Solution Structure of the Calponin CH Domain and Fitting to the 3D-Helical Reconstruction of F-Actin:Calponin

Total Page:16

File Type:pdf, Size:1020Kb

Solution Structure of the Calponin CH Domain and Fitting to the 3D-Helical Reconstruction of F-Actin:Calponin View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 10, 249–258, February, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0969-2126(02)00703-7 Solution Structure of the Calponin CH Domain and Fitting to the 3D-Helical Reconstruction of F-Actin:Calponin Janice Bramham,1,6 Julie L. Hodgkinson,2 tropomyosin, caldesmon, and calponin. Basic calponin, Brian O. Smith,3 Dusan Uhrı´n,4 Paul N. Barlow,3,4 one of three genetic variants found almost exclusively in and Steven J. Winder5 smooth muscle, was first isolated from chicken gizzard 1 Department of Biochemistry smooth muscle as a 34 kDa protein that binds to filamen- University of Leicester tous actin (F-actin) [1]. It has been proposed that cal- Adrian Building ponin has a role both in muscle contraction and as a University Road structural component in the cytoskeleton of smooth Leicester LE1 7RH muscle cells. Calponin is associated with the contractile United Kingdom apparatus, along with actin, myosin, and caldesmon. It 2 Imperial College School of Science also occurs in the membrane skeleton that forms the Technology and Medicine interface between the contractile apparatus and the ex- National Heart and Lung Institute tracellular matrix, and it appears in the cytoskeleton, Dovehouse Street which surrounds and supports the contractile appara- London SW3 6LY tus, along with ␤-actin, filamin, and desmin [2]. United Kingdom In vitro studies have shown that calponin is an actin 3 Institute of Cell and Molecular Biology binding protein and a major regulator of muscle contrac- University of Edinburgh tion. The regulatory function arises from the ability of Mayfield Road calponin to modulate the interaction between myosin Edinburgh EH9 3JR and actin filaments by inhibition of the actomyosin Scotland ATPase [3]. In addition to its ability to bind to F-actin, 4 Department of Chemistry calponin is also reported to interact with myosin itself [4] Joseph Black Building and with a number of other cytoskeletal components, in- University of Edinburgh cluding tropomyosin [1], desmin intermediate filaments West Mains Road [5], tubulin [6], and phospholipids [7]. The reported inter- Edinburgh EH9 3JJ actions between calponin and several signal-transduc- Scotland ing proteins, such as the extracellular-regulated kinase 5 Institute of Biomedical and Life Sciences (ERK) and protein kinase C-⑀ (PKC⑀) [8,9], suggest fur- Division of Biochemistry and Molecular Biology ther potential functions for calponin as a signaling mole- Davidson Building cule or as an adaptor for the localization of these kinases. University of Glasgow The calponin molecule consists of four recognized Glasgow G12 8QQ domains: one at the N terminus, the calponin homology Scotland (CH) domain, and three repeating domains comprising the C terminus, the calponin-like repeats (CLR). The CH Summary domain has approximately 100 residues and was first identified in calponin from which its name is derived Calponin is involved in the regulation of contractility and [10]. Tandem pairs of CH domains are found in a number ␣ organization of the actin cytoskeleton in smooth muscle of actin binding proteins such as -actinin, dystrophin, cells. It is the archetypal member of the calponin homol- filamin, fimbrin and spectrin (reviewed by Stradal et al., ogy (CH) domain family of actin binding proteins that 1998 [11]). In these proteins, a role for the CH domain in includes cytoskeletal linkers such as ␣-actinin, spectrin, actin binding has been demonstrated: two CH domains and dystrophin, and regulatory proteins including VAV, positioned in tandem within a molecule are required to IQGAP, and calponin. We have determined the first form a high-affinity actin binding domain (ABD), thus structure of a CH domain from a single CH domain- potentially providing multiple sites for interaction with containing protein, that of calponin, and have fitted actin. The single CH domain of calponin is not part of the NMR-derived coordinates to the 3D-helical recon- an ABD and its precise role in actin binding has yet to struction of the F-actin:calponin complex using cryo- be determined [12]. Similarly, single copies of the CH electron microscopy. The tertiary fold of this single domain are found in other cytoskeletal and signaling CH domain is typical of, yet significantly different from, proteins where its function is unclear, including the Sac- those of the CH domains that occur in tandem pairs charomyces cerevisiae homolog Scp1, the smooth mus- to form high-affinity ABDs in other proteins. We thus cle protein SM22, the proto-oncogene Vav, and IQGAP provide a structural insight into the mode of interaction (reviewed by Stradal et al., 