Lhiwanj[Fuseum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enamel Ultrastructure of Multituberculate Mammals: an Investigation of Variability
CO?JTRIBI!TIONS FROM THE MUSEUM OF PALEOK.1-OLOCiY THE UNIVERSITY OF MICHIGAN VOL. 27. NO. 1, p. 1-50 April I, 1985 ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY SANDRA J. CARLSON and DAVID W. KRAUSE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRlBUTlONS FROM THE MUSEUM OF PALEON I OLOGY Philip D. Gingerich, Director Gerald R. Smith. Editor This series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXVI. Parts of volumes may be obtained if available. Price lists available upon inquiry. CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN Vol . 27, no. 1, p. 1-50, pub1 ished April 1, 1985, Sandra J. Carlson and David W. Krause (Authors) ERRATA Page 11, Figure 4 caption, first line, should read "(1050X)," not "(750X)." ENAMEL ULTRASTRUCTURE OF MULTITUBERCULATE MAMMALS: AN INVESTIGATION OF VARIABILITY BY Sandra J. Carlsonl and David W. Krause' Abstract.-The nature and extent of enamel ultrastructural variation in mammals has not been thoroughly investigated. In this study we attempt to identify and evaluate the sources of variability in enamel ultrastructural patterns at a number of hierarchic levels within the extinct order Multituberculata. -
Multituberculate Mammals from the Wahweap
MULTITUBERCULATE MAMMALS FROM THE WAHWEAP (CAMPANIAN, AQUILAN) AND KAIPAROWITS (CAMPANIAN, JUDITHIAN) FORMATIONS, WITHIN AND NEAR GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, SOUTHERN UTAH Jeffrey G. Eaton Department of Geosciences Weber State University Ogden, UT 84408-2507 phone: (801) 626-6225 fax: (801) 626-7445 e-mail: [email protected] Cover photo by author: Powell Point in “The Blues,” the early Tertiary Claron Formation on the horizon and the Kaiparowits Formation in the foreground. ISBN 1-55791-665-9 Reference to any specific commercial product by trade name, trademark, or manufacturer does not constitute endorsement or recommendation by the Utah Geological Survey MISCELLANEOUS PUBLICATION 02-4 UTAH GEOLOGICAL SURVEY a division of 2002 Utah Department of Natural Resources STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Robert Morgan, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director UGS Board Member Representing Robert Robison (Chairman) ...................................................................................................... Minerals (Industrial) Geoffrey Bedell.............................................................................................................................. Minerals (Metals) Stephen Church .................................................................................................................... Minerals (Oil and Gas) E.H. Deedee O’Brien ....................................................................................................................... -
New Specimens of the Multituberculate Mammal Sphenopsalis from China: Implications for Phylogeny and Biology of Taeniolabidoids
New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids FANG-YUAN MAO, YUAN-QING WANG, and JIN MENG Mao, F.-Y., Wang, Y.-Q., and Meng, J. 2016. New specimens of the multituberculate mammal Sphenopsalis from China: Implications for phylogeny and biology of taeniolabidoids. Acta Palaeontologica Polonica 61 (2): 429–454. Multituberculates are the most diverse and best known group of Mesozoic mammals; they also persisted into the Paleogene and became extinct in the Eocene, possibly outcompeted by rodents that have similar morphological and pre- sumably ecological adaptations. Among the Paleogene multituberculates, those that have the largest body sizes belong to taeniolabidoids, which contain several derived species from North America and Asia and some species with uncertain taxonomic positions. Of the known taeniolabidoids, the poorest known taxon is Sphenopsalis nobilis from Mongolia and Inner Mongolia, China, represented previously by a few isolated teeth. Its relationship with other multituberculates thus has remained unclear. Here we report new specimens of Sphenopsalis nobilis collected from the upper Paleocene of the Erlian Basin, Inner Mongolia, China, during a multi-year field effort beginning in 2000. These new specimens document substantial parts of the dental, partial cranial and postcranial morphologies of Sphenopsalis, including the upper and lower incisors, partial premolars, complete upper and lower molars, a partial rostrum, fragments of the skull roof, middle ear cavity, a partial scapula, and partial limb bones. With the new specimens we are able to present a detailed description of Sphenopsalis, comparisons among relevant taeniolabidoids, and brief phylogenetic analyses based on a dataset consisting of 43 taxa and 102 characters. -
