Digitalcommons@University of Nebraska - Lincoln
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Prevalence of Cryptosporidium Spp. \(Eucoccidiorida
Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/2007144335 PREVALENCE OF CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA: CRYPTOSPORIIDAE) IN SEVEN SPECIES OF FARM ANIMALS IN TUNISIA SOLTANE R.*, GUYOT K.**, DEI-CAS E.** & AYADI A.* Summary: Résumé : PRÉVALENCE DE CRYPTOSPORIDIUM SPP. (EUCOCCIDIORIDA : CRYPTOSPORIIDAE) CHEZ SEPT ESPÈCES D’ANIMAUX DE FERME EN TUNISIE 1,001 faecal samples were obtained from 89 sheep (lambs and adult), 184 goats, 190 horses, 178 rabbits, 110 camels, 1001 prélèvements fécaux ont été obtenus à partir de 89 moutons, 200 broiler chicken and 50 turkeys housed in farms from different 184 chèvres, 190 chevaux, 178 lapins, 110 chameaux, localities in Tunisia. All samples were analysed for 200 poulets et 50 dindes élevés dans des fermes de différentes Cryptosporidium oocysts by microscopic examination of smears localités en Tunisie. Tous les prélèvements ont été analysés pour la stained by modified Ziehl Neelsen technique. The parasite was recherche de Cryptosporidium par examen microscopique des detected in ten lambs and adult sheep (11.2 %) and nine broiler frottis colorés au Ziehl Neelsen modifié. Le parasite a été détecté chicken (4.5 %). Molecular characterization, performed in four chez dix ovins (11,2 %) et neuf poulets (4,5 %). La caractérisation animals, identified C. bovis in three lambs and C. meleagridis in moléculaire réalisée pour quatre isolats a identifié C. bovis chez one broiler chicken. This work is the first report on trois agneaux et C. meleagridis chez un poulet. Ce travail est le Cryptosporidium in farm animals in Tunisia. premier rapport sur Cryptosporidium chez des animaux de ferme en Tunisie. -
NEW CLASSIFICATION for Toxoplasma Gondii
LETTER TO THE EDITOR NEW CLASSIFICATION FOR Toxoplasma gondii Claudio Bruno Silva de Oliveira Dear Editor, I have been following the latest publications in the field of parasitology and have noticed that, despite the changes in the group that host the parasite Toxoplasma gondii that have been suggested since 2012 (Adl et al. 2012), many articles in several journals have not been updated (Liempi et al. 2014; Ning et al. 2015; Lorenzi et al. 2016). This can be explained by a certain protectionism regarding the form that has been used for several years. However, it is important to consider that this can also be due to some unfamiliarity with the current classification of eukaryotes and protozoa. Classically this protozoan is classified within the Protista kingdom, Apicomplexa phylum, Sporozoasida class, Eucoccidiorida order, Sarcocystidae family, and Toxoplasma genus (Current et al. 1990). This classification has been used for many decades, and it is well accepted by research groups in the area. Recently, however, Adl et al. (2012) seeking to standardize and organize different groups of eukaryotes, mainly protists, suggested a new classification based on phylogenetic and ultra-structural similarity. Now Toxoplasma gondii appears within a super group called SAR comprising: Stramenopiles, Alveolata, and Rhizaria. More precisely, it appears inside the Alveolata group (first group); among Alveolata it is classified as Apicomplexa (second group); among the Apicomplexa it is classified as Conoidasida (third group); among these it is classified as Coccidia (fourth group); and finally among the Coccidia it is part of Eimeriorina group (fifth group), along with other associated parasites such as Cyclospora and Neospora. -
Cyclospora Cayetanensis and Cyclosporiasis: an Update
microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. -
DETECTION of TOXOPLASMA GONDII in FRESH PRODUCE By
DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA (Under the Direction of Ynes R. Ortega) ABSTRACT Toxoplasma gondii is an intracellular obligate protozoan parasite that causes toxoplasmosis in humans. This study aimed to detect and genotype T. gondii in fresh produce. Six PCR assays using various Toxoplasma gene targets were examined for their suitability in vegetable matrices. The SAG2 PCR was selected for this study. Collectively, DNA was extracted from 818 vegetable samples acquired from 16 markets in Atlanta, GA, U.S. and 5 in Lima, Peru. Nested polymerase chain reaction was conducted using characterized primers for T. gondii SAG2 locus. PCR products were purified and sequenced. Detection via PCR showed that 2.5% and 0.79% of U.S and Peru samples tested