1998 [11]). between F-actin and CH domain-containing proteins. A number of in vitro studies have defined regions within the calponin molecule involved in its interactions Introduction with other proteins. One binding site for actin has been located between the CH domain and the first CLR in the The thin filaments of smooth muscle cells comprise actin C-terminal portion, in the region that is also required for filaments complexed with three other major proteins: Key words: actin binding, calponin-homology domain, NMR, struc- 6 Correspondence: [email protected] ture, calponin Structure 250 Figure 1. Analysis of the NOE and CSI Data for the Calponin CH Domain (A) Number of unambiguous NOE-derived distance restraints used in the structure calculations. Black, gray, and white bars correspond to sequential (i → i ϩ 1), medium range (i → i ϩ (2, 3, or 4)), and long range (i → i ϩ (Ͼ4)) NOEs, respectively. (B) NOEs between sequential backbone amide protons (Hn) and between Hn and H␣ (the heights of the bars are proportional to the NOE intensity). (C) Consensus CSI derived from the chemical shifts of C␣,C␤, CO, and H␣. (D) Cartoon representation of the secondary structure elements of the calponin CH domain. inhibition of the actomyosin ATPase (the so-called actin tion structure of any CH domain. The structure is com- binding site 1, ABS1) [13]. A second actin binding site pared to those of the crystal structures of the actin (ABS2) lies within the region spanning the three C-ter- binding CH domains and the implications for the ob- minal CLRs [14, 15]. Two binding sites for Ca2ϩ binding served differential actin binding properties are dis- proteins, such as calmodulin and S100, have been iden- cussed. The structure has also been fitted to the cryo- tified: one within an N-terminal region encompassing EM reconstruction of F-actin decorated with calponin; residues 7–45 and the second in the region between a comparison with the F-actin:CH domain reconstruc- residues 52 and 144; residues 142–227 contain a tropo- tions of other CH domains is discussed. myosin binding site [16]. Additionally, phosphorylation sites have been identified on all three CLRs [17]. The Results and Discussion relative significance of these reported in vitro interac- tions of calponin in vivo and of its distribution in smooth Structure Determination muscle has yet to be ascertained. Calponin may function A 1 mM sample of 15N,13C-labeled CH domain (residues separately both as a regulator of smooth muscle con- 27–134) yielded high-quality NMR spectra such that, traction and as a structural protein in smooth muscle. using a combination of complementary triple-resonance The distribution of the sites of interaction throughout experiments, nearly all of the 1H, 15N, and 13C nuclei in this modular molecule implies that the individual do- the protein could be unambiguously assigned [22]. The 1 13 13 mains may have separate functions in vivo. chemical shifts of all the assigned H␣, C␣, C␤, and The crystal structures of several CH domains from 13CO provided a consensus Chemical Shift Index (CSI) ABDs comprising tandem pairs of CH domains have that is consistent with a predominantly helical structure been reported [18–21]. In this report we describe the (Figure 1C). Five ␣ helices were predicted with no evi- three-dimensional solution structure of the archetypal dence of ␤ strands, concordant with the previously re- CH domain from chicken gizzard calponin, determined ported crystal structures of CH domains. Initial struc- by multinuclear NMR spectroscopy. This is the first tures were calculated using 3347 distance restraints structural investigation of a CH domain from a protein derived from the integrated crosspeaks in the 13C-edited containing only a single CH domain and is the first solu- NOESY-HSQC spectrum and the 15N-resolved cross- Solution Structure of the Calponin CH Domain 251 Table 1. Structural Statistics of the Final Ensemble of Twenty Refined Structures of the CH Domain of Chicken Calponin Ensemble Closest to Mean Number of NOE restraints used: Intraresidue (i → i) 1034 1034 Sequential (i → i ϩ 1) 320 320 Medium range (i → i ϩ (2 to 4)) 234 234 Long range (i → i ϩ (Ͼ4)) 315 315 Ambiguous 672 672 Total 2575 2575 Average NOE restraint violation (A˚ ) 0.031 Ϯ 0.007a 0.033 Lennard-Jones energy (kJmolϪ1)b Ϫ207 Ϯ 49 Ϫ222 Coordinate rmsd (A˚ ): All residues* (backbone heavy atoms) 0.580 0.493 (all heavy atoms) 0.990 0.873 Residues in helices† (backbone heavy atoms) 0.448 0.381 (all heavy atoms) 0.828 0.708 Parameter rmsd from idealized geometry: Bond lengths (A˚ ) 0.0018 Ϯ 6 ϫ 10Ϫ4c 0.0019 Angles (Њ) 0.331 Ϯ 0.007c 0.329 Improper dihedrals (Њ) 0.233 Ϯ 0.076c 0.232 Ramachandran assessment (%)d: Most favored region 84.5 87.2 Additionally allowed region 9.1 6.4 Generously allowed region 5.1 6.4 Disallowed region 1.3 0.0 a The sum of the NOE violations divided by the total number of restraints, averaged over the ensemble.
