CBD Fifth National Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reef Snappers (Lutjanidae)
#05 Reef snappers (Lutjanidae) Two-spot red snapper (Lutjanus bohar) Mangrove red snapper Blacktail snapper (Lutjanus argentimaculatus) (Lutjanus fulvus) Common bluestripe snapper (Lutjanus kasmira) Humpback red snapper Emperor red snapper (Lutjanus gibbus) (Lutjanus sebae) Species & Distribution Habitats & Feeding The family Lutjanidae contains more than 100 species of Although most snappers live near coral reefs, some species tropical and sub-tropical fi sh known as snappers. are found in areas of less salty water in the mouths of rivers. Most species of interest in the inshore fi sheries of Pacifi c Islands belong to the genus Lutjanus, which contains about The young of some species school on seagrass beds and 60 species. sandy areas, while larger fi sh may be more solitary and live on coral reefs. Many species gather in large feeding schools One of the most widely distributed of the snappers in the around coral formations during daylight hours. Pacifi c Ocean is the common bluestripe snapper, Lutjanus kasmira, which reaches lengths of about 30 cm. The species Snappers feed on smaller fi sh, crabs, shrimps, and sea snails. is found in many Pacifi c Islands and was introduced into They are eaten by a number of larger fi sh. In some locations, Hawaii in the 1950s. species such as the two-spot red snapper, Lutjanus bohar, are responsible for ciguatera fi sh poisoning (see the glossary in the Guide to Information Sheets). #05 Reef snappers (Lutjanidae) Reproduction & Life cycle Snappers have separate sexes. Smaller species have a maximum lifespan of about 4 years and larger species live for more than 15 years. -
Pelusios Seychellensis (Siebenrock 1906) – Seychelles Mud Turtle
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectPelomedusidae of the IUCN/SSC — Tortoise Pelusios and seychellensisFreshwater Turtle Specialist Group 018.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, and J.B. Iverson, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.018.seychellensis.v1.2008 © 2008 by Chelonian Research Foundation • Published 1 July 2008 Pelusios seychellensis (Siebenrock 1906) – Seychelles Mud Turtle ROGE R BOU R 1 AND JUSTIN GE R LACH 2 1Laboratoire des Reptiles et Amphibiens, Muséum National d’Histoire Naturelle, 25 rue Cuvier, 75005 Paris, France [[email protected]]; 2133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMA R Y . – Pelusios seychellensis (Family Pelomedusidae) is a small species similar to P. cas- taneus, distinguishable from other Seychelles mud turtles by its black carapace and plastron. It is known from only three specimens collected in the Seychelles on Mahé Island at the end of the 19th century, probably in an inland highland marsh. The species is currently classified by the IUCN Red List as Extinct, though one or a few specimens could conceivably still persist. DIST R I B UTION . – Seychelles. Distribution restricted to Mahé Island, now probably extinct. SYNONYMY . – Sternothaerus nigricans seychellensis Siebenrock 1906, Pelusios subniger seychellen- sis, Sternothaerus castaneus seychellensis, Pelusios castaneus seychellensis, Pelusios seychellensis. STATUS . – IUCN 2007 Red List: Extinct (EX) (assessed 2003); CITES: Not Listed. Taxonomy. —Siebenrock (1906) described this taxon as of Siebenrock himself (1916), the species was placed in the Sternothaerus nigricans seychellensis, the trinomial express- synonymy of Sternothaerus nigricans (Donndorf) (= Pelusios ing his belief that it was very close to the East African forms subniger [Lacépède] sensu lato). -
Ecosystem Profile Madagascar and Indian
ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra, -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
FISHES of the FAMILY LUTJANIDAE of Taiwanl
Bull. Inst. Zool., Academia Sinica 26(4): 279-303 (1987) FISHES OF THE FAMILY LUTJANIDAE OF TAIWANl SIN-CHE LEE. Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529 Republic of China (Received July 3, 1987) (Revision received July 11, 1987) (Accepted July 31, 1987) Sin-Che Lee (1987) Fishes of the family Lutjanidae of Taiwan. Bull. Inst. Zoology, Academia Sinica 26 (4): 279-303. Up to date, a total of 44 lutjanid species are confirmed to occur around the waters of Taiwan. They include 4 subfamilies and .10 genera: Paradicichthyinae (Symphorus, 1 species); Lutjaninae (Lutjanus, 23 species; Macolor, 1 species; Pinjalo, 2 species): Apsilinae (Paracaesio, 3 species); Etelinae (Aprion, 1 species; Aphareus, 2 species; Etelis, 3 species; Pristipomoides, 6 species; Tropidinius, 2 species). Among 44 species, Lutjanus ehrenbergii and Pristipomoides typus are not yet available and are 'provisionally excluded from this report. The remaining 42 species are provided with their distinctive characters