NEW UPPER CRETACEOUS MULTITUBERCULATE GENERA from BAYN DZAK, GOBI DESERT (Plates >C-->Cv1l)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dome-Headed, Small-Brained Island Mammal from the Late Cretaceous of Romania
Dome-headed, small-brained island mammal from the Late Cretaceous of Romania Zoltán Csiki-Savaa,1, Mátyás Vremirb, Jin Mengc, Stephen L. Brusatted, and Mark A. Norellc aLaboratory of Paleontology, Faculty of Geology and Geophysics, University of Bucharest, 010041 Bucharest, Romania; bDepartment of Natural Sciences, Transylvanian Museum Society, 400009 Cluj-Napoca, Romania; cDivision of Paleontology, American Museum of Natural History, New York, NY 10024; and dSchool of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved March 26, 2018 (received for review January 20, 2018) The island effect is a well-known evolutionary phenomenon, in describe the anatomy of kogaionids in detail, include them in a which island-dwelling species isolated in a resource-limited envi- comprehensive phylogenetic analysis, estimate their body sizes, ronment often modify their size, anatomy, and behaviors compared and present a reconstruction of their brain and sense organs. with mainland relatives. This has been well documented in modern This species exhibits several features that we interpret as re- and Cenozoic mammals, but it remains unclear whether older, more lated to its insular habitat, most notably a brain that is sub- primitive Mesozoic mammals responded in similar ways to island stantially reduced in size compared with close relatives and habitats. We describe a reasonably complete and well-preserved skeleton of a kogaionid, an enigmatic radiation of Cretaceous island- mainland contemporaries, demonstrating that some Mesozoic dwelling multituberculate mammals previously represented by frag- mammals were susceptible to the island effect like in more mentary fossils. -
Functional Tests of the Competitive Exclusion Hypothesis For
Functional tests of the competitive exclusion royalsocietypublishing.org/journal/rsos hypothesis for multituberculate extinction Research Cite this article: Adams NF, Rayfield EJ, Cox PG, Neil F. Adams1,†, Emily J. Rayfield1, Philip G. Cox2,3, Cobb SN, Corfe IJ. 2019 Functional tests of the 2,3 4 competitive exclusion hypothesis for Samuel N. Cobb and Ian J. Corfe multituberculate extinction. R. Soc. open sci. 6: 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 181536. 2Department of Archaeology, University of York, York YO1 7EP, UK http://dx.doi.org/10.1098/rsos.181536 3Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York YO10 5DD, UK 4Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland NFA, 0000-0003-2539-5531; EJR, 0000-0002-2618-750X; Received: 11 September 2018 PGC, 0000-0001-9782-2358; SNC, 0000-0002-8360-8024; Accepted: 21 February 2019 IJC, 0000-0002-1824-755X Multituberculate mammals thrived during the Mesozoic, but their diversity declined from the mid-late Paleocene Subject Category: onwards, becoming extinct in the late Eocene. The radiation of Biology (whole organism) superficially similar, eutherian rodents has been linked to multituberculate extinction through competitive exclusion. Subject Areas: However, characteristics providing rodents with a supposed palaeontology/evolution/biomechanics competitive advantage are currently unknown and comparative functional tests between the two groups are lacking. Here, a Keywords: multifaceted approach -
Enamel Ultrastructure of Multituberculate Mammals: an Investigation of Variability
CO?JTRIBI!TIONS FROM THE MUSEUM OF PALEOK.1-OLOCiY THE UNIVERSITY OF MICHIGAN VOL. 27. NO. 1, p. 1-50 April I, 1985 ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY SANDRA J. CARLSON and DAVID W. KRAUSE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRlBUTlONS FROM THE MUSEUM OF PALEON I OLOGY Philip D. Gingerich, Director Gerald R. Smith. Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN Vol . 27, no. 1, p. 1-50, pub1 ished April 1, 1985, Sandra J. Carlson and David W. Krause (Authors) ERRATA Page 11, Figure 4 caption, first line, should read "(1050X)," not "(750X)." ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY Sandra J. Carlsonl and David W. Krause' Abstract.-The nature and extent of enamel ultrastructural variation in mammals has not been thoroughly investigated. In this study we attempt to identify and evaluate the sources of variability in enamel ultrastructural patterns at a number of hierarchic levels within the extinct order Multituberculata. -
Multituberculate Mammals from the Wahweap
