blood fuke Schistosoma japonicum, which is the major cause of schistosomiasis. The snail inhabits two contrasting environments: the hilly and marshland regions. The hilly snails are smaller in size and have the typical smooth shell, whereas the marshland snails are larger and possess the ribbed shell. To reveal the diferences in gene expression between the hilly and marshland snails, a total of six snails, three per environment, were individually examined by RNA sequencing technology. All paired-end reads were assembled into contigs from which 34,760 unigenes were predicted. Based on single nucleotide polymorphisms, principal component analysis and neighbor-joining clustering revealed two distinct clusters of hilly and marshland snails. Analysis of expression changes between environments showed that upregulated genes relating to immunity and development were enriched in hilly snails, while those associated with reproduction were over-represented in marshland snails. Eight diferentially expressed genes between the two types of snails were validated by qRT-PCR. Our study identifed candidate genes that could be targets for future functional studies, and provided a link between expression profling and ecological adaptation of the snail that may have implications for schistosomiasis control. Te blood fuke Schistosoma japonicum (Platyhelminth: Trematoda) occurs in China and, to a lesser extent, in the Philippines and parts of Indonesia, and human infection by the blood fuke causes a major public health problem especially in lake and marshland regions1,2.
    [Show full text]
  • Resistant Pseudosuccinea Columella Snails to Fasciola Hepatica (Trematoda) Infection in Cuba : Ecological, Molecular and Phenotypical Aspects Annia Alba Menendez
    Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba : ecological, molecular and phenotypical aspects Annia Alba Menendez To cite this version: Annia Alba Menendez. Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba : ecological, molecular and phe- notypical aspects. Parasitology. Université de Perpignan; Instituto Pedro Kouri (La Havane, Cuba), 2018. English. NNT : 2018PERP0055. tel-02133876 HAL Id: tel-02133876 https://tel.archives-ouvertes.fr/tel-02133876 Submitted on 20 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA En co-tutelle avec Instituto “Pedro Kourí” de Medicina Tropical Préparée au sein de l’ED305 Energie Environnement Et des unités de recherche : IHPE UMR 5244 / Laboratorio de Malacología Spécialité : Biologie Présentée par Annia ALBA MENENDEZ Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba: ecological, molecular and phenotypical aspects Soutenue le 12 décembre 2018 devant le jury composé de Mme. Christine COUSTAU, Rapporteur Directeur de Recherche CNRS, INRA Sophia Antipolis M. Philippe JARNE, Rapporteur Directeur de recherche CNRS, CEFE, Montpellier Mme.
    [Show full text]
  • Terrestrial Invasion of Pomatiopsid Gastropods in the Heavy-Snow Region of the Japanese Archipelago Yuichi Kameda* and Makoto Kato
    Kameda and Kato BMC Evolutionary Biology 2011, 11:118 http://www.biomedcentral.com/1471-2148/11/118 RESEARCHARTICLE Open Access Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago Yuichi Kameda* and Makoto Kato Abstract Background: Gastropod mollusks are one of the most successful animals that have diversified in the fully terrestrial habitat. They have evolved terrestrial taxa in more than nine lineages, most of which originated during the Paleozoic or Mesozoic. The rissooidean gastropod family Pomatiopsidae is one of the few groups that have evolved fully terrestrial taxa during the late Cenozoic. The pomatiopsine diversity is particularly high in the Japanese Archipelago and the terrestrial taxa occur only in this region. In this study, we conducted thorough samplings of Japanese pomatiopsid species and performed molecular phylogenetic analyses to explore the patterns of diversification and terrestrial invasion. Results: Molecular phylogenetic analyses revealed that Japanese Pomatiopsinae derived from multiple colonization of the Eurasian Continent and that subsequent habitat shifts from aquatic to terrestrial life occurred at least twice within two Japanese endemic lineages. Each lineage comprises amphibious and terrestrial species, both of which are confined to the mountains in heavy-snow regions facing the Japan Sea. The estimated divergence time suggested that diversification of these terrestrial lineages started in the Late Miocene, when active orogenesis of the Japanese landmass and establishment of snowy conditions began. Conclusions: The terrestrial invasion of Japanese Pomatiopsinae occurred at least twice beside the mountain streamlets of heavy-snow regions, which is considered the first case of this event in the area.