positive, respectively. The detection of T. gondii in fresh produce indicates that it may play a role in the prevalence of toxoplasmosis in the U.S and Peru. It also emphasizes the need to develop methodologies to prevent dissemination and inactivation of viable oocysts in the environment. INDEX WORDS: Toxoplasma gondii, Fresh Produce, PCR, Genotyping, SAG2, Peru, Georgia DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA B.S., Clark Atlanta University, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2014 © 2014 Danaya Amina Bethea All Rights Reserved DETECTION OF TOXOPLASMA GONDII IN FRESH PRODUCE by DANAYA AMINA BETHEA Major Professor: Ynes R. Ortega Committee: Jennifer Cannon Joseph F. Frank Electronic Version Approved: Julie Coffield Interim Dean of the Graduate School The University of Georgia August 2014 DEDICATION I would like to dedicate this manuscript to my family and friends, for their immeasurable love and support and my boyfriend Roderique John, for always being there for me. -
Emys Trinacris, Placobdella Costata and Haemogregarina Stepanowi in Sicily (Testudines, Annelida and Apicomplexa)
© Institute of Parasitology, Biology Centre CAS #$;1-'<<2-1+ doi: '-'55''=1-'<-1+ http://folia.paru.cas.cz Research Article The good, the bad and the ugly: Emys trinacris, Placobdella costata and Haemogregarina stepanowi in Sicily (Testudines, Annelida and Apicomplexa) Vincenzo Arizza', Francesco Sacco', Debora Russo', Rita Scardino', Marco Arculeo', Melita Vamberger1 and Federico Marrone' ' Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Biologia Animale ed Antropologia ;;9$%$%!6 1 Museum für Tierkunde, Senckenberg Dresden, Dresden, Germany Abstract: Endemic Sicilian pond turtles Emys trinacris Fritz, Fattizzo, Guicking, Tripepi, Pennisi, Lenk, Joger et Wink were exam7 ined for the presence of haemogregarine parasites. The presence of haemogregarines, occurring mainly in the microgametocyte stage ?'21/-'1)%;<5/-K1)%NQNRU%+V%E. trinacris. Based on the R%;X9;9'*YN[Haemogregarina stepanowi Dani7 NZ'**K[%99RNH. stepanowi9ƽ; in erythrocyte shape depending on the infective stage. ƽ99Z%NH. stepanowi N;[ƽ%N%]N;R%N%;R9 by H. stepanowi in the closely related European pond turtle Emys orbicularis (Linneaus), monitoring of the health status of the infected Sicilian populations of E. trinacris is desirable. The restricted distribution of populations of Emys infected with haemogregarines in X99;R9%7%9R\9 Keywords: %R%!7 ]%;; ?"Q % R9[99; widely distributed blood parasites in turtles worldwide of the genus Placobdella ?Q?TZ ? 1-'1Q %U N 1-'KQ involve merogony and the formation of gametocytes in Emys trinacris Fritz, Fattizzo, Guicking, Tripepi, Pen7 a vertebrate host, and gamogony and sporogony in the nisi, Lenk, Joger et Wink is a Sicilian endemic pond turtle. ;9R?1--*Q9; Although it is morphologically similar to E. -
Oborník M.& Lukeš, J. (2013) Cell Biology of Chromerids: Autotrophic
CHAPTER EIGHT Cell Biology of Chromerids: Autotrophic Relatives to Apicomplexan Parasites Miroslav Oborník*,†,{,1, Julius Lukeš*,† *Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Cˇ eske´ Budeˇjovice, Czech Republic †Faculty of Science, University of South Bohemia, Cˇ eske´ Budeˇjovice, Czech Republic { Institute of Microbiology, Academy of Sciences of the Czech Republic, Trˇebonˇ, Czech Republic 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 334 2. Chromerida: A New Group of Algae Isolated from Australian Corals 337 2.1 C. velia: A new alga from Sydney Harbor 338 2.2 V. brassicaformis: An alga from the Great Barrier Reef 343 3. Life Cycle 346 4. Evolution of Exosymbiont 348 5. Evolution of Chromerid Organelles 350 5.1 Evolution of chromerid plastids 350 5.2 Reduced mitochondrial genomes of chromerids 354 5.3 Chromerosome: C. velia as a possible mixotroph 354 6. Metabolism of Chromerids 355 6.1 Unique pathway for tetrapyrrole biosynthesis 355 6.2 Other metabolic features of C. velia 359 7. Chromerids as Possible Symbionts of Corals 361 8. Conclusions 361 Acknowledgments 362 References 362 Abstract Chromerida are algae possessing a complex plastid surrounded by four membranes. Although isolated originally from stony corals in Australia, they seem to be globally dis- tributed. According to their molecular phylogeny, morphology, ultrastructure, structure of organellar genomes, and noncanonical pathway for tetrapyrrole synthesis, these algae are thought to be the closest known phototrophic relatives to apicomplexan par- asites. Here, we summarize the current knowledge of cell biology and evolution of this novel group of algae, which contains only two formally described species, but is appar- ently highly diverse and virtually ubiquitous in marine environments. -