MULTITUBERCULATE MAMMALS FROM THE WAHWEAP (CAMPANIAN, AQUILAN) AND KAIPAROWITS (CAMPANIAN, JUDITHIAN) FORMATIONS, WITHIN AND NEAR GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, SOUTHERN UTAH Jeffrey G. Eaton Department of Geosciences Weber State University Ogden, UT 84408-2507 phone: (801) 626-6225 fax: (801) 626-7445 e-mail: [email protected] Cover photo by author: Powell Point in “The Blues,” the early Tertiary Claron Formation on the horizon and the Kaiparowits Formation in the foreground. ISBN 1-55791-665-9 Reference to any specific commercial product by trade name, trademark, or manufacturer does not constitute endorsement or recommendation by the Utah Geological Survey MISCELLANEOUS PUBLICATION 02-4 UTAH GEOLOGICAL SURVEY a division of 2002 Utah Department of Natural Resources STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Robert Morgan, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director UGS Board Member Representing Robert Robison (Chairman) ...................................................................................................... Minerals (Industrial) Geoffrey Bedell.............................................................................................................................. Minerals (Metals) Stephen Church .................................................................................................................... Minerals (Oil and Gas) E.H. Deedee O’Brien ....................................................................................................................... -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Lhiwanj[Fuseum
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific... >lhiwanJ[fuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 2 26 AUGUST I7, I 965 First Evidence of Tooth Replacement in the Subclass Allotheria (Mammalia) BY FREDERICK S. SZALAY1 INTRODUCTION Multituberculates (the only known order of the subclass Allotheria) are abundantly represented in Mesozoic and Paleocene mammal locali- ties. Of the relatively large number of multituberculate mandibles and maxillae known up to the summer of 1963, not one showed a tooth in the process of replacement. Young specimens were known with less fully erupted teeth (Jepsen, 1940, p. 245; Clemens, 1963, p. 34), but it has not been possible before to demonstrate diphyodonty in multituberculates. With a now-standardized washing technique used for obtaining ver- tebrate microfossils (Hibbard, 1949; McKenna, 1962), a vertebrate paleontology field party of the American Museum of Natural History collected a large assemblage of vertebrate fossils during the summer of 1963. The collection was of approximately Torrejonian age from the eastern part of the Washakie Basin in southern Wyoming.2 Among the large number of multituberculates represented, a fragmentary left man- dible (A.M.N.H. No. 83003) is one of the two specimens described in the present paper that supply the first direct evidence of allotherian tooth replacement. The deciduous lower incisor is still present in the mandible, 1 Department of Zoology, Columbia University, New York, New York. -
Craniodental Anatomy of a New Late Cretaceous Multituberculate Mammal from Udan Sayr, Mongolia
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia. Amir Subhash Sheth University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Anatomy Commons, and the Medical Neurobiology Commons Recommended Citation Sheth, Amir Subhash, "Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia." (2014). Electronic Theses and Dissertations. Paper 1317. https://doi.org/10.18297/etd/1317 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Anatomical Sciences and Neurobiology University of Louisville Louisville, Kentucky August 2014 CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Approved on July 18th, 2014 By the Following Thesis Committee: ________________________________ (Guillermo W. -
Mammals from the Mesozoic of Mongolia
Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977). -
Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism). Barbara R. Standhardt Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Standhardt, Barbara R., "Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)." (1986). LSU Historical Dissertations and Theses. 4209. https://digitalcommons.lsu.edu/gradschool_disstheses/4209 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. -
The Earliest Mammal of the European Paleocene: the Multituberculate Hainina
