Nephromyces, a Beneficial Apicomplexan Symbiont in Marine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
Effects of Chlorophyllin on Encystment Suppression and Excystment Induction in Colpoda Cucullus Nag-1: an Implication of Chlorophyllin Receptor
Asian Jr. of Microbiol. Biotech. Env. Sc. Vol. 22 (4) : 2020 : 573-578 © Global Science Publications ISSN-0972-3005 EFFECTS OF CHLOROPHYLLIN ON ENCYSTMENT SUPPRESSION AND EXCYSTMENT INDUCTION IN COLPODA CUCULLUS NAG-1: AN IMPLICATION OF CHLOROPHYLLIN RECEPTOR MASAYA MORISHITA1, FUTOSHI SUIZU2, MIKIHIKO ARIKAWA3 AND TATSUOMI MATSUOKA3 1Department of Biological Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan 2Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; 3Department of Biological Science, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan (Received 22 March, 2020; accepted 4 August, 2020) Key words: Chlorophyllin, Chlorophyllin receptors, Resting cyst, Cyst wall, Trypsin Abstract–Among the molecules suppressing encystment and inducing excystment of Colpoda cucullus Nag- 1, sodium copper chlorophyllin is the only molecule whose molecular structure is known. The present study showed that sodium iron chlorophyllin also had marked effects. When the encysting cells (2-day-aged immature cysts) of C. cucullus Nag-1 were treated with trypsin (1 mg/mL), excystment was suppressed. In this case, most of the cysts that failed to excyst were alive, because the selective permeability of the plasma membrane of these cysts functioned normally. These results suggest that presumed chlorophyllin receptors which are involved in the induction of excystment may occur on the plasma membranes of the resting cysts. Two-day-aged cysts (immature cysts) are surrounded by thick cyst walls. We assessed whether chlorophyllin and trypsin (23 kDa) penetrate across the cyst wall. When the cysts were immersed in the fluorescent molecule phycocyanin (40 kDa), a vivid phycocyanin fluorescence was observed inside or on the cyst wall, indicating that phycocyanin penetrates across the cyst wall. -
Denis BAURAIN Département Des Sciences De La Vie Université De Liège Société Royale Des Sciences De Liège 20 Septembre 2012 Plan De L’Exposé
L’évolution des Eucaryotes Denis BAURAIN Département des Sciences de la Vie Université de Liège Société Royale des Sciences de Liège 20 septembre 2012 Plan de l’exposé 1. Qu’est-ce qu’un Eucaryote ? 2. Quelle est la diversité des Eucaryotes ? 3. Quelles sont les relations de parenté entre les grands groupes d’Eucaryotes ? 4. D’où viennent les Eucaryotes ? Qu’est-ce1 qu’un Eucaryote ? Eukaryotic Cells définition ultrastructurale : organelles spécifiques • noyau (1) • nucléole (2) • RE (5, 8) • Golgi (6) • centriole(s) (13) • mitochondrie(s) (9) • chloroplaste(s) • ... http://en.wikipedia.org/ A eukaryotic gene is arranged in a patchwork of coding (exons) and non-coding sequences (introns). Introns are eliminated while exons are spliced together to yield the mature mRNA used for protein synthesis. http://reflexions.ulg.ac.be/ Gene DNA Transcription Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 pre-mRNA Alternatif splicing mature mRNA Translation Protein In many Eukaryotes, almost all genes can lead to different proteins through a process termed alternative splicing. http://reflexions.ulg.ac.be/ REVIEWS Box 2 | Endosymbiotic evolution and the tree of genomes Intracellular endosymbionts that originally descended from free-living prokaryotes have been important in the evolution of eukaryotes by giving rise to two cytoplasmic organelles. Mitochondria arose from α-proteobacteria and chloroplasts arose from cyanobacteria. Both organelles have made substantial contributions to the complement of genes that are found in eukaryotic nuclei today. The figure shows a schematic diagram of the evolution of eukaryotes, highlighting the incorporation of mitochondria and chloroplasts into the eukaryotic lineage through endosymbiosis and the subsequent co-evolution of the nuclear and organelle genomes. -
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Coccidiosis in Large and Small Ruminants