    [Show full text]
  • Genetic Comparison of Oncomelania Hupensis Quadrasi (Möllendorf
    SGeneticCIENCE D ComparisonILIMAN (JULY -DofECEMBER Oncomelania 2017) 29:2, hupensis 32-50 quadrasi Genetic Comparison of Oncomelania hupensis quadrasi (Möllendorf, 1895) (Gastropoda: Pomatiopsidae), the Intermediate Host of Schistosoma japonicum in the Philippines, Based on 16S Ribosomal RNA Sequence James Christopher C. Chua* Ian Kim B. Tabios Pebbles Grayle P. Tamayo Lydia R. Leonardo University of the Philippines Manila Ian Kendrich C. Fontanilla Raffy Jay C. Fornillos University of the Philippines Diliman Emmanuel Ryan C. De Chavez University of the Philippines Los Baños Takeshi Agatsuma Kochi Medical School Mihoko Kikuchi Nagasaki University Naoko Kato-Hayashi Yuichi Chigusa Dokkyo Medical University ABSTRACT Schistosomiasis japonica is a water-borne trematode infection transmitted by different subspecies of Oncomelania hupensis. As parasites may either co-evolve or locally adapt with their hosts, snail diversity, as revealed by morphometric and genetic studies, may reflect parasite diversity and elucidate snail susceptibility and transmission patterns. This study aimed to compare isolates of O. h. quadrasi based on a 342-bp fragment of _______________ *Corresponding Author ISSN 0115-7809 Print / ISSN 2012-0818 Online 32 J.C. C. Chua et al. the 16S ribosomal RNA gene. O. h. quadrasi isolates were collected from nine provinces known to have S. japonicum in the Philippines, namely Cagayan Valley, Bohol, Negros Occidental, Leyte, Davao, Davao del Sur, Mindoro Oriental, Northern Samar, and Sorsogon. O. h. hupensis and O. h. nosophora isolates were also collected from China and Japan, respectively. The 16S ribosomal RNA gene of each specimen was amplified and sequenced. Phylogenetic and network analyses based on the 221 16S rRNA gene sequences revealed that O.
    [Show full text]
  • Assessment of the Transmission Risk of Schistosomiasis After Flooding — North Poyang Lake, Jiangxi Province, China, 2020
    China CDC Weekly Preplanned Studies Assessment of the Transmission Risk of Schistosomiasis after Flooding — North Poyang Lake, Jiangxi Province, China, 2020 Shan Lv1,#; Fan Yang1; Zhiqiang Qin1; Chunli Cao1; Jing Xu1; Shizhu Li1; Xiao-nong Zhou1 risk of schistosomiasis transmission (1). A risk Summary assessment in Jiangxi was conducted for schistosomiasis What is already known about this topic? transmission and provided interventions after flooding. Over 90% of Oncomelania snails, the only intermediate Human stool samples, Oncomelania snails, and animal host of Schistosoma japonicum, are distributed in the feces released to the environment were collected in two middle and low reaches of Yangtze River. Flooding can counties, i.e., Lushan and Lianxi. Although no infected extend the distribution of Oncomelania snails and humans were found in the survey, infections in snails hence accelerate the transmission of schistosomiasis. and animal feces were discovered from four field sites What is added by this report? in Lushan. Our results indicated the intensive Although the dispersal of Oncomelania snails was surveillance should be implemented post-flooding. negligible in north Poyang Lake after flooding in 2020, Two neighboring counties, i.e., Lushan and Lianxi, 2 samples of cattle feces with Schistosoma egg and 2 located in the northwest bank of Poyang Lake leading infected snails samples were indeed found. All four risk to Yangtze River were selected. The evidence showed sites were distributed in Lushan County. Cattle feces that the density of Oncomelania snails increased were observed in the six out of seven field sites in significantly and exceeded that in the south lake Lushan County.