Epidemiology of Toxoplasma Gondii in Thailand
Doctoral thesis University of Limoges Gay Lussac Doctoral School - Science for the Environment (ED 523) École Doctorale Gay Lussac - Sciences pour l’Environnement (ED 523) INSERM UMR 1094 Laboratory of Parasitology Thesis to obtain the grade of Doctor of University of Limoges Discipline/Speciality: Parasitology Presented and supported by Patcharee CHAICHAN 25 April 2017 Epidemiology of Toxoplasma gondii in Thailand Thesis directed by Pr. Marie-Laure DARDÉ, Pr. Yaowalark SUKTHANA, Dr. Aurélien MERCIER and Dr. Aongart MAHITTIKORN JURY: President of jury Prof. Gilles DREYFUSS, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Reporters Prof. Marie-Hélène RODIER, Professor, Laboratory of Parasitology and Mycology, University of Poitiers, France Dr. HDR, Dominique AUBERT, Lecturer, Laboratory of Parasitology and Mycology, University of Reims Champagne-Ardenne, France Examiners Prof. Gilles DREYFUSS, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Prof. Marie-Laure DARDÉ, Professor, Laboratory of Parasitology and Mycology, University of Limoges, France Prof. Yaowalark SUKTHANA, Professor, Department of Protozoology, University of Mahidol, Thailand Dr. Aurélien MERCIER, Lecturer, Laboratory of Parasitology, University of Limoges, France “Never compare yourself or others to other people. Everyone has their own struggles, own fights, and a different path that they choose to get to where they are. Everyone is who they are for a reason.” “Never give up on something you really want. However impossible things may seem. There’s always a way.” “Experience tells you what to do; Confidence allows you to do it.” 2 Acknowledgement Firstly, I would like to thank to my principle supervisors, Pr. Marie-Laure Dardé and Pr. Yaowalark Sukthana who kindly accepted me for this project, supervised and mentored my work and gave me many advices to overcome the obstacles for along my thesis. -
Review Paper Human and Animal Invasive Muscular Sarcocystosis In
Tropical Biomedicine 30(3): 355–366 (2013) Review Paper Human and animal invasive muscular sarcocystosis in Malaysia – recent cases, review and hypotheses Tappe, D.1*, Abdullah, S.2, Heo, C.C.2, Kannan Kutty, M.2 and Latif, B.2 1Institute of Hygiene and Microbiology, University of Würzburg, Germany 2Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia *Corresponding author email: [email protected] Received 8 July 2013; received in revised form 31 July 2013; accepted 1 August 2013 Abstract. Sarcocystosis, an unusual parasitic zoonotic disease, is caused by coccidian/ apicomplexan protozoa in humans and animals. The parasites usually develop in a heteroxenous predator-prey life-cycle involving final (carnivore) and intermediate (omnivore/herbivore) hosts. Besides the intestinal, non-invasive form of the disease in which humans and animals are the definitive hosts for certain Sarcocystis spp., the invasive form has come to recent attention. In the latter, humans and animals serve as intermediate host harbouring sarcocysts in their muscle tissue. Already in 1991 sarcocystosis was seen as a potential emerging food- borne zoonosis in Malaysia, and in 2011 and 2012 the largest cluster of symptomatic human muscular sarcocystosis world-wide was reported from Tioman Island, Pahang state. In this review, we focus on invasive sarcocystosis in humans and animals in Malaysia, review the recorded cases and epidemiology, and present hypotheses. INTRODUCTION second generations of merozoites are released from schizonts, and finally invade Sarcocystosis, a cosmopolitan zoonotic muscle cells in order to form the typical tissue parasitic disease, is caused by small sarcocysts. With the exception of humans, intracellular apicomplexan/coccidian the definitive host often does not show any protozoa of the genus Sarcocystis symptoms, or only mild disease, of the non- (Eucoccidiorida: Sarcocystidae). -
Phylogeny of Coccidia and Coevolution with Their Hosts
