<<

An Introduction to Linear Matrix Inequalities

Raktim Bhattacharya Aerospace Engineering, Texas A&M University Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Linear Matrix Inequalities What are ?

Inequalities involving matrix variables Matrix variables appear linearly Represent convex sets polynomial inequalities Critical tool in post-modern control theory

AERO 632, Instructor: Raktim Bhattacharya 2 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Standard Form

F (x) := F0 + x1F1 + ··· + xnFn > 0 where   x1 x   2 m x :=  .  ,Fi ∈ S m × m symmetric matrix  .  xn Think of F (x): Rn 7→ Sm. Example:       1 x 1 0 0 1 > 0 ⇔ + x > 0. x 1 0 1 1 0

AERO 632, Instructor: Raktim Bhattacharya 3 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Positive Definiteness

Matrix F > 0 represents positive definite matrix F > 0 ⇐⇒ xT F x > 0, ∀x =6 0 F > 0 ⇐⇒ leading principal minors of F are positive Let   F11 F12 F13 ···   F21 F22 F23 ···  F =   F31 F32 F33 ··· ············

n Polynomial Constraints as a Linear Matrix Inequality

F11 F12 F13 F11 F12 F > 0 ⇐⇒ F11 > 0, > 0, F21 F22 F23 > 0, ··· F21 F22 F31 F32 F33

AERO 632, Instructor: Raktim Bhattacharya 4 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Definiteness

Positive Semi-Definite F ≥ 0 ⇐⇒ iff all principal minors are ≥ 0 not just leading Negative Definite F < 0 ⇐⇒ iff every odd leading principal minor is < 0 and even leading principal minor is > 0 they alternate signs, starting with < 0 Negative Semi-Definite F ≤ 0 ⇐⇒ iff every odd principal minor is ≤ 0 and even principal minor is ≥ 0

F > 0 ⇐⇒ −F < 0 F ≥ 0 ⇐⇒ −F ≤ 0

Matrix Analysis, Roger Horn.

AERO 632, Instructor: Raktim Bhattacharya 5 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Example 1

  y x y > 0, y − x2 > 0, ⇐⇒ > 0 x 1   y x LMI written as > 0 is in general form. x 1 can write in standard form as       0 0 1 0 0 1 + y + x > 0 0 1 0 0 1 0

General form saves notations, may lead to more efficient computation

AERO 632, Instructor: Raktim Bhattacharya 6 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Example 2

  1 0 x1 2 2 ⇐⇒   x1 + x2 < 1 0 1 x2 > 0 x1 x2 1

Leading Minors are

1 > 0 1 0 > 0 0 1

1 x2 1 x1 0 1 1 − 0 + x1 > 0 x2 1 x1 1 x1 x2

Last inequality simplifies to − 2 2 1 (x1 + x2) > 0

AERO 632, Instructor: Raktim Bhattacharya 7 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Eigenvalue Minimization

n Let Ai ∈ S , = 0, 1, ··· , n.

Let A(x) := A0 + A1x1 + ··· + Anxn.

T Find x := [x1 x2 ··· xn]

that minimizes J(x) := min λmaxA(x). x How to solve this problem?

AERO 632, Instructor: Raktim Bhattacharya 8 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Eigenvalue Minimization (contd.)

Recall for M ∈ Sn λmaxM ≤ t ⇐⇒ M − tI ≤ 0.

Linear algebra result: Matrix Analysis – R.Horn, C.R. Johnson Optimization problem is therefore

min t x,t such that A(x) − tI ≤ 0.

AERO 632, Instructor: Raktim Bhattacharya 9 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Matrix Norm Minimization

n Let Ai ∈ R , i = 0, 1, ··· , n.

Let A(x) := A0 + A1x1 + ··· + Anxn.

T Find x := [x1 x2 ··· xn]

that minimizes J(x) := min kA(x)k2. x How to solve this problem?

AERO 632, Instructor: Raktim Bhattacharya 10 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Matrix Norm Minimization contd.

Recall T kAk2 := λmaxA A.