    [Show full text]
  • Temporal Transcriptome Change of Oncomelania
    Feng et al. Cell Biosci (2020) 10:58 https://doi.org/10.1186/s13578-020-00420-4 Cell & Bioscience RESEARCH Open Access Temporal transcriptome change of Oncomelania hupensis revealed by Schistosoma japonicum invasion Xinyu Feng1,2†, Lingqian Zhu1†, Zhiqiang Qin1, Xiaojin Mo1, Yuwan Hao1, Ying Jiang1, Wei Hu3 and Shizhu Li1* Abstract Background: The freshwater snail Oncomelania hupensis is the obligate intermediate host for Schistosoma japoni- cum in China. Transcriptomic examination of snail–schistosome interactions can provide valuable information of host response at physiological and immune levels. Methods: To investigate S. japonicum-induced changes in O. hupensis gene expression, we utilized high-throughput sequencing to identify transcripts that were diferentially expressed between infected snails and their uninfected controls at two key time-point, Day 7 and Day 30 after challenge. Time-series transcriptomic profles were analyzed using R package DESeq 2, followed by GO, KEGG and (weighted gene correlation network analysis) WGCNA analysis to elucidate and identify important molecular mechanism, and subsequently understand host–parasite relationship. The identifed unigenes was verifed by bioinformatics and real-time PCR. Possible adaptation molecular mechanisms of O. hupensis to S. japonicum challenge were proposed. Results: Transcriptomic analyses of O. hupensis by S. japonicum invasion yielded billion reads including 92,144 anno- tated transcripts. Over 5000 diferentially expressed genes (DEGs) were identifed by pairwise comparisons of infected libraries from two time points to uninfected libraries in O. hupensis. In total, 6032 gene ontology terms and 149 KEGG pathways were enriched. After the snails were infected with S. japonicum on Day 7 and Day 30, DEGs were shown to be involved in many key processes associated with biological regulation and innate immunity pathways.
    [Show full text]
  • Phylogenetic Relationships of Snails of the Genera Oncomelania and Tricula Inferred from the Mitochondrial 12S Rrna Gene
    Jpn. J. Trop. Med。 Hyg., Vol.31, No.1,2003, pp.5-10 5 Phylogenetic relationships of snails of the genera Oncomelania and Tricula inferred from the mitochondrial 12S rRNA gene MUNEHIRO OKAMOTO', CHIN-TSON L02, WILFRED U. TIU3, DONGCHUAN QUI4, PINARDI HADIDJAJA5,SUCHART UPATHAM6, HIROMU SUGIYAMA7, TAKAHIROTAGUCHI8, HIROHISA HIRAI9,YASUHIDE SAITOW10, SHIGEHISAHABE", MASANORI KAWANAKA7,MIZUKI HIRATA12AND TAKESHIAGATSUMA13* Accepted 28, February, 2002 Abstract The Schistosoma japonicum group and S. sinensium utilize intermediate snail hosts belonging to the genera Oncomelania and Tricula (Gastropoda: Pomatiopsidae). In the present study, partial sequences of the mitochon- drial 12S rRNA gene from 7 subspecies of 0. hupensis, two species of Tricula (T bollingi and T humida) and 0. minima were examined to infer a phylogeny for these. Nucleotide differences among subspecies of 0. hupensis were less than 6.5% and among species from different genera, 10-12%. The phylogenetic tree obtained in this study indicates that 0. hupensis subspecies fell into four distinct clades ; that is, 0. h. quadrasi from the Philip- pines, 0. h. lindoensis from Indonesia, 0. h. hupensis from Yunnan, China and the remaining 5 subspecies (0. h. hupensis from other parts of China, 0. h. robertsoni from China, 0. h. formosana from Taiwan, 0. h. chiui from Taiwan and 0. h. nosophora from Japan). The phylogenetic tree also showed that 0. minima was placed as sister to all of the subspecies of 0. hupensis. Possible evolutionary relationships among the snail hosts were discussed. Key Words: Oncomelania, Tricula, mitochondrial DNA, 12S rRNA gene, phylogenetic tree class Pulmonata, while pomatiopsids belong to the subclass INTRODUCTION Caenogastropoda.