Coccidiosis in Large and Small Ruminants a, b Sarah Tammy Nicole Keeton, PhD, MS *, Christine B. Navarre, DVM, MS KEYWORDS Coccidia Coccidiosis Diarrhea Ruminants Cattle Sheep Goats Ionophores KEY POINTS Coccidiosis is an important parasitic disease of ruminant livestock caused by the proto- zoan parasite of the genus Eimeria. Calves between 6 and 12 months of age and lambs and kids between 1 and 6 months of age are most susceptible. Subclinical disease is characterized by poor growth. Clinical disease is most commonly characterized by diarrhea. Control of coccidiosis is based on sound management, the use of preventive medications, and treatment of clinical cases as necessary. INTRODUCTION: NATURE OF THE PROBLEM Coccidiosis is a parasitic disease of vertebrate animals, including domestic ruminants.1 It is economically significant, with losses from both clinical and subclinical disease. Coccidiosis is caused by the protozoan parasite of the genus Eimeria. Eimeria are host specific, meaning that an Eimeria species that infect goats does not infect sheep or cattle and vice versa. Certain species of Eimeria are nonpathogenic and do not cause disease. The pathogenic species and sites of infection are listed in Table 1. Mixed infections with multiple pathogenic and nonpathogenic species is common. LIFE CYCLE Proper treatment and control of coccidiosis requires an understanding of the complex life cycle and transmission of Eimeria spp (Fig. 1). The life cycle can be divided into Disclosure: The authors have nothing to disclose. a Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; b LSU AgCenter, School of Animal Sciences, Louisiana State University, 111 Dalrymple Bldg, 110 LSU Union Square, Baton Rouge, LA 70803-0106, USA * Corresponding author. -
Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA
Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Multiyear Survey of Coccidia, Cryptosporidia, Microsporidia, Histomona, and Hematozoa in Wild Quail in the Rolling Plains Ecoregion of Texas and Oklahoma, USA Lixin Xianga,b, Fengguang Guob, Yonglan Yuc, Lacy S. Parsonb, Lloyd LaCosted, Anna Gibsone, Steve M. Presleye, Markus Petersonf, Thomas M. Craigb, Dale Rollinsd,f, Alan M. Fedynichg & Guan Zhub a College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China b Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA c College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China d Rolling Plains Quail Research Foundation, San Angelo, Texas 76901, USA e Institute of Environmental & Human Health, Texas Tech University, Lubbock, Texas 79416, USA f Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA g Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA Keywords ABSTRACT Cryptosporidium; molecular epidemiology; northern bobwhite (Colinus virginianus); pro- We developed nested PCR protocols and performed a multiyear survey on the tozoan parasites; scaled quail (Callipepla prevalence of several protozoan parasites in wild northern bobwhite (Colinus squamata). virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains ecore- gion of Texas and Oklahoma (i.e. fecal pellets, bird intestines and blood Correspondence smears collected between 2010 and 2013). Coccidia, cryptosporidia, and G. Zhu, Department of Veterinary Pathobiol- microsporidia were detected in 46.2%, 11.7%, and 44.0% of the samples ogy, College of Veterinary Medicine & (n = 687), whereas histomona and hematozoa were undetected. -
Journal of Parasitology
Journal of Parasitology Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes --Manuscript Draft-- Manuscript Number: 17-111R1 Full Title: Eimeria taggarti n. sp., a Novel Coccidian (Apicomplexa: Eimeriorina) in the Prostate of an Antechinus flavipes Short Title: Eimeria taggarti n. sp. in Prostate of Antechinus flavipes Article Type: Regular Article Corresponding Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc University of Melbourne Melbourne, Victoria AUSTRALIA Corresponding Author Secondary Information: Corresponding Author's Institution: University of Melbourne Corresponding Author's Secondary Institution: First Author: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc First Author Secondary Information: Order of Authors: Jemima Amery-Gale, BVSc(Hons), BAnSci, MVSc Joanne Maree Devlin, BVSc(Hons), MVPHMgt, PhD Liliana Tatarczuch David Augustine Taggart David J Schultz Jenny A Charles Ian Beveridge Order of Authors Secondary Information: Abstract: A novel coccidian species was discovered in the prostate of an Antechinus flavipes (yellow-footed antechinus) in South Australia, during the period of post-mating male antechinus immunosuppression and mortality. This novel coccidian is unusual because it develops extra-intestinally and sporulates endogenously within the prostate gland of its mammalian host. Histological examination of prostatic tissue revealed dense aggregations of spherical and thin-walled tetrasporocystic, dizoic sporulated coccidian oocysts within tubular lumina, with unsporulated oocysts and gamogonic stages within the cytoplasm of glandular epithelial cells. This coccidian was observed occurring concurrently with dasyurid herpesvirus 1 infection of the antechinus' prostate. Eimeria- specific 18S small subunit ribosomal DNA PCR amplification was used to obtain a partial 18S rDNA nucleotide sequence from the antechinus coccidian. -
An Intestinal Gregarine of Nothria Conchylega (Polychaeta, Onuphidae)
