Mammals Across the K/Pg Boundary in Northeastern
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enamel Ultrastructure of Multituberculate Mammals: an Investigation of Variability
CO?JTRIBI!TIONS FROM THE MUSEUM OF PALEOK.1-OLOCiY THE UNIVERSITY OF MICHIGAN VOL. 27. NO. 1, p. 1-50 April I, 1985 ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY SANDRA J. CARLSON and DAVID W. KRAUSE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRlBUTlONS FROM THE MUSEUM OF PALEON I OLOGY Philip D. Gingerich, Director Gerald R. Smith. Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN Vol . 27, no. 1, p. 1-50, pub1 ished April 1, 1985, Sandra J. Carlson and David W. Krause (Authors) ERRATA Page 11, Figure 4 caption, first line, should read "(1050X)," not "(750X)." ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY Sandra J. Carlsonl and David W. Krause' Abstract.-The nature and extent of enamel ultrastructural variation in mammals has not been thoroughly investigated. In this study we attempt to identify and evaluate the sources of variability in enamel ultrastructural patterns at a number of hierarchic levels within the extinct order Multituberculata. -
Multituberculate Mammals from the Wahweap
MULTITUBERCULATE MAMMALS FROM THE WAHWEAP (CAMPANIAN, AQUILAN) AND KAIPAROWITS (CAMPANIAN, JUDITHIAN) FORMATIONS, WITHIN AND NEAR GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, SOUTHERN UTAH Jeffrey G. Eaton Department of Geosciences Weber State University Ogden, UT 84408-2507 phone: (801) 626-6225 fax: (801) 626-7445 e-mail: [email protected] Cover photo by author: Powell Point in “The Blues,” the early Tertiary Claron Formation on the horizon and the Kaiparowits Formation in the foreground. ISBN 1-55791-665-9 Reference to any specific commercial product by trade name, trademark, or manufacturer does not constitute endorsement or recommendation by the Utah Geological Survey MISCELLANEOUS PUBLICATION 02-4 UTAH GEOLOGICAL SURVEY a division of 2002 Utah Department of Natural Resources STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Robert Morgan, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director UGS Board Member Representing Robert Robison (Chairman) ...................................................................................................... Minerals (Industrial) Geoffrey Bedell.............................................................................................................................. Minerals (Metals) Stephen Church .................................................................................................................... Minerals (Oil and Gas) E.H. Deedee O’Brien ....................................................................................................................... -
Lhiwanj[Fuseum
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific... >lhiwanJ[fuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 2 26 AUGUST I7, I 965 First Evidence of Tooth Replacement in the Subclass Allotheria (Mammalia) BY FREDERICK S. SZALAY1 INTRODUCTION Multituberculates (the only known order of the subclass Allotheria) are abundantly represented in Mesozoic and Paleocene mammal locali- ties. Of the relatively large number of multituberculate mandibles and maxillae known up to the summer of 1963, not one showed a tooth in the process of replacement. Young specimens were known with less fully erupted teeth (Jepsen, 1940, p. 245; Clemens, 1963, p. 34), but it has not been possible before to demonstrate diphyodonty in multituberculates. With a now-standardized washing technique used for obtaining ver- tebrate microfossils (Hibbard, 1949; McKenna, 1962), a vertebrate paleontology field party of the American Museum of Natural History collected a large assemblage of vertebrate fossils during the summer of 1963. The collection was of approximately Torrejonian age from the eastern part of the Washakie Basin in southern Wyoming.2 Among the large number of multituberculates represented, a fragmentary left man- dible (A.M.N.H. No. 83003) is one of the two specimens described in the present paper that supply the first direct evidence of allotherian tooth replacement. The deciduous lower incisor is still present in the mandible, 1 Department of Zoology, Columbia University, New York, New York. -
Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism). Barbara R. Standhardt Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Standhardt, Barbara R., "Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)." (1986). LSU Historical Dissertations and Theses. 4209. https://digitalcommons.lsu.edu/gradschool_disstheses/4209 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. -
New Specimens of the Multituberculate Mammal Sphenopsalis from China: Implications for Phylogeny and Biology of Taeniolabidoids
