University of Utah Red Butte Creek Strategic Vision TABLE of CONTENTS

Total Page:16

File Type:pdf, Size:1020Kb

University of Utah Red Butte Creek Strategic Vision TABLE of CONTENTS University of Utah Red Butte Creek Strategic Vision TABLE OF CONTENTS Overview iii Executive Summary iv 1)Introduction 1 2)Watershed Characteristics 7 3)Goals and Objectives 25 4)Stakeholder Engagement 31 5) Implementation 35 Appendices 56 References 63 The Red Butte Creek Strategic 4) Engaging the surrounding community in creating spaces that OVERVIEW Vision presents a special reflect local values and provide public benefits. opportunity for the University of The Red Butte Creek Strategic Vision charts a path toward making Utah. While college campuses can these possibilities a reality. It identifies challenges, sets clear build or acquire many types of facilities needed for research, objectives, builds broad consensus, and proposes actionable education, and outreach, natural resources such as Red Butte Creek solutions. It establishes a framework for the University of Utah to are unique features that have no simple analogues or substitutes in revitalize both the physical and social aspects of Red Butte Creek. the built environment. Red Butte Creek is a valuable campus asset that is currently underutilized, but which could make important A revitalized Red Butte Creek will require new infrastructure, contributions toward the campus mission. institutional policies, research and teaching facilities, and funding streams for ongoing operations and maintenance. Success will be a At the University of Utah, this potential was first recognized more campus-wide endeavor, with roles for students, faculty, staff, and than two decades ago by faculty such as Dr. James Ehleringer, the administration. founding Director of the Global Change and Sustainability Center. While the creek is currently degraded and is not well integrated into Stakeholders from across the University have already come together campus life, there is growing recognition that careful stewardship of to develop this shared vision. There is great consensus that the Red Butte Creek can create a unique center of campus activities, resources needed to revitalize Red Butte Creek will be vastly amenities, and identities. outweighed by establishing, in perpetuity, an invaluable campus The Red Butte Creek Strategic Vision is the first formalized plan to asset. transform the creek into a distinctive campus center. It represents, on This is the purpose of the Red Butte Creek Strategic Vision. one hand, the culmination of years of research, teaching, and capacity-building, and on the other, the earliest phase of a commitment to reimagine and revitalize an under-valued, under- utilized, and under-performing space. The possibilities of a revitalized Red Butte Creek fall into several clear categories: 1) Creating a green corridor that facilitates campus connectivity, outdoor recreation, and experiences in a beautiful natural setting; 2) Demonstrating municipal and national leadership in sustainability, livability, and resilience; 3) Promoting cutting edge research, place-based environmental education, and student and faculty involvement in campus planning and design; and Student design for active transportation and stormwater green iii infrastructure along Red Butte Creek The Red Butte Creek (RBC) Section 1 also presents a brief history of Red Butte Creek (RBC) above, EXECUTIVE Strategic Vision is a sustainability, on, and below campus: from its beginnings as a unique natural environmental stewardship, and ecosystem, through initial calls for restoration of the urban segments, SUMMARY ecological planning initiative at the to the current focus on more broadly revitalizing the creek through an University of Utah. The Vision was ecological planning process. Lastly, Section 1 reviews important produced by a Steering Committee of campus faculty and planning documents that set the context for the Strategic Vision, administrators (see Appendix A, p. 56) with input from a diverse including the 2008 Campus Master Plan, the 2010 Salt Lake City group of stakeholders including campus facilities, planning, and Riparian Corridor Study, the 2011 Campus Bicycle Master Plan, the landscape maintenance staff; Research Park administrators; 2012 Salt Lake County restoration project, the 2014 Campus Design neighboring community members and community council Standards, and the 2014 Riparian Corridor Buffer Zone. representatives; Salt Lake City and Salt Lake County municipal 2) WATERSHED CHARACTERISTICS employees; additional faculty across campus; and students and Section 2 describes the current state of RBC and its watershed, student groups including Friends of Red Butte Creek. including land ownership and land use; land cover; hydrology and The RBC Strategic Vision draws on several resources. The structure, geomorphology; water quality and site maintenance; and flora, fauna, content, and goals of the plan were guided by the Center for and habitat quality. Currently, more than 35% of the land surrounding Watershed Protection (CWP) Urban Subwatershed Restoration the creek is