Recommended publications
  • Large-Scale Opening of Utrophints Tandem Calponin Homology (CH
    Large-scale opening of utrophin’s tandem calponin homology (CH) domains upon actin binding by an induced-fit mechanism Ava Y. Lin, Ewa Prochniewicz, Zachary M. James, Bengt Svensson, and David D. Thomas1 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 Edited by James A. Spudich, Stanford University School of Medicine, Stanford, CA, and approved June 20, 2011 (received for review April 21, 2011) We have used site-directed spin labeling and pulsed electron has prevented the development of a reliable structural model for paramagnetic resonance to resolve a controversy concerning the any of these complexes. A major unresolved question concerns structure of the utrophin–actin complex, with implications for the the relative disposition of the tandem CH domains (CH1 and pathophysiology of muscular dystrophy. Utrophin is a homolog of CH2) (9, 10). Crystal structures of the tandem CH domains dystrophin, the defective protein in Duchenne and Becker muscular showed a closed conformation for fimbrin (11) and α-actinin (12), dystrophies, and therapeutic utrophin derivatives are currently but an open conformation for both utrophin (Utr261) (Fig. 1A) being developed. Both proteins have a pair of N-terminal calponin and dystrophin (Dys246) (16). The crystal structure of Utr261 homology (CH) domains that are important for actin binding. suggests that the central helical region connecting CH1 and CH2 Although there is a crystal structure of the utrophin actin-binding is highly flexible. Even for α-actinin, which has a closed crystal domain, electron microscopy of the actin-bound complexes has structure, computational analysis suggests the potential for a high produced two very different structural models, in which the CH do- degree of dynamic flexibility that facilitates actin binding (17).
    [Show full text]
  • The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins
    Article The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins Christopher L. Schwebach 1,2, Richa Agrawal 1, Steffen Lindert 1, Elena Kudryashova 1 and Dmitri S. Kudryashov 1,2 1 - Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA 2 - Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA Correspondence to Dmitri S. Kudryashov: Department of Chemistry and Biochemistry, The Ohio State University, 484 W 12th Ave, 728 Biosciences Building, Columbus, OH 43210, USA. [email protected] http://dx.doi.org/10.1016/j.jmb.2017.06.021 Edited by James Sellers Abstract The actin cytoskeleton is a complex network controlled by a vast array of intricately regulated actin-binding proteins. Human plastins (PLS1, PLS2, and PLS3) are evolutionary conserved proteins that non-covalently crosslink actin filaments into tight bundles. Through stabilization of such bundles, plastins contribute, in an isoform-specific manner, to the formation of kidney and intestinal microvilli, inner ear stereocilia, immune synapses, endocytic patches, adhesion contacts, and invadosomes of immune and cancer cells. All plastins comprise an N-terminal Ca2+-binding regulatory headpiece domain followed by two actin-binding domains (ABD1 and ABD2). Actin bundling occurs due to simultaneous binding of both ABDs to separate actin filaments. Bundling is negatively regulated by Ca2+, but the mechanism of this inhibition remains unknown. In 2+ this study, we found that the bundling abilities of PLS1 and PLS2 were similarly sensitive to Ca (pCa50 ~6.4), whereas PLS3 was less sensitive (pCa50 ~5.9).