    [Show full text]
  • Mitochondrial DNA Hyperdiversity and Population Genetics in the Periwinkle Melarhaphe Neritoides (Mollusca: Gastropoda)
    Mitochondrial DNA hyperdiversity and population genetics in the periwinkle Melarhaphe neritoides (Mollusca: Gastropoda) Séverine Fourdrilis Université Libre de Bruxelles | Faculty of Sciences Royal Belgian Institute of Natural Sciences | Directorate Taxonomy & Phylogeny Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Sciences, Biology Date of the public viva: 28 June 2017 © 2017 Fourdrilis S. ISBN: The research presented in this thesis was conducted at the Directorate Taxonomy and Phylogeny of the Royal Belgian Institute of Natural Sciences (RBINS), and in the Evolutionary Ecology Group of the Free University of Brussels (ULB), Brussels, Belgium. This research was funded by the Belgian federal Science Policy Office (BELSPO Action 1 MO/36/027). It was conducted in the context of the Research Foundation – Flanders (FWO) research community ‘‘Belgian Network for DNA barcoding’’ (W0.009.11N) and the Joint Experimental Molecular Unit at the RBINS. Please refer to this work as: Fourdrilis S (2017) Mitochondrial DNA hyperdiversity and population genetics in the periwinkle Melarhaphe neritoides (Linnaeus, 1758) (Mollusca: Gastropoda). PhD thesis, Free University of Brussels. ii PROMOTERS Prof. Dr. Thierry Backeljau (90 %, RBINS and University of Antwerp) Prof. Dr. Patrick Mardulyn (10 %, Free University of Brussels) EXAMINATION COMMITTEE Prof. Dr. Thierry Backeljau (RBINS and University of Antwerp) Prof. Dr. Sofie Derycke (RBINS and Ghent University) Prof. Dr. Jean-François Flot (Free University of Brussels) Prof. Dr. Marc Kochzius (Vrije Universiteit Brussel) Prof. Dr. Patrick Mardulyn (Free University of Brussels) Prof. Dr. Nausicaa Noret (Free University of Brussels) iii Acknowledgements Let’s be sincere. PhD is like heaven! You savour each morning this taste of paradise, going at work to work on your passion, science.
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 98 Washington: 1948 No. 3222 A POTENTIAL SNAIL HOST OF ORIENTAL SCHISTOSO- MIASIS IN NORTH AMERICA (POMATIOPSIS LAPI- DARIA) By R, Tucker Abbott The recent preliminary experimental work of Horace W. Stunkard (1946) has shown that the snail Pomatioipsis lapidaria (Say) is capable of serving as intermediate host, at least to the sporocyst stage, of the Oriental human blood fluke, Schistosoma japonicum Katsurada. It is possible that further experiments, particularly through the infec- tion of young snails, will prove successful. Malacological studies indicate that this North American snail is strikingly similar to the known Oriental carriers in the genus OncoTnelania; hence we are holding it at present under suspicion as a potential carrier. Whether or not, with the accidental introduction of schistosomiasis into this country, this snail would become of medical importance in the future, it seems wise at this time to record what we know of its distri- bution, habits, and morphology. At present, the danger of an out- break is remote. The epidemiological conditions in this country are not favorable for the spread of this type of disease, and laboratory in- fections of the snail are not necessarily a forecast of its activity in the field. As an aid to public-health workers and parasitologists, we have gathered all the known locality records for this species and spotted the 170 stations on a map (fig. 10) . A few records that represent excellent sources of material are given in detail; the other records are on file and available at the Division of MoUusks, United States National Museum, Washington 25, D.
    [Show full text]