hardscape. Previous studies have shown that this level of Manual Series (2005-2008), the CWP Watershed Plans and Guidance impervious cover generally corresponds with pronounced case examples, and by similar streamside efforts at other universities degradation of streambanks, water quality, habitat quality, and plant including Clemson, Georgia, UC Davis, and North Carolina State. Data and wildlife diversity, as well as lack of safe access for recreational or specific to Red Butte Creek were available from local municipal educational purposes. The degraded and inaccessible condition of studies and planning documents (Salt Lake City and Salt Lake County) RBC has prompted increasing attention from the University and from a wide range of University resources including student work community, culminating in this Strategic Vision. and research associated with the NSF funded iUtah project. Improving the condition of RBC depends on complex interactions at The Strategic Vision is structured in five sections, as follows: multiple scales and across varying timeframes. For the Strategic Vision, the two most important spatial units are the riparian 1) INTRODUCTION corridor—delineated as a 100-foot buffer from the creek’s average Section 1 begins with the future we envision for Red Butte Creek. This high water line—and the subwatershed—the total land area that vision statement has been central to generating consensus and drains to University reaches of RBC, between Red Butte Garden and shared understanding about the purpose, process, and function of Sunnyside Park. Within and between these spatial units, the vision of urban stream revitalization on campus. The vision statement revitalization calls for coordinated planning, policy, and design describes a high quality ecological, recreational, and educational activities over a long timeframe. This will require an administrative campus amenity, in support of the University of Utah’s three-part framework for the RBC riparian corridor and subwatershed (managing mission and seven-part planning vision. space in addition to buildings), long-term funding that includes iv operations and maintenance, and a design process that incorporates Moving forward, ongoing stakeholder engagement activities will education and research goals, including establishing baseline data and continue to integrate public input and to build collaborative tracking metrics of project success. partnerships for the RBC Strategic Vision. 3) GOALS AND OBJECTIVES 5) IMPLEMENTATION Section 3 lays out the goals and objectives for the RBC Strategic Section 5 presents implementation strategies to meet the goals and Vision. The goals are general outcomes, structured around the objectives and to realize the mission statement of the RBC Strategic University of Utah’s core three-part mission of research (in support of Vision. For all of the proposed strategies, there are three guiding revitalization), teaching (using the creek and the revitalization process planning principles: as a resource for student participation and course involvement), and 1) Recognizing interconnectivity throughout the watershed, public life (community engagement and outreach). Each goal is 2) Enhancing the transition from mountain wildlands to fully associated with more specific objectives for which planning solutions urbanized stream corridor, and can be designed, implemented, and monitored over time. 3) Reimagining and reintegrating campus life around Red Butte The goals and objectives for the RBC Strategic Vision were developed Creek. in response to the degraded and inaccessible condition of RBC at the The proposed implementation strategies fall into three general University of Utah – a condition that will impede efforts to create a categories. The first category focuses on University policies and vibrant campus and outdoor learning environment in the coming administrative structures for managing the riparian corridor and the decades. Because the University is a research and teaching subwatershed. The second category focuses on revitalization project institution, and because revitalizing an urban stream is such a concepts, including specific proposals for initial demonstration complex effort, the goal of ecological revitalization is inextricably projects. The third category focuses on opportunities for community linked with the goal of advancing research and creating new engagement and public life. Each implementation strategy includes knowledge. This is the great challenge, but also the great opportunity, an estimated timeframe and total life cost. of the RBC Strategic
Recommended publications
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Geology and Groun D Water Features of the Butte Valley Region Siskiyou County California
