Conservation Assessment for Lake Huron Locust (Trimerotropis Huroniana)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Acridiidae of Minnesota
Wqt 1lluitttr11ity nf :!alliuur11nta AGRICULTURAL EXPERIMENT STATION BULLETIN 141 TECHNICAL THE ACRIDIIDAE OF MINNESOTA BY M. P. SOMES DIVISION OF ENTOMOLOGY UNIVERSITY FARM, ST. PAUL. JULY 1914 THE UNIVERSlTY OF l\ll.'\1\ESOTA THE 130ARD OF REGENTS The Hon. B. F. :.JELsox, '\finneapolis, President of the Board - 1916 GEORGE EDGAR VINCENT, Minneapolis Ex Officio The President of the l.:niversity The Hon. ADOLPH 0. EBERHART, Mankato Ex Officio The Governor of the State The Hon. C. G. ScnuLZ, St. Paul l'.x Oflicio The Superintendent of Education The Hon. A. E. RICE, \Villmar 191.3 The Hon. CH.\RLES L. Sol\DfERS, St. Paul - 1915 The Hon. PIERCE Bun.ER, St. Paul 1916 The Hon. FRED B. SNYDER, Minneapolis 1916 The Hon. W. J. J\Lwo, Rochester 1919 The Hon. MILTON M. \NILLIAMS, Little Falls 1919 The Hon. }OIIN G. vVILLIAMS, Duluth 1920 The Hon. GEORGE H. PARTRIDGE, Minneapolis 1920 Tl-IE AGRICULTURAL C0:\1MITTEE The Hon. A. E. RrCE, Chairman The Hon. MILTON M. vVILLIAMS The Hon. C. G. SCHULZ President GEORGE E. VINCENT The Hon. JoHN G. \VrLLIAMS STATION STAFF A. F. VlooDs, M.A., D.Agr., Director J. 0. RANKIN, M.A.. Editor HARRIET 'vV. SEWALL, B.A., Librarian T. J. HORTON, Photographer T. L.' HAECKER, Dairy and Animal Husbandman M. H. REYNOLDS, B.S.A., M.D., D.V.:'d., Veterinarian ANDREW Boss, Agriculturist F. L. WASHBURN, M.A., Entomologist E. M. FREEMAN, Ph.D., Plant Pathologist and Botanist JonN T. STEWART, C.E., Agricultural Engineer R. W. THATCHER, M.A., Agricultural Chemist F. J. -
Habitat Conservation Plan Outline
Low-Effect Habitat Conservation Plan for Endangered Sandhills Species at the Clements Property, Santa Cruz County California Prepared by: Prepared for: Submitted to: Jodi McGraw, Ph.D. Ron and Natalie Clements Mr. Steve Henry Principal and Ecologist 8225 Ridgeview Drive Field Supervisor Jodi McGraw Consulting Ben Lomond, CA 95005 US Fish and Wildlife Service PO Box 221 2493 Portola Road, Suite B Freedom, CA 95019 Ventura, CA 93003 September 2017 HCP for the Clements Property, Ben Lomond, CA Contents Executive Summary 1 Section 1. Introduction and Background 3 Overview/Background ........................................................................ 3 Permit Holder/Permit Duration ............................................................ 3 Permit Boundary/Covered Lands ........................................................ 3 Species to be Covered by Permit ....................................................... 5 Regulatory Framework ....................................................................... 5 Federal Endangered Species Act ............................................ 5 The Section 10 Process - Habitat Conservation Plan Requirements and Guidelines ................................................. 7 National Environmental Policy Act .......................................... 8 National Historic Preservation Act ...................................................... 8 California Endangered Species Act .................................................... 8 California Environmental Quality Act ................................................. -
Spatial Vision in Band-Winged Grasshoppers (Orthoptera: Acrididae: Oedipodinae)
Spatial vision in band-winged grasshoppers (Orthoptera: Acrididae: Oedipodinae) A Senior Thesis Presented to the Faculty of the Department of Organismal Biology and Ecology, Colorado College By Alexander B. Duncan Bachelor of Arts Degree in Organismal Biology and Ecology May, 2017 Approved by: _________________________________________ Dr. Nicholas Brandley Primary Thesis Advisor ________________________________________ Dr. Emilie Gray Secondary Thesis Advisor ABSTRACT Visual acuity, the ability to resolve fine spatial details, can vary dramatically between and within insect species. Body-size, sex, behavior, and ecological niche are all factors that may influence an insect’s acuity. Band-winged grasshoppers (Oedipodinae) are a subfamily of grasshoppers characterized by their colorfully patterned hindwings. Although researchers have anecdotally suggested that this color pattern may attract mates, few studies have examined the visual acuity of these animals, and none have examined its implications on intraspecific signaling. Here, we compare the visual acuity of three bandwing species: Dissosteira carolina, Arphia pseudonietana, and Spharagemon equale. To measure acuity in these species we used a modified radius of curvature estimation (RCE) technique. Visual acuity was significantly coarser 1) in males compared to females, 2) parallel to the horizon compared to the perpendicular, and 3) in S. equale compared to other bandwings. Unlike many insect families, body size within a species did not correlate with visual acuity. To examine the functional implications of these results, we modeled the appearance of different bandwing patterns to conspecifics. These results suggest that hind- wing patterning could only be used as a signal to conspecifics at short distances (<50cm). This study furthers the exploration of behavior and the evolution of visual systems in bandwings. -
The Evolution of South American Populations of Trimerotropis Pallidipennis (Oedipodinae: Acrididae) Revisited: Dispersion Routes
N.V. GUZMAN AND V.A.Journal CONFALONIERI of Orthoptera Research 2010,19(2): 253-260253 The evolution of South American populations of Trimerotropis pallidipennis (Oedipodinae: Acrididae) revisited: dispersion routes and origin of chromosomal inversion clines Submitted July 27, 2010, accepted October 20, 2010 NOELIA VERÓNICA GUZMAN AND VIVIANA ANDREA CONFALONIERI Grupo de Investigación en Filogenias Moleculares y Filogeografía, Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes y Costanera Norte s/n., 4to. Piso Pabellón II, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina. [VAC] Email: [email protected] Abstract enization between related species in geographic regions of sympatry. Indeed, inversions can create genomic regions of low recombina- In the past few years large-scale genome sequencing has demonstrated tion that may provide a means to create ‘‘islands of differentiation’’ that inversion rearrangements are more frequent than initially hypothesized. Many examples suggest they may have played an important function in between species (Brown et al. 2004; Butlin 2005; Slotman et al. delineating the evolution of biodiversity. In particular, clinal patterns of 2006, 2007). This pattern of localized differentiation should be variation for this type of rearrangement point out its significance in relation particularly strong if regions of low recombination also harbor loci to the evolution and adaptation of organisms to changing environments. with divergently selected alleles or alleles conferring reproductive Within grasshoppers, Trimerotropis and Circotettix show high incidence of isolation (Feder & Nosil 2009), a hypothesis that has recently been inversion rearrangements, either in fixed or polymorphic state, according tested on a genome-wide scale (Kulathinal et al. -
Bibliographic Guide to the Terrestrial Arthropods of Michigan
The Great Lakes Entomologist Volume 16 Number 3 - Fall 1983 Number 3 - Fall 1983 Article 5 October 1983 Bibliographic Guide to the Terrestrial Arthropods of Michigan Mark F. O'Brien The University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation O'Brien, Mark F. 1983. "Bibliographic Guide to the Terrestrial Arthropods of Michigan," The Great Lakes Entomologist, vol 16 (3) Available at: https://scholar.valpo.edu/tgle/vol16/iss3/5 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. O'Brien: Bibliographic Guide to the Terrestrial Arthropods of Michigan 1983 THE GREAT LAKES ENTOMOLOGIST 87 BIBLIOGRAPHIC GUIDE TO THE TERRESTRIAL ARTHROPODS OF MICHIGAN Mark F. O'Brienl ABSTRACT Papers dealing with distribution, faunal extensions, and identification of Michigan insects and other terrestrial arthropods are listed by order, and cover the period of 1878 through 1982. The following bibliography lists the publications dealing with the distribution or identification of insects and other terrestrial arthropods occurring in the State of Michigan. Papers dealing only with biological, behavioral, or economic aspects are not included. The entries are grouped by orders, which are arranged alphabetically, rather than phylogenetic ally , to facilitate information retrieval. The intent of this paper is to provide a ready reference to works on the Michigan fauna, although some of the papers cited will be useful for other states in the Great Lakes region. -
Animal Spot Animal Spot Uses Intriguing Specimens from Cincinnati Museum Center’S Collections to Teach Children How Each Animal Is Unique to Its Environment
