cells Article ROS Dependent Wnt/β-Catenin Pathway and Its Regulation on Defined Micro-Pillars—A Combined In Vitro and In Silico Study Susanne Staehlke 1,* , Fiete Haack 2 , Anna-Christin Waldner 1, Dirk Koczan 3, Caroline Moerke 1, Petra Mueller 1, Adelinde M. Uhrmacher 2,4 and J. Barbara Nebe 1,4 1 Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany;
[email protected] (A.-C.W.);
[email protected] (C.M.);
[email protected] (P.M.);
[email protected] (J.B.N.) 2 Modeling and Simulation Group, Institute for Visual and Analytic Computing, University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany; fi
[email protected] (F.H.);
[email protected] (A.M.U.) 3 Institute for Immunology, Core Facility for Microarray Analysis, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany;
[email protected] 4 Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany * Correspondence:
[email protected]; Tel.: +49-381-494-7775 Received: 23 June 2020; Accepted: 21 July 2020; Published: 27 July 2020 Abstract: The physico-chemical surface design of implants influences the surrounding cells. Osteoblasts on sharp-edged micro-topographies revealed an impaired cell phenotype, function and Ca2+ mobilization. The influence of edges and ridges on the Wnt/β-catenin pathway in combination with the cells’ stress response has not been clear. Therefore, MG-63 osteoblasts were studied on defined titanium-coated micro-pillars (5 5 5 µm) in vitro and in silico.