    Geology and Groun d Water Features of the Butte Valley Region Siskiyou County California By P. R. WOOD GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1491 Prepared in cooperation with the California Department offf^ater Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 151. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract___.__-_-____________-____________-_____----_----------- 1 Introduction.___---____-______________________--_----------------- 3 Purpose and scope of the work._..._____________________----.._-- 3 Location of area.-_-___-_____________-______--_------_--------- 4 Culture and accessibility. ________-___.___-______-----_--------- 4 Previous investigations.________-_____-______-_-_---_----------- 4 Acknowledgments _________________-___-____-__------_--------- 6 Well-numbering system____-______________-______------_------- 6 Method of investigation._____-______________-__-----_---------- 7 Physical features of the area..___________________._____-___-.---_--- 10 Topography and drainage. __________________-____----_-----_--- 10 Cascade Range.--___________-__________-_-_---_-_--------- 10 Butte Valley_-___----._-_----_---_--_---_----------------- 11 Red Rock Valley area________-_--__---_-------------------- H Oklahoma district. _____________________-___---------------
    [Show full text]
  • The Western Environmental Technology Office (WETO) Butte, Montana ^Jj&Gs^ «*Sim«
    DOE/EM-0217 Office of Environmental Management Office of Technology Development The Western Environmental Technology Office (WETO) Butte, Montana ^jj&gS^ «*sim« •4 4 1 Technology Summary October 1994 i DISTRIBUTION OF THIS DOCUMENrT I S UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. THE WESTERN ENVIRONMENTAL TECHNOLOGY OFFICE (WETO) BUTTE, MONTANA TECHNOLOGY SUMMARY TABLE OF CONTENTS Foreword iii Introduction iv 1.0 Office of Technology Development-Sponsored Projects 1 Heavy Metals Contaminated Soil Project 1.1 Heavy-Metals-Contaminated Soil Project 3 1.2 Heavy
    [Show full text]
  • Hogback Is Ridge Formed by Near- Vertical, Resistant Sedimentary Rock
    Chapter 16 Landscape Evolution: Geomorphology Topography is a Balance Between Erosion and Tectonic Uplift 1 Topography is a Balance Between Erosion and Tectonic Uplift 2 Relief • The relief in an area is the maximum difference between the highest and lowest elevation. – We have about 7000 feet of relief between Boulder and the Continental divide. Relief 3 Mountains and Valleys • A mountain is a large mass of rock that projects above surrounding terrain. • A mountain range is a continuous area of high elevation and high relief. • A valley is an area of low relief typically formed by and drained by a single stream. • A basin is a large low-lying area of low relief. In arid areas basins commonly have closed topography (no river outlet to the sea). Mountains • Typically occur in ranges. • Glaciated forms –Horn –Arête • Desert Mountains – Vertical Cliffs – Alluvial Fans 4 Mountain Landforms: Horn Deserts: Vertical Cliffs and Alluvial Fans 5 Valleys and Basins • River Valleys – U-shape (Glacial) – V-shape (Active Water erosion) – Flat-floored (depositional flood plain) • Tectonic (Fault) Valleys (Basins) – Tectonic origin – San Luis Valley – Jackson Hole – Great Basin U-shaped Valley: Glacial Erosion 6 V-shaped Valley: Active water erosion Flat-floored Valley: Depositional Flood Plain 7 Desert and Semi-arid Landforms • A plateau is a broad area of uplift with relatively little internal relief. • A mesa is a small (<10 km2)plateau bounded by cliffs, commonly in an area of flat-lying sedimentary rocks. • A butte is a small (<1000m2) hill bounded by cliffs Plateau, Mesa, Butte 8 Colorado National Monument Canyonlands 9 Desert and Semi-arid Landforms • A cuesta is an asymmetric ridge in dipping sedimentary rocks as the Flatirons.
    [Show full text]
  • Sutter Butte Flood Control Agency Strategic Plan April 2018 1.0
    Sutter Butte Flood Control Agency Strategic Plan April 2018 1.0 Introduction The Sutter-Butte Basin (Basin) covers 300 square miles bordered by the Cherokee Canal to the north, the Sutter Buttes to the west, the Sutter Bypass to the southwest and the 44-mile long Feather River to the east—see Figure 1. The Basin is home to 95,000 residents and encompasses $7 billion of damageable assets (as estimated by the U.S. Army Corps of Engineers, or USACE). The region has sustained numerous floods, including the 1955 levee failure on the Feather River, which resulted in the deaths of at least 38 people. The personal safety and economic stability of large segments of the population are reliant on flood management systems that, until recent efforts, did not begin to meet modern engineering standards. Numerous projects and programs have been implemented in the Basin over the years to reduce flood risk, including the Feather River West Levee Project, which is nearing completion. The Sutter Butte Flood Control Agency (SBFCA) leads the planning and implementation efforts in the Basin to reduce the risk of catastrophic, riverine flooding. In this role, SBFCA collaborates with local, regional, state, tribal and federal agencies and organizations. On January 13, 2016 the SBFCA Board of Directors adopted the Strategic Plan to guide these efforts. This version is the first update to the Strategic Plan. 2.0 Purpose of the Strategic Plan The purpose of the Strategic Plan is to help formulate and articulate a vision for flood management within the Basin and to describe an approach to achieve this vision.
