Alternative Back Contacts for CZTS Thin Film Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Back Contacts for CZTS Thin Film Solar Cells Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1900 Alternative back contacts for CZTS thin film solar cells SVEN ENGLUND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0866-1 UPPSALA urn:nbn:se:uu:diva-403583 2020 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Regementsvägen 1, Uppsala, Friday, 20 March 2020 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr. Levent Gütay (University of Oldenburg). Abstract Englund, S. 2020. Alternative back contacts for CZTS thin film solar cells. (Alternativa bakkontakter för CZTS tunnfilmssolceller). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1900. 106 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0866-1. In this thesis, alternative back contacts for Cu2ZnSnS4 (CZTS) thin film solar cells were investigated. Back contacts for two different configurations were studied, namely traditional single-junction cells with opaque back contacts and transparent back contacts for possible use in either tandem or bifacial solar cell configuration. CZTS is processed under chemically challenging conditions, such as high temperature and high chalcogen partial pressure. This places great demands on the back contact. Mo is the standard choice as back contact, but reacts with chalcogens to form MoS(e)2 while the CZTS decomposes, mainly into detrimental secondary phases. Thin MoS(e)2 is assumed to be beneficial for the electrical contact, but excessive thickness is detrimental to solar cell performance. The back contact acts as diffusion medium for Na during annealing when soda- lime glass is used as substrate. Na influences both defect passivation and doping in CZTS and increases the efficiency of the solar cells. The ability of the back contact to facilitate Na diffusion is an important property that must be monitored. Titanium nitride (TiN) as an interlayer between the opaque molybdenum (Mo) and CZTS as well as complete replacement of Mo with TiN back contacts were investigated. TiN was found to be chemically stable in typical anneal conditions. Formation of MoS(e)2 was observed only in areas where the TiN interlayers did not fully cover the Mo, following from the surface roughness of Mo and insufficient step-coverage of the sputter-deposition of TiN. Thick TiN interlayers (200 nm) were found to increase the diffusion of Na to the absorber layer from the glass substrate. For precursors annealed in sulfur atmosphere, improved device efficiency was observed for increased TiN thickness. Transparent back contacts can be used in either tandem configurations where two or more absorber materials are used to more efficiently use different parts of the solar spectra, or in bifacial solar cells to allow light to reach the absorber layer from two sides and thus increase the photocurrent. Thus far only a few studies have investigated transparent back contact materials in CZTS solar cell devices. Antimony-doped tin oxide (ATO) was studied as a transparent back contact for CZTS. Annealing of bare ATO resulted in complete reaction with S to form Sn–S compounds. When annealed below the CZTS, ATO was found to be stable at low temperature (<550 °C), and in some aspects even improved its properties. ATO back contacts resulted in significantly increased formation of Sn–S secondary phases on the CZTS absorber surface compared to the Mo reference. Sn–S secondary compounds on the absorber surface made it challenging to obtain good device performance. Adhesion and device behavior could be improved by pre-addition of NaF on the precursor prior to annealing. Keywords: CZTS, thin film solar cells, back contacts, passivation, interface, titanium nitride, ATO, antimony-doped tin oxide, transparent back contact Sven Englund, Department of Materials Science and Engineering, Solar Cell Technology, Box 534, Uppsala University, SE-751 21 Uppsala, Sweden. © Sven Englund 2020 ISSN 1651-6214 ISBN 978-91-513-0866-1 urn:nbn:se:uu:diva-403583 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-403583) Till mitt älskade Sverige To my beloved Sweden 致瑞典,我的挚爱 List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I. Englund, S., Saini, N. Platzer-Björkman C. (2018) Cu2ZnSn(S,Se)4 from annealing of compound co-sputtered pre- cursors – Recent results and open questions. Solar Energy, 175:84–93 II. Englund, S., Paneta, V., Primetzhofer, D., Ren, Y., Donzel-Gar- gand, O., Larsen, J.K., Scragg, J., Platzer-Björkman C. (2017) Characterization of TiN back contact interlayers with varied thickness for Cu2ZnSn(S,Se)4 thin film solar cells, Thin Solid Films, 639:91-97. III. Paneta. V., Englund, S., Suvanam, S., Scragg, J., Platzer-Björk- man. C., Primetzhofer, D., (2019) Ion-beam based characteriza- tion of TiN back contact interlayers for CZTS(e) thin film solar cells, Nuclear Instruments and Methods in Physics Research Sec- tion B: Beam Interactions with Materials and Atoms, 450:262- 266 IV. Englund, S., Grini, S., Donzel-Gargand, O., Paneta, V., Kosyak, V., Primetzhofer, D., Scragg, J. J. S., Platzer-Björkman, C. (2018) TiN Interlayers with Varied Thickness in Cu2ZnSnS(e)4 Thin Film Solar Cells: Effect on Na Diffusion, Back Contact Stability, and Performance, Physica Status Solidi a, 215(23):1800491 V. Englund, S., Kubart, T., Keller, J., Moro M. V., Primetzhofer, D., Suvanam, S. S., Scragg, J. J. S., Platzer-Björkman, C. (2019) An- timony-doped Tin Oxide as Transparent Back Contacts in CZTS Thin Film Solar Cells, Physica Status Solidi a, 2019, 1900542 Reprints were made with permission from the