with color photos as well as the keys for specific identification. The following 12 species namely Aphareus furcatus, A. rutilans, Etelis carbunculus E. radiosus, Lutjanus bengalensis, L. carponotatus, L. doedecanthoides, Pristipomoides auricilla, P. multidens, Tropidinius amoenus, T. zona/us, are first records from Taiwan, and Pinjalo microphthalmus is the new species. and Richardson added 5 species namely Fishes of Lutjanidae or snappers have Lutjanus fuscescens (=L. russelli) , L. quinque the dorsal fin continuou·s or with a shallow lineatus (L. spilurus is the synonym of it), L. notch, with 10-12 spines and 10-17 soft rays; kasmira,. L. lineolatus (=L. lutjanus) , and L. anal fin wi th 3 s pi nes and 7-11 soft rays; rivulatus. -
Araneae, Theridiidae)
Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism. -
Insights from a Seychelles Warbler (Acrocephalus Sechellensis) Translocation
Journal of Ornithology (2018) 159:439–446 https://doi.org/10.1007/s10336-017-1518-8 ORIGINAL ARTICLE The importance of post‑translocation monitoring of habitat use and population growth: insights from a Seychelles Warbler (Acrocephalus sechellensis) translocation Thomas F. Johnson1 · Thomas J. Brown2 · David S. Richardson2,3 · Hannah L. Dugdale1 Received: 20 July 2017 / Revised: 17 September 2017 / Accepted: 2 November 2017 / Published online: 23 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Translocations are a valuable tool within conservation, and when performed successfully can rescue species from extinction. However, to label a translocation a success, extensive post-translocation monitoring is required, ensuring the population is grow- ing at the expected rate. In 2011, a habitat assessment identifed Frégate Island as a suitable island to host a Seychelles Warbler (Acrocephalus sechellensis) population. Later that year, 59 birds were translocated from Cousin Island to Frégate Island. Here, we determine Seychelles Warbler habitat use and population growth on Frégate Island, assessing the status of the translocation and identifying any interventions that may be required. We found that territory quality, an important predictor of fedgling production on Cousin Island, was a poor predictor of bird presence on Frégate Island. Instead, tree diversity, middle-storey vegetation density, and broad-leafed vegetation density all predicted bird presence positively. A habitat suitability map based on these results suggests most of Frégate Island contains either a suitable or a moderately suitable habitat, with patches of unsuitable overgrown coconut planta- tion. To achieve the maximum potential Seychelles Warbler population size on Frégate Island, we recommend habitat regeneration, such that the highly diverse subset of broad-leafed trees and a dense middle storey should be protected and replace the unsuitable coconut. -
Bark Beetles and Pinhole Borers Recently Or Newly Introduced to France (Coleoptera: Curculionidae, Scolytinae and Platypodinae)
Zootaxa 4877 (1): 051–074 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4877.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:3CABEE0D-D1D2-4150-983C-8F8FE2438953 Bark beetles and pinhole borers recently or newly introduced to France (Coleoptera: Curculionidae, Scolytinae and Platypodinae) THOMAS BARNOUIN1*, FABIEN SOLDATI1,7, ALAIN ROQUES2, MASSIMO FACCOLI3, LAWRENCE R. KIRKENDALL4, RAPHAËLLE MOUTTET5, JEAN-BAPTISTE DAUBREE6 & THIERRY NOBLECOURT1,8 1Office national des forêts, Laboratoire national d’entomologie forestière, 2 rue Charles Péguy, 11500 Quillan, France. 7 https://orcid.org/0000-0001-9697-3787 8 https://orcid.org/0000-0002-9248-9012 2URZF- Zoologie Forestière, INRAE, 2163 Avenue de la Pomme de Pin, 45075, Orléans, France. �[email protected]; https://orcid.org/0000-0002-3734-3918 3Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy. �[email protected]; https://orcid.org/0000-0002-9355-0516 4Department of Biology, University of Bergen, P.O. Box 7803, N-5006 Bergen, Norway. �[email protected]; https://orcid.org/0000-0002-7335-6441 5ANSES, Laboratoire de la Santé des Végétaux, 755 avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez cedex, France. �[email protected]; https://orcid.org/0000-0003-4676-3364 6Pôle Sud-Est de la Santé des Forêts, DRAAF SRAL PACA, BP 95, 84141 Montfavet cedex, France. �[email protected]; https://orcid.org/0000-0002-5383-3984 *Corresponding author: �[email protected]; https://orcid.org/0000-0002-1194-3667 Abstract We present an annotated list of 11 Scolytinae and Platypodinae species newly or recently introduced to France. -
Evolutionary and Conservation Genetics of the Seychelles Warbler ( Acrocephalus Sechellensis )