New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids FANG-YUAN MAO, YUAN-QING WANG, and JIN MENG Mao, F.-Y., Wang, Y.-Q., and Meng, J. 2016. New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids. Acta Palaeontologica Polonica 61 (2): 429–454. Multituberculates are the most diverse and best known group of Mesozoic mammals; they also persisted into the Paleogene and became extinct in the Eocene, possibly outcompeted by rodents that have similar morphological and pre- sumably ecological adaptations. Among the Paleogene multituberculates, those that have the largest body sizes belong to taeniolabidoids, which contain several derived species from North America and Asia and some species with uncertain taxonomic positions. Of the known taeniolabidoids, the poorest known taxon is Sphenopsalis nobilis from Mongolia and Inner Mongolia, China, represented previously by a few isolated teeth. Its relationship with other multituberculates thus has remained unclear. Here we report new specimens of Sphenopsalis nobilis collected from the upper Paleocene of the Erlian Basin, Inner Mongolia, China, during a multi-year field effort beginning in 2000. These new specimens document substantial parts of the dental, partial cranial and postcranial morphologies of Sphenopsalis, including the upper and lower incisors, partial premolars, complete upper and lower molars, a partial rostrum, fragments of the skull roof, middle ear cavity, a partial scapula, and partial limb bones. With the new specimens we are able to present a detailed description of Sphenopsalis, comparisons among relevant taeniolabidoids, and brief phylogenetic analyses based on a dataset consisting of 43 taxa and 102 characters. -
Late Cretaceous Stratigraphy and Vertebrate Faunas of the Markagunt, Paunsaugunt, and Kaiparowits Plateaus, Southern Utah
GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 LATE CRETACEOUS STRATIGRAPHY AND VERTEBRATE FAUNAS OF THE MARKAGUNT, PAUNSAUGUNT, AND KAIPAROWITS PLATEAUS, SOUTHERN UTAH Alan L. Titus, Jeffrey G. Eaton, and Joseph Sertich A Field Guide Prepared For SOCIETY OF VERTEBRATE PALEONTOLOGY Annual Meeting, October 26 – 29, 2016 Grand America Hotel Salt Lake City, Utah, USA Post-Meeting Field Trip October 30–November 1, 2016 © 2016 Utah Geological Association. All rights reserved. For permission to copy and distribute, see the following page or visit the UGA website at www.utahgeology.org for information. Email inquiries to [email protected]. GEOLOGY OF THE INTERMOUNTAIN WEST an open-access journal of the Utah Geological Association Volume 3 2016 Editors UGA Board Douglas A. Sprinkel Thomas C. Chidsey, Jr. 2016 President Bill Loughlin [email protected] 435.649.4005 Utah Geological Survey Utah Geological Survey 2016 President-Elect Paul Inkenbrandt [email protected] 801.537.3361 801.391.1977 801.537.3364 2016 Program Chair Andrew Rupke [email protected] 801.537.3366 [email protected] [email protected] 2016 Treasurer Robert Ressetar [email protected] 801.949.3312 2016 Secretary Tom Nicolaysen [email protected] 801.538.5360 Bart J. Kowallis Steven Schamel 2016 Past-President Jason Blake [email protected] 435.658.3423 Brigham Young University GeoX Consulting, Inc. 801.422.2467 801.583-1146 UGA Committees [email protected] [email protected] Education/Scholarship -
Mammalian Distal Humerus Fossils from Eastern Montana, USA with Implications for the Cretaceous-Paleogene Mass Extinction and the Adaptive Radiation of Placentals
Palaeontologia Electronica palaeo-electronica.org Mammalian distal humerus fossils from eastern Montana, USA with implications for the Cretaceous-Paleogene mass extinction and the adaptive radiation of placentals Lauren B. DeBey and Gregory P. Wilson ABSTRACT Postcrania of Cretaceous-Paleogene (K-Pg) mammals offer insights into richness, body size, and locomotor ecology that supplement patterns from well-sampled dental assemblages. Here, we describe and morphotype 50 distal humeri from Lancian–Puer- can assemblages of eastern Montana. Using geometric morphometric analysis of a taxonomically broad sample of humeri from extant small-bodied therians of diverse locomotor modes, we constrain locomotor inferences of some morphotypes. We use this database to preliminarily assess body-size and locomotor diversity across the K- Pg boundary. The seven Lancian humerus morphotypes include the multituberculates ?Mesodma sp., ?Cimolodon nitidus, and ?Meniscoessus robustus and the metatherian ?Didelphodon vorax. Morphotype richness decreased to four or five across the K-Pg boundary and rebounded in the late Puercan to six, mostly eutherian, morphotypes. Puercan morphotypes include the multituberculate ?Stygimys kuszmauli, the “plesi- adapiform” primate ?Purgatorius, small and large archaic ungulates, a possible palaeo- ryctid, and a very large eutherian. Humerus size data imply a decrease in body size across the K-Pg boundary, followed by an increase by the late Puercan, a trend consis- tent with the dental fossil record. Geometric morphometrics analysis and functional morphology imply greater locomotor diversity among K-Pg mammals than previously recognized: we infer that most Lancian and Puercan multituberculates were arboreal; the Lancian eutherian was arboreal or semifossorial; the early Puercan palaeoryctid was semifossorial and the small archaic ungulate was terrestrial; and the late Puercan “plesiadapiform” primate was arboreal and the large archaic ungulate was scansorial. -