Animal Spot Animal Spot uses intriguing specimens from Cincinnati Museum Center’s collections to teach children how each animal is unique to its environment. Touch a cast of an elephant’s skull, feel a real dinosaur fossil, finish a three-layer fish puzzle, observe live fish and use interactives to explore how animals move, “dress” and eat. Case 1: Modes of Balance and Movement (Case design: horse legs in boots) Animals walk, run, jump, fly, and/or slither to their destination. Animals use many different parts of their bodies to help them move. The animals in this case are: • Blue Jay (Cyanocitta cristata) • Grasshopper (Shistocerca americana) • Locust (Dissosteira carolina) • Broad-wing damselfly (Family: Calopterygidae) • King Rail (Rallus elegans) • Eastern Mole (Scalopus aquaticus) • Brown trout (Salmo trutta) • Gila monster (Heloderma suspectum) • Damselfly (Agriocnemis pygmaea) • Pufferfish (Family: Tetraodontidae) • Bullfrog (Rona catesbrana) • Cicada (Family: Cicadidae) • Moths and Butterflies (Order: Lepidoptera) • Sea slugs (Order: Chepalaspidea) • Koala (Phascolarctos cinereus) • Fox Squirrel (Sciurus niger) • Giant Millipede (Subspecies: Lules) Case 2: Endo/Exoskeleton (Case design: Surrounded by bones) There are many different kinds of skeletons; some inside the body and others outside. The animals with skeletons on the inside have endoskeletons. Those animals that have skeletons on the outside have exoskeletons. Endoskeletons • Hellbender salamander (Genus: Cryptobranchus) • Python (Family: Boidae) • Perch (Genus: Perca) -
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects. -
The Taxonomy of Utah Orthoptera
Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College. -
Biological Inventory and Local Planner Outreach for Conservation in the Northern Lake Michigan Coastal Zone, Schoolcraft County
Biological Inventory and Local Planner Outreach for Conservation in the Northern Lake Michigan Coastal Zone, Schoolcraft County Prepared by: Phyllis J. Higman, YuMan Lee, Jennifer A. Olson, Stephanie M. Carman, Reuben R. Goforth Michigan Natural Features Inventory Stevens T. Mason Building P.O. Box 30444 Lansing, MI 48909-7944 For: Michigan Coastal Zone Management Program Land and Water Management Division, MDEQ Coastal Management Program Grant # 98-309-25 Report Number 2000-17 Submitted March 21, 2001 Cover Photo Identification and Credits: Pitchers thistle photo by: Susan R. Crispin Dwarf lake iris photo by: Phyllis J. Higman Houghtons goldenrod photo by: Doug Moore Lake Huron locust photo by: David L. Cuthrell Executive Summary In 1999, Michigan Natural Features Inventory sites. Individuals of seven listed species were seen (MNFI) initiated a project to conduct systematic in the study area, including osprey, bald eagle, red- surveys of natural features along Lake Michigans shouldered hawk, Caspian tern, common loon, northern coastal zone in Schoolcraft County. northern harrier, and northern goshawk. Surveys were conducted for high quality natural Surveys for the Great Lakes endemic, Lake communities and rare species. The study was also Huron locust, resulted in the identification of three initiated as a pilot project to expand MNFIs new populations and the reconfirmation of six coastal zone survey work to include landowner previously known populations, four of which were contact and local planner outreach. The study area expanded in extent. Additional suitable habitat for was chosen deliberately to include a high this species was also identified. Most of the proportion of private lands, coincident with high documented populations were ranked with fair to development pressure and significant survey gaps. -
Bill Baggs Cape Florida State Park
Wekiva River Basin State Parks Approved Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks October 2017 TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................2 PURPOSE AND SCOPE OF THE PLAN..................................................... 7 MANAGEMENT PROGRAM OVERVIEW ................................................... 9 Management Authority and Responsibility .............................................. 9 Park Management Goals ...................................................................... 9 Management Coordination ................................................................. 10 Public Participation ............................................................................ 10 Other Designations ........................................................................... 10 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 13 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 19 Natural Resources ............................................................................. 19 Topography .................................................................................. 19 Geology ...................................................................................... -