Implies min t2 t,x A(x)T A(x) − t2I ≤ 0. or Optimization problem is therefore   tI A(x) min t2 to ≥ 0. t,x A(x)T tI

AERO 632, Instructor: Raktim Bhattacharya 11 / 39 Important Inequalities Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Generalized Square Inequalities

Lemma For arbitrary scalar x, y, and δ > 0, we have   √ y 2 1 δx − √ = δx2 + y2 − 2xy ≥ 0. δ δ Implies 1 2xy ≤ δx2 + y2. δ

AERO 632, Instructor: Raktim Bhattacharya 13 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Generalized Square Inequalities Restriction-Free Inequalities

Lemma Let X,Y ∈ Rm×n,F ∈ Sm, F > 0, and δ > 0 be a scalar, then

XT FY + Y T FX ≤ δXT FX + δ−1Y T FY .

When X = x and Y = y

2xT F y ≤ δxT F x + δ−1yT F y.

Proof: Using completion of squares.     √ √ T √ √ δX − δ−1Y F δX − δ−1Y ≥ 0.

AERO 632, Instructor: Raktim Bhattacharya 14 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Generalized Square Inequalities Inequalities with Restrictions

Let F = {F | F ∈ Rn×n,F T F ≤ I}.

Lemma Let X ∈ Rm×n,Y ∈ Rn×m, then for arbitrary δ > 0

XFY + Y T F T XT ≤ δXXT + δ−1Y T Y , ∀F ∈ F.

Proof: Approach 1: Using completion of squares. Start with     √ √ T √ √ δXT − δ−1FY δXT − δ−1FY ) ≥ 0.

AERO 632, Instructor: Raktim Bhattacharya 15 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Generalized Square Inequalities Inequalities with Restrictions

Let F = {F | F ∈ Rn×n,F T F ≤ I}. Lemma Let X ∈ Rm×n,Y ∈ Rn×m, then for arbitrary δ > 0

XFY + Y T F T XT ≤ δXXT + δ−1Y T Y , ∀F ∈ F.

Proof: Approach 2: Use following Lemma. (To do)

AERO 632, Instructor: Raktim Bhattacharya 16 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Schur Complements Very useful for identifying convex sets

Let Q(x) ∈ Sm1 ,R(x) ∈ Sm2 Q(x),R(x),S(x) are affine functions of x   Q(x) S(x) Q(x) > 0 > 0 ⇐⇒ ST (x) R(x) R(x) − ST (x)Q(x)−1S(x) > 0 Generalizing,

  Q(x) ≥ 0 Q(x) S(x)  ≥ 0 ⇐⇒ ST (x) I − Q(x)Q†(x) = 0 ST (x) R(x) R(x) − ST (x)Q(x)†S(x) ≥ 0

Q(x)† is the pseudo-inverse This generalization is used when Q(x) is positive semidefinite but singular

AERO 632, Instructor: Raktim Bhattacharya 17 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Schur Complement Lemma

Let   A A A := 11 12 . A21 A22 Define

− −1 Sch(A11) := A22 A21A11 A12 − −1 Sch(A22) := A11 A12A22 A21

For symmetric A,

A > 0 ⇐⇒ A11 > 0,Sch(A11) > 0 ⇐⇒ A22 > 0,Sch(A22) > 0

AERO 632, Instructor: Raktim Bhattacharya 18 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Example 1

  I x x2 + x2 < 1 ⇐⇒ 1 − xT x > 0 ⇐⇒ > 0 1 2 xT 1 Here R(x) = 1, Q(x) = I > 0.

AERO 632, Instructor: Raktim Bhattacharya 19 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Example 2

  P −1 x kxk < 1 ⇐⇒ 1 − xT P x > 0 ⇐⇒ > 0 P xT 1 or  √  √ √ I ( P x) 1 − xT P x = 1 − ( P x)T ( P x) > 0 ⇐⇒ √ > 0 ( P x)T 1 √ where P is matrix square root.

AERO 632, Instructor: Raktim Bhattacharya 20 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs LMIs are not unique

If F is positive definite then congruence transformation of F is also positive definite

F > 0 ⇐⇒ xT F x, ∀x =6 0 ⇐⇒ yT M T F My > 0, ∀y =6 0 and nonsingular M ⇐⇒ M T F M > 0

Implies, rearrangement of matrix elements does not change the feasible set           QS 0 I QS 0 I RST > 0 ⇐⇒ > 0 ⇐⇒ > 0 ST R I 0 ST R I 0 SQ

AERO 632, Instructor: Raktim Bhattacharya 21 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma

Lemma: For arbitrary nonzero vectors x, y ∈ Rn, there holds

max (xT F y)2 = (xT x)(yT y). F ∈F:F T F ≤I

Proof: From Schwarz inequality, √ p |xT F y| ≤ xT x yT F T F y √ p ≤ xT x yT y.