The Taphonomy, Paleoecology, and Depositional Environment Of
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2011 The Taphonomy, Paleoecology, and Depositional Environment of Vertebrate Microfossil Bonebeds from the Late Cretaceous Hell Creek Formation in Garfield County, Montana Sean Michael Moran College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Geology Commons Recommended Citation Moran, Sean Michael, "The Taphonomy, Paleoecology, and Depositional Environment of Vertebrate Microfossil Bonebeds from the Late Cretaceous Hell Creek Formation in Garfield County, Montana" (2011). Undergraduate Honors Theses. Paper 419. https://scholarworks.wm.edu/honorstheses/419 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Taphonomy, Paleoecology, and Depositional Environment of Vertebrate Microfossil Bonebeds from the Late Cretaceous Hell Creek Formation in Garfield County, Montana A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Science in Geology from The College of William and Mary by Sean Michael Moran Accepted for (Honors, High Honors) Rowan Lockwood, Director Matthew Carrano Christopher Bailey John Swaddle Williamsburg, VA April 15, 2011 Table of Contents List of Figures and Tables 3 Abstract 4 Introduction 5 Vertebrate Microfossil Bonebed Formation 7 Vertebrate Microfossil Bonebed Paleoecology 8 Geologic Setting 9 Hell Creek Vertebrate Fauna 12 Methods 16 HC10.01 20 HC10.02 21 HC10.03 23 HC10.04 24 HC10.05 25 Percent Diversity and Percent Abundance 26 Rarefaction 32 Amount of Wear 39 Differences in Maximum Dimension 41 Size vs. -
Protungulatum, Confirmed Cretaceous Occurrence of an Otherwise Paleocene Eutherian (Placental?) Mammal
J Mammal Evol DOI 10.1007/s10914-011-9162-1 ORIGINAL PAPER Protungulatum, Confirmed Cretaceous Occurrence of an Otherwise Paleocene Eutherian (Placental?) Mammal J. David Archibald & Yue Zhang & Tony Harper & Richard L. Cifelli # Springer Science+Business Media, LLC 2011 Abstract Neither pre-Cenozoic crown eutherian mammals Introduction (placentals) nor archaic ungulates (“condylarths”)are known with certainty based on the fossil record. Herein The archaic ungulate or “condylarth” Protungulatum we report a new species of the Paleocene archaic ungulate donnae was described from Bug Creek Anthills in (“condylarth”) Protungulatum from undisputed Late Creta- northeastern Montana, U. S. A. (Sloan and Van Valen ceous aged rocks in Montana USA based on an isolated last 1965). The sequence including Bug Creek Anthills and upper premolar, indicating rare representatives of these several other localities was thought to be Late Cretaceous in common early Tertiary mammals appeared in North age, arguing for a gradual appearance of mammals America a minimum of 300 k years before the extinction otherwise known only from the Paleocene, and a gradual of non-avian dinosaurs. The other 1200 mammal specimens disappearance of typical Late Cretaceous mammals and from the locality are characteristic Late Cretaceous taxa. dinosaurs (Sloan et al. 1986). This work argued that there This discovery overturns the current hypothesis that archaic were gradual rather than catastrophic extinctions at the ungulates did not appear in North America until after the Cretaceous/Tertiary (K/T) or Cretaceous/Paleogene (K/Pg) Cretaceous/Tertiary (K/T) boundary and also suggests that boundary. Although common co-occurrences of dinosaurs other reports of North American Late Cretaceous archaic and Late Cretaceous mammals at Bug Creek Anthills ungulates may be correct. -
In Quest for a Phylogeny of Mesozoic Mammals
In quest for a phylogeny of Mesozoic mammals ZHE−XI LUO, ZOFIA KIELAN−JAWOROWSKA, and RICHARD L. CIFELLI Luo, Z.−X., Kielan−Jaworowska, Z., and Cifelli, R.L. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47 (1): 1–78. We propose a phylogeny of all major groups of Mesozoic mammals based on phylogenetic analyses of 46 taxa and 275 osteological and dental characters, using parsimony methods (Swofford 2000). Mammalia sensu lato (Mammaliaformes of some authors) are monophyletic. Within mammals, Sinoconodon is the most primitive taxon. Sinoconodon, morganu− codontids, docodonts, and Hadrocodium lie outside the mammalian crown group (crown therians + Monotremata) and are, successively, more closely related to the crown group. Within the mammalian crown group, we recognize a funda− mental division into australosphenidan (Gondwana) and boreosphenidan (Laurasia) clades, possibly with vicariant geo− graphic distributions during the Jurassic and Early Cretaceous. We provide additional derived characters supporting these two ancient clades, and we present two evolutionary hypotheses as to how the molars of early monotremes could have evolved. We consider two alternative placements of allotherians (haramiyids + multituberculates). The first, supported by strict consensus of most parsimonious trees, suggests that multituberculates (but not other alllotherians) are closely re− lated to a clade including spalacotheriids + crown therians (Trechnotheria as redefined herein). Alternatively, allotherians can be placed outside the mammalian crown group by a constrained search that reflects the traditional emphasis on the uniqueness of the multituberculate dentition. Given our dataset, these alternative topologies differ in tree−length by only ~0.6% of the total tree length; statistical tests show that these positions do not differ significantly from one another. -
SUPPLEMENTARY INFORMATION Doi:10.1038/Nature10880
SUPPLEMENTARY INFORMATION doi:10.1038/nature10880 Adaptive Radiation of Multituberculate Mammals Before the Extinction of Dinosaurs Gregory P. Wilson1, Alistair R. Evans2, Ian J. Corfe3, Peter D. Smits1,2, Mikael Fortelius3,4, Jukka Jernvall3 1Department of Biology, University of Washington, Seattle, WA 98195, USA. 2School of Biological Sciences, Monash University, VIC 3800, Australia. 3Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland. 4Department of Geosciences and Geography, PO Box 64, University of Helsinki, FIN-00014, Helsinki, Finland. 1. Dental complexity data collection We scanned lower cheek tooth rows (premolars and molars) of 41 multituberculate genera using a Nextec Hawk three-dimensional (3D) laser scanner at between 10 and 50-µm resolution and in a few cases a Skyscan 1076 micro X-ray computed tomography (CT) at 9-µm resolution and an Alicona Infinite Focus optical microscope at 5-µm resolution. One additional scan from the PaleoView3D database (http://paleoview3d.marshall.edu/) was made on a Laser Design Surveyor RE-810 laser line 3D scanner with a RPS-120 laser probe. 3D scans of cheek tooth rows are deposited in the MorphoBrowser database (http://morphobrowser.biocenter.helsinki.fi/). The WWW.NATURE.COM/NATURE | 1 doi:10.1038/nature10880 RESEARCH SUPPLEMENTARY INFORMATION sampled taxa provide broad morphological, phylogenetic, and temporal coverage of the Multituberculata, representing 72% of all multituberculate genera known by lower tooth rows. We focused at the level of genera rather than species under the assumption that intrageneric variation among multituberculates is mostly based on size not gross dental morphology. The sampled cheek tooth rows for each genus are composed of either individual fossil specimens or epoxy casts with complete cheek tooth rows or cheek tooth row composites formed from multiple fossil specimens or epoxy casts of the same species. -
Late Cretaceous Mammalian Fauna from the Hell Creek Formation, Southeastern Montana
LATE CRETACEOUS MAMMALIAN FAUNA FROM THE HELL CREEK FORMATION, SOUTHEASTERN MONTANA Yue Zhang and J. David Archibald, Department of Biology, San Diego State University, San Diego, California 92181-4614, U.S.A. The richest known Late Cretaceous mammalian fauna from the Hell Creek Formation was discovered in southeastern Montana in the 1980’s. Although a faunal list was included in a paleobiogeographic study, the taxa have never been described. This study describes and compares this important fauna to other Late Cretaceous mammalian faunas. There are some 20 mammal producing localities, but the richest are the four localities composing Claw Butte Anthills local fauna and the single richest locality composing the Spigot-Bottle local fauna. Over 1000 mammal specimens have been recovered by screen washed from an in situ channel fill composed of silty sand. The Hell Creek Formation is quite thick in this area, reaching 150m, with the two local faunas ranging from 65 to 61 m below the formational contact. Based on faunal content the two local faunas are not different. Spigot-Bottle local fauna includes the multituberculates Mesodma formosa, M. hensleighi, M. thompsoni, Cimolodon nitidus, Cimolomys gracilis, Meniscoessus robustus; the metatherians Protalphadon lulli, Alphadon marshi, A. wilsoni, Pediomys cooki, P. elegans, P. florencae, P. hatcheri, P. krejcii, Turgidodon rhaister, Didelphodon vorax; and the eutherians, Batodon tenuis, Cimolestes incisus, C. propalaeoryctes, C. stirtoni, Gypsonictops sp., cf. Paranyctoides sp. In addition, from the Claw Butte local fauna the multituberculate Essonodon browni, the metatherian Glasbius twitchelli, and the eutherian Gypsonictops hypoconus have been recovered. The eutherian Cimolestes magnus also has been reported elsewhere from the Hell Creek Formation in southeastern Montana.