    [Show full text]
  • Spectrin Binding Motifs Control Scribble Cortical Dynamics And
    1 2 3 Spectrin binding motifs control Scribble cortical 4 dynamics and polarity function 5 6 Batiste Boëda and Sandrine Etienne Manneville 7 8 Institut Pasteur (CNRS URA 3691-INSERM), France 9 Correspondance to Sandrine Etienne-Manneville. Cell Polarity, Migration and Cancer Unit, 10 Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France; Phone: +33 1 4438 9591; 11 FAX: +33 1 4568 8548. 12 e-mail: [email protected] 13 14 Competing interests statement: 15 The authors declare that no competing interests exist. 16 17 1 18 Abstract 19 The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in 20 cell polarity. Despite being central for its function, the molecular basis of SCRIB 21 recruitment and stabilization at the cell cortex is poorly understood. Here we show that 22 SCRIB binds directly to the CH1 domain of spectrins, a molecular scaffold that 23 contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. 24 We have identified a short evolutionary conserved peptide motif named SADH motif 25 (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein 26 interaction with spectrins. The SADH domains contribute to SCRIB dynamics at the 27 cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH 28 domains associated with spina bifida and cancer impact the stability of SCRIB at the 29 plasma membrane, suggesting that SADH domain alterations may participate in human 30 pathology. 31 32 33 34 35 36 37 2 38 Introduction 39 The protein SCRIB has been implicated in a staggering array of cellular processes 40 including polarity, migration, proliferation, differentiation, apoptosis, stemcell 41 maintenance, and vesicle trafficking [1].
    [Show full text]
  • The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia
    cancers Article The Actin Binding Protein Plastin-3 Is Involved in the Pathogenesis of Acute Myeloid Leukemia Arne Velthaus 1, Kerstin Cornils 2,3, Jan K. Hennigs 1, Saskia Grüb 4, Hauke Stamm 1, Daniel Wicklein 5, Carsten Bokemeyer 1, Michael Heuser 6, Sabine Windhorst 4, Walter Fiedler 1 and Jasmin Wellbrock 1,* 1 Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (A.V.); [email protected] (J.K.H.); [email protected] (H.S.); [email protected] (C.B.); fi[email protected] (W.F.) 2 Department of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] 3 Research Institute Children’s Cancer Center Hamburg, 20246 Hamburg, Germany 4 Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (S.G.); [email protected] (S.W.) 5 Department of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] 6 Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 20246 Hannover, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-40-7410-55606 Received: 29 September 2019; Accepted: 25 October 2019; Published: 26 October 2019 Abstract: Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells.
    [Show full text]
  • The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-6-2012 The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Biology Commons, and the Cell and Developmental Biology Commons Recommended Citation Ojukwu, Elizabeth, "The Role of Actin Binding Proteins in Cell Motility" (2012). Honors Scholar Theses. 271. https://opencommons.uconn.edu/srhonors_theses/271 Ojukwu The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu 1 Ojukwu 2 Ojukwu The Role of Actin Binding Proteins in Cell Motility Elizabeth Ojukwu University Scholar Thesis May 2012 Major Advisor- Dr. David Knecht Honors Advisor- Dr. Adam Zweifach University Scholar Advisors- Dr. Victoria Robinson and Dr. Juliet Lee Department of Molecular and Cell Biology University of Connecticut 3 Ojukwu Table of Contents Abstract . 4 Introduction . 5 I. Overview of Cell Motility . 5 II. Dictyostelium Discoideum as a Model Organism . 6 III. The Role of the Actin Cytoskeleton During Cell Migration . 8 IV. Actin Binding Proteins Regulate Actin Dynamics . 9 V. My Project . 12 Chapter 1. The Effect of Actin Binding Protein Over-Expression on Cell Motility . 15 I. Material and Methods . 15 II. Results . 19 III. Discussion and Future Directions . 22 Chapter 2 Generation and Analysis of Fimbrin Double and Triple Null Mutants . 26 I. Material and Methods . 26 II. Results . 32
    [Show full text]
  • Actinin-4 Reveals a Mechanism for Regulating Its F-Actin-Binding Affinity