Forms of Melanoplus Bowditchi (Orthoptera: Acrididae) Collected from Different Host Plants Are Indistinguishable Genetically and in Aedeagal Morphology
Forms of Melanoplus bowditchi (Orthoptera: Acrididae) collected from diVerent host plants are indistinguishable genetically and in aedeagal morphology Muhammad Irfan Ullah1,4 , Fatima Mustafa1,5 , Kate M. Kneeland1, Mathew L. Brust2, W. Wyatt Hoback3,6 , Shripat T. Kamble1 and John E. Foster1 1 Department of Entomology, University of Nebraska, Lincoln, NE, USA 2 Department of Biology, Chadron State College, Chadron, NE, USA 3 Department of Biology, University of Nebraska, Kearney, NE, USA 4 Current aYliation: Department of Entomology, University of Sargodha, Pakistan 5 Current aYliation: Department of Entomology, University of Agriculture Faisalabad, Pakistan 6 Current aYliation: Entomology and Plant Pathology Department, Oklahoma State University, Stillwater, OK, USA ABSTRACT The sagebrush grasshopper, Melanoplus bowditchi Scudder (Orthoptera: Acrididae), is a phytophilous species that is widely distributed in the western United States on sagebrush species. The geographical distribution of M. bowditchi is very similar to the range of its host plants and its feeding association varies in relation to sagebrush dis- tribution. Melanoplus bowditchi bowditchi Scudder and M. bowditchi canus Hebard were described based on their feeding association with diVerent sagebrush species, sand sagebrush and silver sagebrush, respectively. Recently, M. bowditchi have been observed feeding on other plant species in western Nebraska. We collected adult M. bowditchi feeding on four plant species, sand sagebrush, Artemisia filifolia, big sagebrush, A. tridentata, fringed sagebrush, A. frigidus, and winterfat, Kraschenin- Submitted 10 January 2014 nikovia lanata. We compared the specimens collected from the four plant species for Accepted 17 May 2014 Published 10 June 2014 their morphological and genetic diVerences. We observed no consistent diVerences among the aedeagal parameres or basal rings among the grasshoppers collected Corresponding author W. -
A Cytological Survey of Wild Populations of Trimerotropis and Circotettix. (Orthoptera, Acrididae). I. the Chromosomes of Twelve
A CYTOLOGICAL SURVEY OF WILD POPULATIONS OF TRIMEROTROPIS AND CIRCOTETTIX. (ORTHOPTERA, ACRIDIDAE). I. THE CHROMOSOMES OF . TWELVE SPECIES M. J. D. WHITE University of Texas, Austin, Texas Received November 29, 1948 INTRODUCTION N RECENT years a great deal of work has been carried out on the distri- I bution of structurally different chromosomal types in wild populations of Drosophila (DOBZHANSKY1947 a, b, c, 1948; DOBZHANSKYand EPLING1944; WARTERS1944; CARSONand STALKER1947). Similar studies have also been carried out on some species of Chironomus (PHILIP 1942; Hsu and LIU 1948). Comparisons have been made between different populations of the same species and between samples of the same population collected at different seasons:of the year and in several successive years. These studies have been almost entirely concerned with one particular type of chromosomal rearrangements, namely paracentric inversions. In the case of Drosophila pseudoobscura, the species which has been studied most extensively, it was found by DOBZHANSKYthat individuals heterozygous for inversions were, as a rule, better adapted under natural conditions than either of the two homozygous types. Thus, if we call one gene-sequence A and the other A’, individuals of the constitution AA’ possessed a higher degree of fitness than either AA or A’A’ individuals, although the relative fitness of the various types showed regular seasonal fluctuations. Results such as these (which can be duplicated in laboratory experiments carried out under controlled environ- mental conditions in “population cages”) explain the existence of the multipli- city of different gene-sequences known for the chromosomes of D.pseudoobscura and some other species of the genus Drosophila.