Therefore for arbitrary x, y we have

(xT F y)2 ≤ (xT x)(yT y).

Next show equality.

AERO 632, Instructor: Raktim Bhattacharya 22 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Let xyT F0 = √ p . xT x yT y Therefore, yxT xyT yyT F T F = = . 0 0 (xT x)(yT y) yT y We can show that T T σmax(F0 F0) = σmax(F0F0 ) = 1.

⇒ T ≤ ∈ F = F0 F0 1, thus F0 .

AERO 632, Instructor: Raktim Bhattacharya 23 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Therefore, ! 2 T T 2 T xy T T (x F0y) = x √ p y = (x x)(y y). xT x yT y

AERO 632, Instructor: Raktim Bhattacharya 24 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Lemma: Let X ∈ Rm×n,Y ∈ Rn×m, and Q ∈ Rm×m. Then

Q + XFY + Y T F T XT < 0, ∀F ∈ F,

iff ∃ δ > 0 such that 1 Q + δXXT + Y T Y < 0. δ Proof: Sufficiency

T T T T 1 T Q + XFY + Y F X ≤ Q + δXX + Y Y from previous Lemma δ < 0.

AERO 632, Instructor: Raktim Bhattacharya 25 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Proof: Necessity Suppose Q + XFY + Y T F T XT < 0, ∀F ∈ F is true. Then for arbitrary nonzero x xT (Q + XFY + Y T F T XT )x < 0, or xT Qx + 2xT XF Y x < 0. Using previous lemma result q max(xT XF Y x) = (xT XXT x)(xT Y T Y x), F ∈F q =⇒ xT Qx + 2 (xT XXT x)(xT Y T Y x) < 0.

AERO 632, Instructor: Raktim Bhattacharya 26 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

q xT Qx + 2 (xT XXT x)(xT Y T Y x) < 0

q =⇒ xT Qx − 2 (xT XXT x)(xT Y T Y x) < 0, and xT Qx < 0.

Therefore, T 2 − T T T T |(x {zQx)} 4 (|x XX{z x}) |(x Y{z Y x}) > 0. b2 a c or b2 − 4ac > 0.

AERO 632, Instructor: Raktim Bhattacharya 27 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Or the quadratic equation aδ2 + bδ + c = 0 has real-roots √ −b  b2 − 4ac . 2a Recall,

a := (xT XXT x) > 0, b := (xT Qx) < 0, c := (xT Y T Y x) > 0.

Implies b − > 0, 2a or at least positive root.

AERO 632, Instructor: Raktim Bhattacharya 28 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Variable Elimination Lemma contd.

Therefore, ∃δ > 0 such that aδ2 + bδ + c < 0. Dividing by δ we get c aδ + b + < 0, δ or 1 xT Qx + δxT XXT x + xT Y T Y x < 0, δ or 1 xT (Q + δXXT + Y T Y )x < 0, δ or 1 Q + δXXT + Y T Y < 0. δ

AERO 632, Instructor: Raktim Bhattacharya 29 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables In a Partitioned Matrix

Lemma: Let   Z11 Z12 ∈ Rn×n Z = T ,Z11 , Z12 Z22 be symmetric. Then ∃ X = XT such that   Z11 − XZ12 X  T  ⇐⇒ Z12 Z22 0 < 0 Z < 0. X 0 −X

Proof: Apply Schur complement lemma.   Z11 − XZ12 X  T  ⇐⇒ − − Z12 Z22 0 < 0 X < 0,Sch( X) < 0. X 0 −X

AERO 632, Instructor: Raktim Bhattacharya 30 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables In a Partitioned Matrix (contd.)

0 > S (−X), ch      Z − XZ X − = 11 12 − (−X) 1 X 0 , ZT Z 0  12 22   Z − XZ X 0 = 11 12 + , ZT Z 0 0  12  22 Z11 Z12 = T . Z12 Z22

AERO 632, Instructor: Raktim Bhattacharya 31 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables In a Partitioned Matrix (contd.)