    [Show full text]
  • Geology and Slope Stability of Crestone, CO Snodgrass Mountain Ski Area March 2008 Crested Butte, CO CHAPTER 2-- GEOLOGY
    GEO-HAZ Consulting, Inc. Geology and Slope Stability of Crestone, CO Snodgrass Mountain Ski Area March 2008 Crested Butte, CO CHAPTER 2-- GEOLOGY This chapter describes the bedrock and Quaternary geology of Snodgrass Mountain, with special emphasis of landslides. Because the area had been mapped several times before, our first task was to compare the various maps. 2.1 Methods 2.1.1 Digitizing previous landslide mapping During the winter of 2006-2007 we digitized the landslide mapping from all seven previous landslide studies (Table 2-1). These maps were georeferenced by International Alpine Design, Vail, CO, for use in our GIS, so we could visually compare the various maps. Table 2-1. Previous studies in which landslides were mapped on Snodgrass Mountain. Author Date Title Map Remarks and Digitizing Scale Gaskill et al. 1967 Geologic map of the 1:24,000 Published USGS color map; being Oh-Be-Joyful digitized by IAD quadrangle… Soule 1976 Geologic Hazards in Ca. Polygons identical to those in the Crested Butte- 1:43,000 Gaskill. Gunnison Area (9 quads) Gaskill et al. 1991 Geologic map of the 1:24,000 Published USGS color map; see Gothic quadrangle… DIGITAL APPENDIX D2.1 on DVD- ROM only Resource 1995 Geologic Hazard 1:6,000 Includes several large landslide Consultants Assessment and deposits, and many small scarps; and Mitigation Planning for digitized by Pioneer Environmental Engineers Crested Butte Mountain in 1995 (RCE) Resort Irish 1996 Geologic Hazard Study 1:12,000 Concludes that Chicken Bone, Zones 3-A and 3-B Slump Block, and toe
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • Marysville Levee Commission Background
    Marysville Levee Commission Background 2012 Central Valley Flood Protection Plan Regional Flood Management Plans Basin‐wide Feasibility Studies 2017 Central Valley Flood Protection Plan Feather River Regional Boundary Memorandum of Understanding Partner Agencies: Sutter Butte Flood Control Agency (SBFCA) Marysville Levee Commission (MLC) Three Rivers Levee Improvement Authority (TRLIA) Yuba County Water Agency (YCWA) Marysville Levee Commission Feather River Regional Flood Management Plan Purpose: Build upon the CVFPP by obtaining more region‐specific information and local input for long term implementation of a sustainable and integrated flood risk reduction program in the Central Valley Duration: 18 months Budget: $1.1M Funding: DWR Grant Feather River Regional Stakeholders • 4 Counties – Sutter, Yuba, Butte, and Placer • 6 Cities –Yuba City, Live Oak, Biggs, Gridley, Marysville, and Wheatland • 4 Flood Control Agencies – Sutter Butte Flood Control Agency (SBFCA), Three Rivers Levee Improvement Authority (TRLIA), and the Yuba County Water Agency (YCWA), Marysville Levee Commission (MLC) • 9 LMAs –RD’s 10, 784, 817, 2103, 1001, LD 1, LD 9, Marysville Levee District and the Sutter Yard (MA 5, 7, 13, & 16) • 2 Small Communities –Rio Oso and Nicolaus • 21 Currently identified Stakeholder Groups – Including Farm Bureau, Growers, Enterprise Rancheria, Environmental groups/NGOs, Water groups, Chambers of Commerce, Schools, Building and Realty groups, and Citizen and Neighborhood associations Coordinating Committee Steve Lambert primary;
    [Show full text]
  • Controlled Groundwater Areas Fact Sheet
    FACT SHEET CONTROLLED GROUNDWATER AREAS Butte-Silver Bow Background Information: The Butte area and Upper Clark Fork Basin has been adversely affected by 120 years of hard rock mining, smelting, milling, and other processing activities. Contaminants associated with the site include arsenic, copper, lead, mercury, and zinc. Mining and ore-processing wastes represent the primary source materials. These wastes come in several different forms. They include, mill tailings, waste rock, slag, smelter fallout, and mixed combinations of each. Arsenic and metals contained in, or released from these wastes to soils, surface water, and groundwater pose significant threats to human and ecological receptors. In 1983, the EPA designated Silver Bow Creek as a Superfund site due to the impact of mining activities on the environment. In 1987, EPA expanded the Silver Bow Creek Site to include the Butte Area. The expanded site includes the city of Butte and the town of Walkerville. Several Operable Units were established to address impacted soils, surface water, groundwater, and stormwater issues. In the Butte area, these Operable Units include: Butte Mine Flooding Operable Unit; Streamside Tailings Operable Unit; Butte Priority Soils Operable Unit; West Side Soils Operable Unit; and the Active Mining and Milling Operable Unit. What is a Controlled Groundwater Area? Montana has authority to designate a controlled ground water area to prevent new appropriations or limit certain types of water appropriations due to water availability or water quality problems for the protection of existing water rights. (MCA 85-2-501). The State of Montana’s Department of Natural Resources and Conservation (Water Rights Bureau) is responsible for approving Controlled Groundwater Areas.