Journal of Invertebrate Pathology 104 (2010) 172–179 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – An intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae) Sonja Rueckert *, Brian S. Leander Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Departments of Botany and Zoology, University of British Columbia, #3529 – 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: The trophozoites of a novel gregarine apicomplexan, Trichotokara nothriae n. gen. et sp., were isolated and Received 12 November 2009 characterized from the intestines of the onuphid tubeworm Nothria conchylega (Polychaeta), collected at Accepted 11 March 2010 20 m depth from the North-eastern Pacific Coast. The trophozoites were 50–155 lm long with a mid-cell Available online 23 March 2010 indentation that formed two prominent bulges (anterior bulge, 14–48 lm wide; posterior bulge, 15– 55 lm wide). Scanning electron microscopy (SEM) demonstrated that approximately 400 densely packed, Keywords: longitudinal epicytic folds (5 folds/lm) inscribe the surface of the trophozoites, and a prominently elon- Alveolata gated mucron (14–60 lm long and 6–12 lm wide) was covered with hair-like projections (mean length, Apicomplexa 1.97 m; mean width, 0.2 m at the base). Although a septum occurred at the junction between the cell Lecudinidae l l Lecudina proper and the mucron in most trophozoites, light microscopy (LM) demonstrated that the cell proper Parasite extended into the core of the mucron as a thin prolongation. -
Seroprevalence and Clinical Outcomes of Neospora Caninum, Toxoplasma Gondii and Besnoitia Besnoiti Infections in Water Buffaloes (Bubalus Bubalis)
animals Article Seroprevalence and Clinical Outcomes of Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti Infections in Water Buffaloes (Bubalus bubalis) Lavinia Ciuca, Giuliano Borriello , Antonio Bosco, Luigi D’Andrea * , Giuseppe Cringoli, Paolo Ciaramella, Maria Paola Maurelli, Antonio Di Loria , Laura Rinaldi and Jacopo Guccione Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy; [email protected] (L.C.); [email protected] (G.B.); [email protected] (A.B.); [email protected] (G.C.); [email protected] (P.C.); [email protected] (M.P.M.); [email protected] (A.D.L.); [email protected] (L.R.); [email protected] (J.G.) * Correspondence: [email protected] Received: 26 February 2020; Accepted: 19 March 2020; Published: 22 March 2020 Simple Summary: Over the recent years, increasing demand for buffalo products and consequently expanding its productivity has generated concerns regarding diseases that reduce fertility or cause abortion but the attention has been focused mostly on infectious diseases. Thus, exploration on the capacity of parasitic pathogens in relation to reproductive losses in this species are needed. This was the first study investigating, simultaneously, the role and changes induced by Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti in water buffaloes in southern Italy. The outcome of this study revealed a high exposure of water buffaloes to both N. caninum and T. gondii, whereas all the animals resulted negative to B. besnoiti. The mono-infection with N. caninum seems mainly associated with abortion and presence of retained foetal membranes, while mono-infection with T. -
Feline Immune Response to Infection with Cytauxzoon Felis and The
FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO (Under the Direction of Kaori Sakamoto) ABSTRACT Cytauxzoonosis is a highly fatal, hemoprotozoal disease of cats in the Mid-Western, Mid- Atlantic, and Southeastern United States, caused by Cytauxzoon felis. Although the causative agent has been recognized since 1976, no study has profiled the immune response of infected cats, there is no definitive cure, and C. felis has not been successfully maintained in cell cultures in vitro, thwarting research efforts. One of the main histopathologic characteristics of this disease is the presence of giant, infected, intravascular macrophages, many of which are adhered to the vascular endothelium. The main goals of this project are: 1) to characterize the feline immune response to C. felis; 2) to develop a cell culture system in order to study C. felis in vitro; and 3) to determine whether CD18 plays a role in the pathogenesis of cytauxzoonosis. INDEX WORDS: Cat, Cytauxzoon felis, pathogenesis, protozoal disease, veterinary pathology FELINE IMMUNE RESPONSE TO INFECTION WITH CYTAUXZOON FELIS AND THE ROLE OF CD18 IN THE PATHOGENESIS OF CYTAUXZOONOSIS by KARELMA FRONTERA-ACEVEDO BS, University of Florida, 2004 DVM, Louisiana State University, 2008 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2013 © 2013 Karelma Frontera-Acevedo All -
Protistology an International Journal Vol
Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.