J. Paleont., 74(4), 2000, pp. 701–711 Copyright ᭧ 2000, The Paleontological Society 0022-3360/00/0074-0701$03.00 THE EARLIEST MAMMAL OF THE EUROPEAN PALEOCENE: THE MULTITUBERCULATE HAININA P. PELA´ EZ-CAMPOMANES,1 N. LO´ PEZ-MARTI´NEZ,2 M.A. A´ LVAREZ-SIERRA,2 R. DAAMS3 1Department Paleobiologı´a,Museo Nacional de Ciencias Naturales, Gutie´rrez Abascal 2, 28006 Madrid, Spain, Ͻ[email protected]Ͼ, and 2Department-UEI Paleontologı´a, Facultad C. Geolo´gicas-Instit. Geologı´a Econo´mica,Universidad Complutense-CSIC, 28040 Madrid, Spain ABSTRACT—A new species of multituberculate mammal, Hainina pyrenaica n. sp. is described from Fontllonga-3 (Tremp Basin, Southern Pyrenees, Spain), correlated to the later part of chron C29r just above the K/T boundary. This taxon represents the earliest European Tertiary mammal recovered so far, and is related to other Hainina species from the European Paleocene. A revision of the species of Hainina allows recognition of a new species, H. vianeyae n. sp. from the Late Paleocene of Cernay (France). The genus is included in the family Kogaionidae Ra˜dulescu and Samson, 1996 from the Late Cretaceous of Romania on the basis of unique dental characters. The Kogaionidae had a peculiar masticatory system with a large, blade-like lower p4, similar to that of advanced Ptilodon- toidea, but occluding against two small upper premolars, interpreted as P4 and P5, instead of a large upper P4. The endemic European Kogaionidae derive from an Early Cretaceous group with five premolars, and evolved during the Late Cretaceous and Paleocene. The genus Hainina represents a European multituberculate family that survived the K/T boundary mass extinction event. -
Masticatory Musculature of Asian Taeniolabidoid Multituberculate Mammals
Masticatory musculature of Asian taeniolabidoid multituberculate mammals PETR P. GAMBARYAN & ZOFIA KIELAN-JAWOROWSKA* Gambaryan, P.P. & Kielan-Jaworowska, 2. 1995. Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontologica Polonica 40, 1, 45-108. The backward chewing stroke in multituberculates (unique for mammals) resulted in a more anterior insertion of the masticatory muscles than in any other mammal group, including rodents. Multituberculates differ from tritylodontids in details of the masticatory musculature, but share with them the backward masticatory power stroke and retractory horizontal components of the resultant force of all the masticatory muscles (protractory in Theria). The Taeniolabididae differ from the Eucosmodontidae in having a more powerful masticatory musculature, expressed by the higher zygomatic arch with relatively larger anterior and middle zygomatic ridges and higher coronoid process. It is speculated that the bicuspid, or pointed upper incisors, and semi-procumbent, pointed lower ones, characteristic of non- taeniolabidoid mdtitliberculates were used for picking-up and killing insects or other prey. In relation to the backward power stroke the low position of the condylar process was advantageous for most multituberculates. In extreme cases (Sloanbaataridae and Taeniolabididae), the adaptation for crushing hard seeds, worked against the benefit of the low position of the condylar process and a high condylar process developed. Five new multituberculate autapomorphies are rec- ognized: anterior and intermediate zygomatic ridges: glenoid fossa large, flat and sloping backwards (forwards in rodents), arranged anterolateral and standing out from the braincase; semicircular posterior margin of the dentary with condylar process forming at least a part of it; anterior position of the coronoid process; and anterior position of the masseteric fossa. -
New Specimens of the Multituberculate Mammal Sphenopsalis from China: Implications for Phylogeny and Biology of Taeniolabidoids
New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids FANG-YUAN MAO, YUAN-QING WANG, and JIN MENG Mao, F.-Y., Wang, Y.-Q., and Meng, J. 2016. New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids. Acta Palaeontologica Polonica 61 (2): 429–454. Multituberculates are the most diverse and best known group of Mesozoic mammals; they also persisted into the Paleogene and became extinct in the Eocene, possibly outcompeted by rodents that have similar morphological and pre- sumably ecological adaptations. Among the Paleogene multituberculates, those that have the largest body sizes belong to taeniolabidoids, which contain several derived species from North America and Asia and some species with uncertain taxonomic positions. Of the known taeniolabidoids, the poorest known taxon is Sphenopsalis nobilis from Mongolia and Inner Mongolia, China, represented previously by a few isolated teeth. Its relationship with other multituberculates thus has remained unclear. Here we report new specimens of Sphenopsalis nobilis collected from the upper Paleocene of the Erlian Basin, Inner Mongolia, China, during a multi-year field effort beginning in 2000. These new specimens document substantial parts of the dental, partial cranial and postcranial morphologies of Sphenopsalis, including the upper and lower incisors, partial premolars, complete upper and lower molars, a partial rostrum, fragments of the skull roof, middle ear cavity, a partial scapula, and partial limb bones. With the new specimens we are able to present a detailed description of Sphenopsalis, comparisons among relevant taeniolabidoids, and brief phylogenetic analyses based on a dataset consisting of 43 taxa and 102 characters.