Mammalian Distal Humerus Fossils from Eastern Montana, USA with Implications for the Cretaceous-Paleogene Mass Extinction and the Adaptive Radiation of Placentals
Palaeontologia Electronica palaeo-electronica.org Mammalian distal humerus fossils from eastern Montana, USA with implications for the Cretaceous-Paleogene mass extinction and the adaptive radiation of placentals Lauren B. DeBey and Gregory P. Wilson ABSTRACT Postcrania of Cretaceous-Paleogene (K-Pg) mammals offer insights into richness, body size, and locomotor ecology that supplement patterns from well-sampled dental assemblages. Here, we describe and morphotype 50 distal humeri from Lancian–Puer- can assemblages of eastern Montana. Using geometric morphometric analysis of a taxonomically broad sample of humeri from extant small-bodied therians of diverse locomotor modes, we constrain locomotor inferences of some morphotypes. We use this database to preliminarily assess body-size and locomotor diversity across the K- Pg boundary. The seven Lancian humerus morphotypes include the multituberculates ?Mesodma sp., ?Cimolodon nitidus, and ?Meniscoessus robustus and the metatherian ?Didelphodon vorax. Morphotype richness decreased to four or five across the K-Pg boundary and rebounded in the late Puercan to six, mostly eutherian, morphotypes. Puercan morphotypes include the multituberculate ?Stygimys kuszmauli, the “plesi- adapiform” primate ?Purgatorius, small and large archaic ungulates, a possible palaeo- ryctid, and a very large eutherian. Humerus size data imply a decrease in body size across the K-Pg boundary, followed by an increase by the late Puercan, a trend consis- tent with the dental fossil record. Geometric morphometrics analysis and functional morphology imply greater locomotor diversity among K-Pg mammals than previously recognized: we infer that most Lancian and Puercan multituberculates were arboreal; the Lancian eutherian was arboreal or semifossorial; the early Puercan palaeoryctid was semifossorial and the small archaic ungulate was terrestrial; and the late Puercan “plesiadapiform” primate was arboreal and the large archaic ungulate was scansorial. -
Mammals Across the K/Pg Boundary in Northeastern
Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling Author(s): Gregory P. Wilson Source: Paleobiology, 39(3):429-469. 2013. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/12041 URL: http://www.bioone.org/doi/full/10.1666/12041 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Paleobiology, 39(3), 2013, pp. 429–469 DOI: 10.1666/12041 Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling Gregory P. Wilson Abstract.—The Cretaceous/Tertiary (K/Pg) mass extinction has long been viewed as a pivotal event in mammalian evolutionary history, in which the extinction of non-avian dinosaurs allowed mammals to rapidly expand from small-bodied, generalized insectivores to a wide array of body sizes and ecological specializations. -
In Quest for a Phylogeny of Mesozoic Mammals
In quest for a phylogeny of Mesozoic mammals ZHE−XI LUO, ZOFIA KIELAN−JAWOROWSKA, and RICHARD L. CIFELLI Luo, Z.−X., Kielan−Jaworowska, Z., and Cifelli, R.L. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47 (1): 1–78. We propose a phylogeny of all major groups of Mesozoic mammals based on phylogenetic analyses of 46 taxa and 275 osteological and dental characters, using parsimony methods (Swofford 2000). Mammalia sensu lato (Mammaliaformes of some authors) are monophyletic. Within mammals, Sinoconodon is the most primitive taxon. Sinoconodon, morganu− codontids, docodonts, and Hadrocodium lie outside the mammalian crown group (crown therians + Monotremata) and are, successively, more closely related to the crown group. Within the mammalian crown group, we recognize a funda− mental division into australosphenidan (Gondwana) and boreosphenidan (Laurasia) clades, possibly with vicariant geo− graphic distributions during the Jurassic and Early Cretaceous. We provide additional derived characters supporting these two ancient clades, and we present two evolutionary hypotheses as to how the molars of early monotremes could have evolved. We consider two alternative placements of allotherians (haramiyids + multituberculates). The first, supported by strict consensus of most parsimonious trees, suggests that multituberculates (but not other alllotherians) are closely re− lated to a clade including spalacotheriids + crown therians (Trechnotheria as redefined herein). Alternatively, allotherians can be placed outside the mammalian crown group by a constrained search that reflects the traditional emphasis on the uniqueness of the multituberculate dentition. Given our dataset, these alternative topologies differ in tree−length by only ~0.6% of the total tree length; statistical tests show that these positions do not differ significantly from one another. -
SUPPLEMENTARY INFORMATION Doi:10.1038/Nature10880
SUPPLEMENTARY INFORMATION doi:10.1038/nature10880 Adaptive Radiation of Multituberculate Mammals Before the Extinction of Dinosaurs Gregory P. Wilson1, Alistair R. Evans2, Ian J. Corfe3, Peter D. Smits1,2, Mikael Fortelius3,4, Jukka Jernvall3 1Department of Biology, University of Washington, Seattle, WA 98195, USA. 2School of Biological Sciences, Monash University, VIC 3800, Australia. 3Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland. 4Department of Geosciences and Geography, PO Box 64, University of Helsinki, FIN-00014, Helsinki, Finland. 1. Dental complexity data collection We scanned lower cheek tooth rows (premolars and molars) of 41 multituberculate genera using a Nextec Hawk three-dimensional (3D) laser scanner at between 10 and 50-µm resolution and in a few cases a Skyscan 1076 micro X-ray computed tomography (CT) at 9-µm resolution and an Alicona Infinite Focus optical microscope at 5-µm resolution. One additional scan from the PaleoView3D database (http://paleoview3d.marshall.edu/) was made on a Laser Design Surveyor RE-810 laser line 3D scanner with a RPS-120 laser probe. 3D scans of cheek tooth rows are deposited in the MorphoBrowser database (http://morphobrowser.biocenter.helsinki.fi/). The WWW.NATURE.COM/NATURE | 1 doi:10.1038/nature10880 RESEARCH SUPPLEMENTARY INFORMATION sampled taxa provide broad morphological, phylogenetic, and temporal coverage of the Multituberculata, representing 72% of all multituberculate genera known by lower tooth rows. We focused at the level of genera rather than species under the assumption that intrageneric variation among multituberculates is mostly based on size not gross dental morphology. The sampled cheek tooth rows for each genus are composed of either individual fossil specimens or epoxy casts with complete cheek tooth rows or cheek tooth row composites formed from multiple fossil specimens or epoxy casts of the same species. -
Late Cretaceous Mammalian Fauna from the Hell Creek Formation, Southeastern Montana
LATE CRETACEOUS MAMMALIAN FAUNA FROM THE HELL CREEK FORMATION, SOUTHEASTERN MONTANA Yue Zhang and J. David Archibald, Department of Biology, San Diego State University, San Diego, California 92181-4614, U.S.A. The richest known Late Cretaceous mammalian fauna from the Hell Creek Formation was discovered in southeastern Montana in the 1980’s. Although a faunal list was included in a paleobiogeographic study, the taxa have never been described. This study describes and compares this important fauna to other Late Cretaceous mammalian faunas. There are some 20 mammal producing localities, but the richest are the four localities composing Claw Butte Anthills local fauna and the single richest locality composing the Spigot-Bottle local fauna. Over 1000 mammal specimens have been recovered by screen washed from an in situ channel fill composed of silty sand. The Hell Creek Formation is quite thick in this area, reaching 150m, with the two local faunas ranging from 65 to 61 m below the formational contact. Based on faunal