School of Doctoral Studies in Biological Sciences Faculty of Science Phylogeny of coccidia and coevolution with their hosts Ph.D. Thesis MVDr. Jana Supervisor: prof. RNDr. Václav Hypša, CSc. 12 This thesis should be cited as: Kvičerová J, 2012: Phylogeny of coccidia and coevolution with their hosts. Ph.D. Thesis Series, No. 3. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 155 pp. Annotation The relationship among morphology, host specificity, geography and phylogeny has been one of the long-standing and frequently discussed issues in the field of parasitology. Since the morphological descriptions of parasites are often brief and incomplete and the degree of host specificity may be influenced by numerous factors, such analyses are methodologically difficult and require modern molecular methods. The presented study addresses several questions related to evolutionary relationships within a large and important group of apicomplexan parasites, coccidia, particularly Eimeria and Isospora species from various groups of small mammal hosts. At a population level, the pattern of intraspecific structure, genetic variability and genealogy in the populations of Eimeria spp. infecting field mice of the genus Apodemus is investigated with respect to host specificity and geographic distribution. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracovala samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách, a to se zachováním mého autorského práva k odevzdanému textu této kvalifikační práce. -
Intestinal Coccidia (Apicomplexa: Eimeriidae) of Brazilian Lizards
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 97(2): 227-237, March 2002 227 Intestinal Coccidia (Apicomplexa: Eimeriidae) of Brazilian Lizards. Eimeria carmelinoi n.sp., from Kentropyx calcarata and Acroeimeria paraensis n.sp. from Cnemidophorus lemniscatus lemniscatus (Lacertilia: Teiidae) Ralph Lainson Departamento de Parasitologia, Instituto Evandro Chagas, Avenida Almirante Barroso 492, 66090-000 Belém, PA, Brasil Eimeria carmelinoi n.sp., is described in the teiid lizard Kentropyx calcarata Spix, 1825 from north Brazil. Oocysts subspherical to spherical, averaging 21.25 x 20.15 µm. Oocyst wall smooth, colourless and devoid of striae or micropyle. No polar body or conspicuous oocystic residuum, but frequently a small number of fine granules in Brownian movement. Sporocysts, averaging 10.1 x 9 µm, are without a Stieda body. Endogenous stages character- istic of the genus: intra-cytoplasmic, within the epithelial cells of the ileum and above the host cell nucleus. A re- description is given of a parasite previously described as Eimeria cnemidophori, in the teiid lizard Cnemidophorus lemniscatus lemniscatus. A study of the endogenous stages in the ileum necessitates renaming this coccidian as Acroeimeria cnemidophori (Carini, 1941) nov.comb., and suggests that Acroeimeria pintoi Lainson & Paperna, 1999 in the teiid Ameiva ameiva is a synonym of A. cnemidophori. A further intestinal coccidian, Acroeimeria paraensis n.sp. is described in C. l. lemniscatus, frequently as a mixed infection with A. cnemidophori. Mature oocysts, averag- ing 24.4 x 21.8 µm, have a single-layered, smooth, colourless wall with no micropyle or striae. No polar body, but the frequent presence of a small number of fine granules exhibiting Brownian movements. -
Redalyc.Studies on Coccidian Oocysts (Apicomplexa: Eucoccidiorida)
Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Pereira Berto, Bruno; McIntosh, Douglas; Gomes Lopes, Carlos Wilson Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida) Revista Brasileira de Parasitologia Veterinária, vol. 23, núm. 1, enero-marzo, 2014, pp. 1- 15 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841491001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Review Article Braz. J. Vet. Parasitol., Jaboticabal, v. 23, n. 1, p. 1-15, Jan-Mar 2014 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Studies on coccidian oocysts (Apicomplexa: Eucoccidiorida) Estudos sobre oocistos de coccídios (Apicomplexa: Eucoccidiorida) Bruno Pereira Berto1*; Douglas McIntosh2; Carlos Wilson Gomes Lopes2 1Departamento de Biologia Animal, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil 2Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil Received January 27, 2014 Accepted March 10, 2014 Abstract The oocysts of the coccidia are robust structures, frequently isolated from the feces or urine of their hosts, which provide resistance to mechanical damage and allow the parasites to survive and remain infective for prolonged periods. The diagnosis of coccidiosis, species description and systematics, are all dependent upon characterization of the oocyst. Therefore, this review aimed to the provide a critical overview of the methodologies, advantages and limitations of the currently available morphological, morphometrical and molecular biology based approaches that may be utilized for characterization of these important structures.