respective publishers. Personal contributions to the papers I. Contributions mainly related to the back contact part; plan- ning, literature review, writing, figures. II. Definition of the research project, literature review, planning, sample preparation (deposition, annealing, STEM lamellae), characterization and analysis (SEM, XPS, XRD), discussion and writing with input from co-authors. III. Literature review, part of planning, sample preparation (sput- ter deposition, annealing), some characterization (XPS), dis- cussion and involved in writing process. IV. Definition of the research project, literature review, planning, sample preparation (deposition of back contacts, annealing, STEM lamellae of interlayer sample), analysis (SEM, XPS, IV, QE, stress), discussion and writing with input from co- authors. V. Part in definition of the research project, literature review, planning, sample preparation (deposition of back contacts, CZTS and NaF, annealing,), analysis (resistivity, XRD, GDOES, IV, QE), discussion and writing with input from co- authors. Contents 1. Introduction ......................................................................................... 13 1.1 Motivation and aim of the thesis ........................................................ 16 2. Background – solar energy and solar cells .......................................... 18 2.1 Solar energy ........................................................................................ 18 2.2 Semiconductors .................................................................................. 20 2.3 Band gap of solar cell materials ......................................................... 22 2.4 Solar cell devices ................................................................................ 26 2.4.2 Doping and formation of pn-junctions ........................................ 26 2.4.4 Comparing properties of solar cell devices ................................. 27 3. CZTS thin film solar cells – fabrication and components ......................... 32 3.2 Deposition techniques and processing ............................................... 33 3.2.1 Sputtering .................................................................................... 33 3.2.2 Other deposition techniques ....................................................... 35 3.2.3 Annealing .................................................................................... 36 3.3 The CZTS solar cell stack .................................................................. 37 3.3.1 Front metal contact grid .............................................................. 37 3.3.2 Window layer.............................................................................. 37 3.3.3 Absorber layer ............................................................................ 38 3.3.4 Back contact................................................................................ 43 3.3.5 Substrate ..................................................................................... 47 4. Characterization methods .......................................................................... 48 4.1 Ion Beam Analysis ............................................................................. 48 4.1.1 Rutherford backscattering spectrometry ..................................... 49 4.1.2 Time-of-Flight Medium-Energy Ion Scattering ......................... 51 4.1.3 Time-of-Flight Elastic Recoil Detection Analysis ...................... 51 4.1.4 Particle Induced X-ray Emission ................................................ 53 4.2 Electron microscopy and X-ray based analysis .................................. 54 4.2.1 Scanning electron microscopy .................................................... 54 4.2.2 Scanning transmission electron
Recommended publications
  • Emerging Next Generation Solar Cells: Route to High Efficiency and Low Cost
    International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com Emerging Next Generation Solar Cells: Route to High Efficiency and Low Cost M. S. Sadek* M. J. Rashid Dept. of Electrical and Electronic Engineering, Dept. of Electrical and Electronic Engineering, Southeast University, University of Dhaka, Dhaka, Bangladesh Dhaka, Bangladesh M.A. Zaman Z. H. Mahmood Dept. of Electrical and Electronic Engineering, Prime Dept. of Electrical and Electronic Engineering, University University of Dhaka, Dhaka, Bangladesh Dhaka, Bangladesh Abstract including their structural morphology, electrical and Generation of clean energy is one of the main optical properties. The excellent state of the art challenges of the 21st century. Solar energy is the technology, advantages and potential research issues most abundantly available renewable energy source yet to be explored are also pointed out. which would be supplying more than 50% of the global electricity demand in 2100.Solar cells are used Keywords -Solar Cells, Thin film, Silicon, Organic, to convert light energy into electrical energy directly Perovskite, DSSC, CZTS, Efficiency, Costs. with an appeal that it does not generate any harmful bi-products, like greenhouse gasses. The I. INTRODUCTION manufacturing of solar cells is actually based on the types of semiconducting or non-semiconducting Based on different technologies and materials, the materials used and commercial maturity. From the solar cells can be grouped into three different very beginning of the terrestrial use of Solar Cells, generations. First generation or c-Si solar cells are efficiency and costs are the main focusing areas of most dominant photovoltaic (PV) technology even research.