Evolutionary and conservation genetics of the Seychelles warbler ( Acrocephalus sechellensis ) David John Wright A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences University of East Anglia, UK May 2014 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. This thesis is dedicated to Laura, my wife and partner-in-crime, for the endless supply of love, support, tea and cake. ii Abstract In this thesis, I investigated how evolutionary forces and conservation action interact to shape neutral and adaptive genetic variation within and among populations. To accomplish this, I studied an island species, the Seychelles warbler (Acrocephalus sechellensis ), with microsatellite markers and major histocompatibility complex (MHC) genes as measures of neutral and adaptive variation respectively. First, I used museum DNA and historical records to reveal a recent bottleneck that provides context for the contemporary genetic variation observed in this species. I then determined the impact of four translocations on genetic diversity over two decades. I found that diversity does not differ significantly between islands but the use of smaller founder sizes in two translocations has caused population divergence. These results indicate that stochastic genetic capture is important in translocations and that future assisted gene flow between populations may be necessary. As a tool for conservation practitioners, I wrote a technical report of the most recent translocation - to Frégate Island - detailing practicalities and outcomes to help inform future translocation policy. -
Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly. -
Vallee De Mai Nature Reserve Seychelles
VALLEE DE MAI NATURE RESERVE SEYCHELLES The scenically superlative palm forest of the Vallée de Mai is a living museum of a flora that developed before the evolution of more advanced plant families. It also supports one of the three main areas of coco-de-mer forest still remaining, a tree which has the largest of all plant seeds. The valley is also the only place where all six palm species endemic to the Seychelles are found together. The valley’s flora and fauna is rich with many endemic and several threatened species. COUNTRY Seychelles NAME Vallée de Mai Nature Reserve NATURAL WORLD HERITAGE SITE 1983: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription Brief Synthesis Located on the granitic island of Praslin, the Vallée de Mai is a 19.5 ha area of palm forest which remains largely unchanged since prehistoric times. Dominating the landscape is the world's largest population of endemic coco-de- mer, a flagship species of global significance as the bearer of the largest seed in the plant kingdom. The forest is also home to five other endemic palms and many endemic fauna species. The property is a scenically attractive area with a distinctive natural beauty. Criterion (vii): The property contains a scenic mature palm forest. The natural formations of the palm forests are of aesthetic appeal with dappled sunlight and a spectrum of green, red and brown palm fronds. -
Why Are Anopheline Mosquitoes Not Present in the Seychelles? Vincent Robert1*, Gérard Rocamora2, Simon Julienne3, Steven M Goodman4
Robert et al. Malaria Journal 2011, 10:31 http://www.malariajournal.com/content/10/1/31 RESEARCH Open Access Why are anopheline mosquitoes not present in the Seychelles? Vincent Robert1*, Gérard Rocamora2, Simon Julienne3, Steven M Goodman4 Abstract Background: Species of anopheline mosquitoes are largely distributed over emerged lands around the world and, within the tropics, few areas are without these insects, which are vectors of malaria parasites. Among the exceptions is the Seychelles archipelago in the western Indian Ocean. However, in the Aldabra island group, located in the extreme western portion of the archipelago, Anopheles gambiae s.l. was introduced, leading to massive proliferation and then elimination, with the most recent autochthonous malaria cases recorded in 1931. Methods: In order to re-examine the absence of anopheline mosquitoes in the Seychelles, an entomological field survey was conducted in December 2008 at 17 sites on four granitic islands, including Mahé and Praslin, and ten sites on coralline atolls in the extreme west, including Aldabra. Results: No evidence of larval or adult anophelines was found at the surveyed sites, which supports their absence in the Seychelles. Conclusions: In the granitic islands of the Seychelles, the climate is favourable for anophelines. However, these islands are protected by their remoteness and prevailing seasonal winds. In addition, stagnant freshwater, required in anopheline larval development, is relatively uncommon on the granitic islands because of the steep slopes. In the southwestern atolls (Aldabra and Providence-Farquhar groups), the presence of a long dry season of up to nine months and the total absence of permanent natural freshwater prevents the breeding of anophelines and their successful colonization.