    [Show full text]
  • Geology of the Mitchell Butte Quadrangle
    Physiography The mopped oreo lies just within the Columbia River Plateau Province. The more prominent topographic forms in the region ore largely the result of the westward tilt of the resistant lava flows which form cuestalike escarpments. GEOLOGICAL MAP SERIES GEOLOGY OF THE MITCHELL BU TT E QUADRANGLE, OREGON The softer sedimentary deposits that ore associated with the lavas show a more subdued topography because of their nonresistant character. by R. E. Corcoran, R. A . Doak, P. W. Porter, F. I. Pri tchett, and N . C. Privrosky The maximum relief for the quodrongle is 2,778 feet; the lowest elevation, 2,182 feet, is in the northeast cor­ ner of the area in the Snoke River fl oodplain, and the maximum elevation, 4,960 feet, is at the crest-of Owyhee Ridge in the south- central portion of the mop. Mi tchell Butte, o prominent topographic feature at 3,495 feet I N TRODUCT I ON elevation, lies near the center of the quadrangle. .,•. 0 "' ' Topographicall y the quadrangle fol ls into two units. The northern half is on oreo of low relief with the drain­ f-- : ,/. .:r. 0 History of the study IJl ·..• ·._- -- .,, ,. _: lz age controll ed by the Malheur River, which flows eastward across the northern por t of the quadrangle . The nOfth­ flow ing Snoke River drains a str ip along the eastern border of the mop and is the major controlling stream in the ···;,e it..~--· The Mitchell Butte 30- minu te quadrangle is situated in eastern Oregon along the Idaho boundary. It lies on region.
    [Show full text]
  • Hydrogeologic Investigation of the Boulder Valley, Jefferson County, Montana Groundwater Modeling Report
    March 2017 Montana Bureau of Mines and Geology Open-File Report 688 HYDROGEOLOGIC INVESTIGATION OF THE BOULDER VALLEY, JEFFERSON COUNTY, MONTANA GROUNDWATER MODELING REPORT Julie A. Butler1 and Andrew L. Bobst Montana Bureau of Mines and Geology Ground Water Investigations Program 1Currently employed by the Massachusetts Department of Environmental Protection, Boston, MA Cover photo by Andrew L. Bobst, 2011 HYDROGEOLOGIC INVESTIGATION OF THE BOULDER VALLEY, JEFFERSON COUNTY, MONTANA GROUNDWATER MODELING REPORT March 2017 Julie A. Butler1 and Andrew L. Bobst Montana Bureau of Mines and Geology Ground Water Investigations Program 1Currently employed by the Massachusetts Department of Environmental Protection, Boston, MA Montana Bureau of Mines and Geology Open-File Report 688 Montana Bureau of Mines and Geology Open-File Report 688 TABLE OF CONTENTS Preface ....................................................................................................................................................1 Abstract ..................................................................................................................................................1 Introduction ............................................................................................................................................3 Background ......................................................................................................................................3 Purpose and Scope ...........................................................................................................................3
    [Show full text]
  • Field-Trip Guide to the Vents, Dikes, Stratigraphy, and Structure of the Columbia River Basalt Group, Eastern Oregon and Southeastern Washington
    Field-Trip Guide to the Vents, Dikes, Stratigraphy, and Structure of the Columbia River Basalt Group, Eastern Oregon and Southeastern Washington Scientific Investigations Report 2017–5022–N U.S. Department of the Interior U.S. Geological Survey Cover. Palouse Falls, Washington. The Palouse River originates in Idaho and flows westward before it enters the Snake River near Lyons Ferry, Washington. About 10 kilometers north of this confluence, the river has eroded through the Wanapum Basalt and upper portion of the Grande Ronde Basalt to produce Palouse Falls, where the river drops 60 meters (198 feet) into the plunge pool below. The river’s course was created during the cataclysmic Missoula floods of the Pleistocene as ice dams along the Clark Fork River in Idaho periodically broke and reformed. These events released water from Glacial Lake Missoula, with the resulting floods into Washington creating the Channeled Scablands and Glacial Lake Lewis. Palouse Falls was created by headward erosion of these floodwaters as they spilled over the basalt into the Snake River. After the last of the floodwaters receded, the Palouse River began to follow the scabland channel it resides in today. Photograph by Stephen P. Reidel. Field-Trip Guide to the Vents, Dikes, Stratigraphy, and Structure of the Columbia River Basalt Group, Eastern Oregon and Southeastern Washington By Victor E. Camp, Stephen P. Reidel, Martin E. Ross, Richard J. Brown, and Stephen Self Scientific Investigations Report 2017–5022–N U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S.
    [Show full text]