content the two local faunas are not different. Spigot-Bottle local fauna includes the multituberculates Mesodma formosa, M. hensleighi, M. thompsoni, Cimolodon nitidus, Cimolomys gracilis, Meniscoessus robustus; the metatherians Protalphadon lulli, Alphadon marshi, A. wilsoni, Pediomys cooki, P. elegans, P. florencae, P. hatcheri, P. krejcii, Turgidodon rhaister, Didelphodon vorax; and the eutherians, Batodon tenuis, Cimolestes incisus, C. propalaeoryctes, C. stirtoni, Gypsonictops sp., cf. Paranyctoides sp. In addition, from the Claw Butte local fauna the multituberculate Essonodon browni, the metatherian Glasbius twitchelli, and the eutherian Gypsonictops hypoconus have been recovered. The eutherian Cimolestes magnus also has been reported elsewhere from the Hell Creek Formation in southeastern Montana. -
A Marsupial from the Belly River Cre- Taceous
59.92E(117: 71.2) Article XXV.-A MARSUPIAL FROM THE BELLY RIVER CRE- TACEOUS. WITH CRITICAL OBSERVATIONS UPON THE AFFINITIES OF THE CRETACEOUS MAMMALS. BY W. D. MATTHEW. Plates II-VI. CONTENTS. PAGE I. Review of previous knowledge of Upper Cretaceous mammals. Affini- ties of the Multituberculata and of the Cretaceous Trituberculata.... 477 II. Eodelphis browni new genus and species. Diagnosis. Circumstances of discovery; horizon, locality and accompanying fauna. Description of type and comparisons with Belly River and Lance genera ............. 482 III. Redescription of Thla?odon padanicus Cope. Affinities and compari- son with Eodelphis and other Cretaceous trituberculates ............. 492 IV. Conclusions and interpretation of the evidence ..................... 498 I. REVIEW OF PREVIOUS KNOWLEDGE OF UPPER CRETACEOUS MAMMALS. Cretaceous mammals are exceedingly rare and extremely fragmentary. In the upper or true Cretaceous they are known only from Western North America. The earliest record dates back to forty years ago, in 1876, when Professor E. D. Cope 1 described under the name of Paronychodon lacustris a tooth from the Judith River formation of Montana, which he supposed to be reptilian but which has since been recognized (Osborn 1891) as the incisor tooth of a multituberculate mammal, probably related to Ptilodus.2 The first discovery of recognized mammals is due to Dr. J. L. Wortman, who found in 1882 two teeth and a fragment of a humerus in the Lance formation of Wyoming, which were described by Professor Cope I under the name of Meniscoessus conquistus. The type specimens of Paronychodon and Meniscoessus are in the American Museum Cope Collection. The second tooth associated with the primary type of Ml. -
NEW UPPER CRETACEOUS MULTITUBERCULATE GENERA from BAYN DZAK, GOBI DESERT (Plates >C-->Cv1l)
ZOFIA KIELAN-JAWOROWSKA NEW UPPER CRETACEOUS MULTITUBERCULATE GENERA FROM BAYN DZAK, GOBI DESERT (plates >C-->CV1l) Abstract. -- Four new multituberculate genera and species from the Upper Cretaceous, Djadokhta Formation, Bayn Dzak, Gobi Desert, are diagnosed and figured. One of them, Gobibaatar parvusn. gen., n. sp., is assigned to Ectypodontidae in Ptilodontoidea, the three remaining to Taeniolabidoidea: Sloanbaatar mirabilis n. gen., n. sp. and Kryptobaatar dashzevegi n. gen., n. sp, to Eucosmodontidae, and Kamptobaatar kuczynskii n. gen., n, sp. to Taeniolabididae. The multituberculate fauna of the Djadokhta Formation is characterized. It is concluded that the degree of anatomical differ entiation of Bayn Dzak multituberculates indicates the lower part of the Upper Cretaceous (Coniacian-Santonian) as the presumable age of the Djadokhta Formation. INTRODUCTION The Polish-Mongolian Palaeontological Expeditions assembled a collection of 30 speci mens of mammals in 1964 and 1965 at Bayn Dzak (Shabarakh Usu) in the Gobi Desert, in the Upper Cretaceous sandstone of the Djadokhta Formation (KrnLAN-JAWOROWSKA & Dov CHIN, 1968). In 1967, a five person field party of the Polish Academy of Sciences and the Academy of Sciences of the Mongolian People's Republic spent one week in Bayn Dzak, collecting 6 additional specimens. Of this collection, 12 specimens are eutherian mammals, while 24 are multituberculates. A preliminary report on the eutherian mammals from Bayn Dzak was published earlier (KIELAN -JAWOROWSKA, 1968/69). In that paper the characteristics of 3 pla ces, designated the Main Field, Ruins and Volcano, where mammals were collected at Bayn Dzak, were described (see also GRADZINSKI et al., 1968/69). The Third Central Asiatic Expedition ofthe American Museum of Natural History in 1923, collected at Bayn Dzak (referred to as Shabarakh Usu) a single multituberculate skull, described by SIMPSON (1925) as Djadochtatherium matthewi. -