    Disease-associated mutant ␣-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity Astrid Weins*, Johannes S. Schlondorff*, Fumihiko Nakamura†, Bradley M. Denker*, John H. Hartwig†, Thomas P. Stossel†, and Martin R. Pollak*‡ *Renal and †Translational Medicine Divisions, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved August 23, 2007 (received for review March 16, 2007) ␣-Actinin-4 is a widely expressed protein that employs an actin- them cell motility, endocytosis, and adhesion (7–9). Cultured binding site with two calponin homology domains to crosslink podocytes deficient in one of the nonmuscle isotypes, ␣-actinin-4, actin filaments (F-actin) in a Ca2؉-sensitive manner in vitro.An exhibit defective substrate adhesion (10), which is consistent with inherited, late-onset form of kidney failure is caused by point the well documented localization of ␣-actinin at focal adhesion sites mutations in the ␣-actinin-4 actin-binding domain. Here we show (11), and is therefore probably responsible for the impaired trans- that ␣-actinin-4/F-actin aggregates, observed in vivo in podocytes lational locomotion of the ␣-actinin-4-deficient cells (7). of humans and mice with disease, likely form as a direct result of Five distinct point mutations in the ␣-actinin-4 head domain the increased actin-binding affinity of the protein. We document causing focal segmental glomerulosclerosis in affected humans all that exposure of a buried actin-binding site 1 in mutant ␣-actinin-4 mediate increased actin binding (12, 13). However, this effect has causes an increase in its actin-binding affinity, abolishes its Ca2؉ not yet been studied in detail, and the mechanism of disease has so regulation in vitro, and diverts its normal localization from actin far remained elusive.
    [Show full text]
  • Cytoskeletal Remodeling in Cancer
    biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
    [Show full text]
  • Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies
    International Journal of Molecular Sciences Review Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies Ilaria Pecorari 1, Luisa Mestroni 2 and Orfeo Sbaizero 1,* 1 Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; [email protected] 2 University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-040-5583770 Received: 15 July 2020; Accepted: 10 August 2020; Published: 15 August 2020 Abstract: Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
    [Show full text]
  • 9.4 | Intermediate Filaments
    354 9.4 | Intermediate Filaments The second of the three major cytoskeletal Microtubule elements to be discussed was seen in the electron microscope as solid, unbranched Intermediate filaments with a diameter of 10–12 nm. They were named in- filament termediate filaments (or IFs ). To date, intermediate filaments have only been identified in animal cells. Intermediate fila- ments are strong, flexible, ropelike fibers that provide mechani- cal strength to cells that are subjected to physical stress, Gold-labeled including neurons, muscle cells, and the epithelial cells that line anti-plectin the body’s cavities. Unlike microfilaments and microtubules, antibodies IFs are a chemically heterogeneous group of structures that, in Plectin humans, are encoded by approximately 70 different genes. The polypeptide subunits of IFs can be divided into five major classes based on the type of cell in which they are found (Table 9.2) as well as biochemical, genetic, and immunologic criteria. Figure 9.41 Cytoskeletal elements are connected to one another by We will restrict the present discussion to classes I-IV, which are protein cross-bridges. Electron micrograph of a replica of a small por- found in the construction of cytoplasmic filaments, and con- tion of the cytoskeleton of a fibroblast after selective removal of actin sider type V IFs (the lamins), which are present as part of the filaments. Individual components have been digitally colorized to assist inner lining of the nuclear envelope, in Section 12.2. visualization. Intermediate filaments (blue) are seen to be connected to IFs radiate through the cytoplasm of a wide variety of an- microtubules (red) by long wispy cross-bridges consisting of the fibrous imal cells and are often interconnected to other cytoskeletal protein plectin (green).