    [Show full text]
  • Solar Frontier Breaks CZTS Cell Efficiency Record World-Record 12.6% Cell Efficiency Achieved with IBM and TOK
    NEWS RELEASE Solar Frontier Breaks CZTS Cell Efficiency Record World-record 12.6% cell efficiency achieved with IBM and TOK Tokyo-December 10, 2012 -Solar Frontier announced today that it has set a new conversion efficiency record for CZTS solar cells (0.42cm²) at 12.6%. The latest world record was achieved in joint research with IBM (NYSE:IBM) and Tokyo Ohka Kogyo (TOK), and has been independently verified by Newport Corporation1. The details have been published in the Advanced Energy Material, journal on Nov 272. CZTS stands for key ingredients copper, zinc, tin, sulphur and selenium. Inexpensive and with abundant supply, these materials offer CZTS a cost-competitive advantage over other photovoltaic technologies. The new 12.6% world record eclipses the previous record of 11.1%, which was also set by Solar Frontier and its joint-research partners. “Breaking our previous record at such a fast pace shows the potential of CZTS for mass production in the future, and we are now in a position to drive that efficiency even higher,” said Satoru Kuriyagawa, Chief Technology Officer of Solar Frontier. Solar Frontier is the world’s largest provider of CIS thin-film photovoltaic solutions. Its Atsugi Research Center in Kanagawa, Japan, has also achieved standing world record conversion efficiencies of 17.8% on a 30cm by 30cm CIS submodule and 19.7% for non-cadmium CIS cell. Solar Frontier’s CIS modules, manufactured in Japan, are offered in commercial volumes at up to 13.8% efficiency, the highest of any mass produced thin- film modules. Picture provided by IBM 1 Newport Corporation provides advanced technology products and solutions, including photovoltaic conversion efficiency certification.
    [Show full text]
  • Enhancing the Power Output of Bifacial Solar Modules by Applying Effectively Transparent Contacts (Etcs) with Light Trapping Rebecca Saive , Thomas C
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF PHOTOVOLTAICS 1 Enhancing the Power Output of Bifacial Solar Modules by Applying Effectively Transparent Contacts (ETCs) With Light Trapping Rebecca Saive , Thomas C. R. Russell, and Harry A. Atwater Abstract—We have performed a computational study on the enhancement of the power output of bifacial solar modules with ef- fectively transparent contacts (ETCs). ETCs are triangular cross- sectional silver grid fingers that redirect light to the active area of the solar cell, therefore mitigating grid finger shading losses. Furthermore, ETCs can be spaced densely leading to light trap- ping. We modeled bifacial silicon heterojunction solar modules with varying front and rear illumination and ETC coverages. We determined that shading losses can be almost fully mitigated and that light absorption can be increased by up to 4.7% compared with state-of-the-art screen-printed bifacial modules. Furthermore, we calculated that grid resistance and silver usage can be improved when using ETCs. Index Terms—Bifacial solar modules, effectively transparent contacts (ETCs), light trapping. I. INTRODUCTION Fig. 1. Schematic of the cross section of a bifacial silicon heterojunction solar IFACIAL solar cells have been gaining momentum due module with effectively transparent contacts. B to their promise for price reductions of photovoltaic (PV) generated electricity by increasing power output [1], [2]. In ad- dition to front-side illumination, bifacial solar cells also accept output if charge carriers can be extracted and transported effi- photons incident on the rear side.