Lemma:     Z11 Z12 Z Z Z T < 0 11 12 13 Z Z22  T T  ⇐⇒ 12 Z12 Z22 Z23 + X < 0   T T Z Z Z Z + XZ33 11 13 13 23 T < 0, Z13 Z33 with T −1 − T X = Z13Z11 Z12 Z23. Proof: Necessity ⇒ Apply rules for negative .

Sufficiency ⇐ Following are true from Schur complement lemma.

Z11 < 0 − T −1 − T −1 Z22 Z12Z11 Z12 < 0 Z33 Z13Z11 Z13 < 0

AERO 632, Instructor: Raktim Bhattacharya 32 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables In a Partitioned Matrix (contd.)

Look at Schur complement of   Z11 Z12 Z13  T T  Z12 Z22 Z23 + X . T T Z13 Z23 + XZ33

    Z Z + XT ZT   22 23 − 12 Z−1 Z Z ZT + XZ ZT 11 12 13 23 33 13  − T −1 T − T −1 Z22 Z12Z11 Z12 Z23 + X Z12Z11 Z13 = T − T −1 − T −1 Z23 + X Z13Z11 Z12 Z33 Z13Z11 Z13 < 0.

Also Z!1 < 0.

AERO 632, Instructor: Raktim Bhattacharya 33 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables Projection Lemma

m×n Definition Let A ∈ R . Then Ma is left orthogonal complement of A if it satisfies

MaA = 0, rank(Ma) = m − rank(A).

m×n Definition Let A ∈ R . Then Na is right orthogonal complement of A if it satisfies

ANa = 0, rank(Na) = n − rank(A).

AERO 632, Instructor: Raktim Bhattacharya 34 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables Projection Lemma (contd.)

T Lemma: Let P,Q, and H = H be matrices of appropriate dimensions. Let Np, Nq be right orthogonal complements of P,Q respectively.

Then ∃ X such that

T T T ⇐⇒ T T H + P X Q + Q XP < 0 Np HNp < 0 and Nq HNq < 0.

Proof: Necessity ⇒: Multiply by Np or Nq. Sufficiency ⇐: Little more involved – Use base kernel of P,Q, followed by Schur complement lemma.

AERO 632, Instructor: Raktim Bhattacharya 35 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables Reciprocal Projection Lemma

Lemma: Let P be any given positive definite matrix. The following statements are equivalent: 1. Ψ + S + ST < 0. 2. The LMI problem   Ψ + P − (W + W T ) ST + W T < 0, S + W −P

is feasible with respect to W . Proof: Apply projection lemma w.r.t general variable W . Let   Ψ + PST     X = , Y = −I 0 , Z = I −I . S −P n n n

AERO 632, Instructor: Raktim Bhattacharya 36 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables Reciprocal Projection Lemma (contd.)

Let   Ψ + PST     X = , Y = −I 0 , Z = I −I . S −P n n n

Right orthogonal complements of Y,Z are     0 In Ny = −1 , Nz = . −P In

Verify that YNy = 0 and ZNz = 0. We can show

T − −1 T T Ny XNy = P , Nz XNz = Ψ + S + S.

Apply projection lemma.

AERO 632, Instructor: Raktim Bhattacharya 37 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Elimination of Variables Reciprocal Projection Lemma (contd.)

T − −1 T T Ny XNy = P , Nz XNz = Ψ + S + S.

The expression   Ψ + P − (W + W T ) ST + W T X + Y T W T Z + ZT WY = . S + W −P

Therefore, if

T   Ny XNy < 0 Ψ + P − (W + W T ) ST + W T =⇒ < 0. T S + W −P Nz XNz < 0

AERO 632, Instructor: Raktim Bhattacharya 38 / 39 Introduction to LMIs Generalized Square Inequalities Schur Complement Lemma Variable Elimination Lemma Trace of LMIs Trace of Matrices in LMIs

Lemma Let A(x) ∈ Sm be a matrix function in Rn, and γ ∈ R > 0. The following statements are equivalent: 1. ∃ x ∈ Rn such that trA(x) < γ, 2. ∃ x ∈ Rn,Z ∈ Sm such that

A(x) < Z, trZ < γ.

Proof: Homework problem.

AERO 632, Instructor: Raktim Bhattacharya 39 / 39