    [Show full text]
  • CH Domains Revisited
    View metadata,FEBS Letters citation 431 and (1998) similar 134^137 papers at core.ac.uk broughtFEBS to you 20514 by CORE provided by Elsevier - Publisher Connector Minireview CH domains revisited Theresia Stradala, Wolfgang Kranewittera, Steven J. Winderb, Mario Gimonaa;* aInstitute of Molecular Biology, Austrian Academy of Sciences, Department of Cell Biology, Billrothstrasse 11, A-5020 Salzburg, Austria bInstitute of Cell and Molecular Biology, University of Edinburgh, May¢eld Road, Edinburgh EH9 3JR, UK Received 2 June 1998 responding to one CH domain [9^11]. Together, this led to the Abstract A sequence motif of about 100 amino acids, termed the `calponin homology domain' has been suggested to confer commonly accepted misconception that CH domains function actin binding to a variety of cytoskeletal and signalling as an autonomous F-actin binding domain, and the CH do- molecules. Here we analyse and compare the sequences of all main was installed as the prototype for a novel actin-binding calponin homology domain-containing proteins identified to date. module [3,4]. Closer inspection of CH domain sequences, We propose that single calponin homology domains do not confer however, reveals that this region does not overlap the estab- actin-binding per se and that the actin-binding motifs of cross- lished actin-binding domain in calponin, delineated in several linking proteins, which comprise two disparate calponin homol- independent studies [12^14]. Moreover, a second actin-target- ogy domains, represent a unique protein module. ing site was recently identi¢ed in the C-terminal tandem re- z 1998 Federation of European Biochemical Societies. peats of calponin [15], and it was further demonstrated that the single CH domain is neither su¤cient nor necessary for F- Key words: Calponin; Calponin homology domain; Actin binding actin binding of calponin and SM22 [16].
    [Show full text]
  • LCP1 Preferentially Binds Clasped Αmβ2 Integrin and Attenuates Leukocyte Adhesion Under Flow Hui-Yuan Tseng1, Anna V
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs218214. doi:10.1242/jcs.218214 RESEARCH ARTICLE LCP1 preferentially binds clasped αMβ2 integrin and attenuates leukocyte adhesion under flow Hui-yuan Tseng1, Anna V. Samarelli1, Patricia Kammerer1, Sarah Scholze1, Tilman Ziegler1, Roland Immler3, Roy Zent4,5, Markus Sperandio3, Charles R. Sanders6, Reinhard Fässler1,2 and Ralph T. Böttcher1,2,* ABSTRACT which bind to specific sites in the β integrin cytoplasmic domain and Integrins are α/β heterodimers that interconvert between inactive and to lipids of the nearby plasma membrane. The consequence of talin active states. In the active state the α/β cytoplasmic domains recruit and kindlin binding is the dissociation of the transmembrane and α β integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains of the and subunits, leading to α β cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the separation (unclasping) of the proximal legs of the / integrin the inactive state the α/β TMcyto domains bind integrin-inactivating ectodomain, followed by a conformational change in the proteins, resulting in the association of the TMcyto domains (clasped extracellular domain that allows high-affinity ligand binding TMcyto). Here, we report the isolation of integrin cytoplasmic tail (Campbell and Humphries, 2011; Kim et al., 2011; Shattil et al., interactors using either lipid bicelle-incorporated integrin TMcyto 2010). Although it is evident that the high-affinity conformation can domains (α5, αM, αIIb, β1, β2 and β3 integrin TMcyto) or a clasped, be reversed, it is not entirely clear how this is achieved at the lipid bicelle-incorporated αMβ2 TMcyto.
    [Show full text]
  • Ankyrins, Spectrins, and Their Functional Patterning of Neurons
    Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons Damaris N. Lorenzo Department of Cell Biology and Physiology, The University of North Carolina at Chapel Abstract Hill, Chapel Hill, North Carolina The highly polarized, typically very long, and nonmitotic nature of neurons present Correspondence them with unique challenges in the maintenance of their homeostasis. This architec- Damaris N. Lorenzo, Department of Cell tural complexity serves a rich and tightly controlled set of functions that enables their Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC fast communication with neighboring cells and endows them with exquisite plasticity. 27599. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating Email: [email protected] the structural patterning that determines local and long-range subcellular specializa- Funding information tion, membrane dynamics, and a wide range of signaling events. At its center is the National Institute of Neurological Disorders and Stroke, Grant/Award Number: partnership between ankyrins and spectrins, which self-assemble with both remark- R01NS110810 able long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsur- prising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neu- rodegenerative, and psychiatric disorders.
    [Show full text]