By DAVID A. LEVERING Bachelors of Science
A MORPHOSPACE ODDITY: ASSESSING MORPHOLOGICAL DISPARITY OF THE CIMOLODONTA (MULTITUBERCULATA) ACROSS THE CRETACEOUS- PALEOGENE EXTINCTION BOUNDARY. By DAVID A. LEVERING Bachelors of Science: Geology University of Oregon Eugene, Oregon 2007 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2013 A MORPHOSPACE ODDITY: ASSESSING MORPHOLOGICAL DISPARITY OF THE CIMOLODONTA (MULTITUBERCULATA) ACROSS THE CRETACEOUS-PALEOGENE EXTINCTION BOUNDARY. Thesis Approved: Dr. Barney Luttbeg Thesis Adviser Dr. Anne Weil Dr. Ron Van Den Bussche ii Name: DAVID LEVERING Date of Degree: JULY, 2013 Title of Study: A MORPHOSPACE ODDITY: ASSESSING MORPHOLOGICAL DISPARITY OF THE CIMOLODONTA (MULTITUBERCULATA) ACROSS THE CRETACEOUS-PALEOGENE EXTINCTION BOUNDARY. Major Field: ZOOLOGY Abstract: In this study, I focus on the loss of species diversity – and therefore morphological diversity - within the Cimolodonta (Multituberculata) during the Cretaceous-Paleogene (K-Pg) extinction, followed by their recovery in the Puercan (earliest Paleogene). Teeth make up the majority of the cimolodontan fossil record, allowing inferences of dietary ecology, body size estimates, and phylogenetic proximity. I analyzed morphological disparity within the restricted phylogenetic framework of the Cimolodonta. I addressed 3 questions: 1) Did the conditions of the K-Pg extinction select for or against cimolodontan dental morphologies, if it was selective at all? 2) Do levels of cimolodontan morphological similarity return to pre-extinction levels in the Puercan? 3) Do the Puercan Cimolodonta recover morphology lost during the extinction, or do the Cimolodonta morphologically diverge from the pre-extinction morphospace? I used Euclidian inter-taxon distance measures derived from dental character data to perform a principal coordinates analysis (PCO), generating a multidimensional representation of morphological similarity. -
Postcranial Skeleton of a Cretaceous Multituberculate Mammal Catopsbaatar
Postcranial skeleton of a Cretaceous multituberculate mammal Catopsbaatar JØRN H. HURUM and ZOFIA KIELAN−JAWOROWSKA Hurum, J.H. and Kielan−Jaworowska, Z. 2008. Postcranial skeleton of a Cretaceous multituberculate mammal Catops− baatar. Acta Palaeontologica Polonica 53 (4): 545–566. We describe an incomplete postcranial skeleton of Catopsbaatar catopsaloides from the ?late Campanian red beds of Hermiin Tsav I, in the Gobi Desert, Mongolia. The skeleton is fragmentary and the preservation of bone surface does not permit reconstruction of the musculature. The studied skeleton contains some parts not preserved or incompletely known in other multituberculate genera, such as a long spinous process in a single lumbar vertebra, which together with long transverse processes preserved in Nemegtbaatar, might indicate that at least some multituberculates had jumping ability. The calcaneus of Catopsbaatar is unusual, differing from most other multituberculates (where known) and other mam− mals by having a short tuber calcanei, with a large proximal anvil−shaped process strongly bent laterally and ventrally, ar− ranged obliquely with respect to the distal margin of the calcaneus, rather than arranged at 90° to it, as in other mammals. This suggests the presence of strong muscles that attached to the tuber calcanei, perhaps further attesting to jumping abili− ties in Catopsbaatar. We also describe an unfused pelvic girdle and the first extratarsal spur bone (os cornu calcaris) known in multituberculates. Key words: Mammalia, Multituberculata, Djadochtatheriidae, Catopsbaatar, postcranial skeleton, sprawling posture, Cretaceous, Gobi Desert, Hermiin Tsav. Jørn H. Hurum [[email protected]], Naturhistorisk Museum, Universitetet i Oslo, Boks 1172 Blindern, N−0318 Oslo, Norway; Zofia Kielan−Jaworowska [[email protected]], Instytut Paleobiologii PAN, ul.