    [Show full text]
  • Synthesis of Earth Abundant Nanomaterials for Flexible Solar Cell Applications1 Sharp Laboratories of America, Oregon State University
    ORNL Manufacturing Demonstration Facility Technical Collaboration Final Report Synthesis of Earth Abundant Nanomaterials for Flexible Solar Cell Applications1 Sharp Laboratories of America, Oregon State University Project ID: MDF-TC-2013-021 Start Date: 08/05/2013 Completion Date: 08/31/2014 Company Size: Large business Summary The collaboration between Sharp Laboratories of America (SLA), Oregon State University (OSU) and ORNL focused on low thermal budget pulse thermal processing (PTP) technique to develop high performance copper zinc tin sulfide (CZTS) thin film system for advanced photovoltaic (PV) applications, with the goal to develop novel fabrication processes for the manufacture of low-cost, high-performance PV modules. Significant improvements in crystallinity and morphology of nanoparticle CZTS thin films and kesterite phase control were achieved by low thermal budget photonic curing. The combination of pulse thermal processing technology and inexpensive, high performance nanoparticle coatings shows promise for the development of a sustainable CZTS PV technology. Background Considerable effort is being employed to reduce the levelized cost of energy for photovoltaic systems to more favorably compete with standard utility based energy sources. Manufacturing concepts are being applied to enhance performance and/or reduce cost through nanomaterials and nanostructures. Here, we investigated the impact of low temperature photonic curing on the performance of copper zinc tin sulfide/selenide (CZTS) system—a promising earth-abundant absorber layer for printed solar cells. CZTS nanoparticle inks are of interest for high performance PV cell development at low temperatures below 500°C. OSU and Sharp Labs are working together on the development of a microwave-based nanoparticle synthesis method to improve kinetics, selectivity, purity, and yield of nanoparticle for high efficiency flexible PV development.
    [Show full text]
  • Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil
    Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil July 26, 2011 — July 25, 2012 Craig Leidholm, Charlie Hotz, Alison Breeze, Chris Sunderland, Wooseok Ki, and Don Zehnder Solexant Corp. San Jose, California NREL Technical Monitor: Brian Keyes NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Subcontract Report NREL/SR-5200-56501 September 2012 Contract No. DE-AC36-08GO28308 Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil July 26, 2011 — July 25, 2012 Craig Leidholm, Charlie Hotz, Alison Breeze, Chris Sunderland, Wooseok Ki, and Don Zehnder Solexant Corp. San Jose, California NREL Technical Monitor: Brian Keyes Prepared under Subcontract No. NEU-1-40054-03 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-5200-56501 Golden, Colorado 80401 September 2012 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 This publication was reproduced from the best available copy submitted by the subcontractor and received no editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • New Generation of Solar Cell Technologies
    New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus Bergen Solar Power Capacity 2 DIFFERENT GENERATION OF SOLAR CELLS - First generation solar cells Single crystalline silicon (28 %) Multicrystalline silicon (21%) • 86% of the solar cell market • Cells made using crystalline silicon wafer. • Consists of a large-area, single layer p-n junction diode. Source : http://www.24hoursolarstore.net/ 3 Advantages/Disadvantages of Silicon ADVANTAGES DISADVANTAGES › Second most • Need thick layer abundant element in the crust (crystalline) › Well-developed • Brittle processing • Limited substrates techniques › Huge market for • Expensive single crystalline Si crystals › Highest efficiency • Wastes during processing Second generation – Thin film solar cells Copper indium gallium diselenide (CIGS) (20 %) Cadmium Telluride (CdTe) (17 %) 5 Emerging solar cell technologies • Dye sensitized Solar Cells (DSSCs) • Quantum Dots Sensitized Solar cells (QDSScs) • Polymer Solar Cells • CZTS based thinfilm solar cells • Perovskite Solar Cells • Intermediate band solar cells 6 Advanced Nanomaterials Research at HVL A. Computer simulation studies on nanomaterials for clean energy applications B. Synthesis, characterization studies of nanomaterials C. Fabrication and characterization of next generation solar cells 7 A. Computer simulation studies • Nanomaterials for Intermediate band solar cells Ag2GeBaS4 – Total
    [Show full text]
  • Electroless Deposition of Cdte on Stainless Steel 304 Substrates By
    Electroless Deposition of CdTe on Stainless Steel 304 Substrates By James Francis Malika Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Chemistry Program YOUNGSTOWN STATE UNIVERSITY May 2021 Electroless Deposition of CdTe on Stainless Steel 304 Substrates James Francis Malika I hereby release this thesis to the public. I understand that this thesis will be made available from the Ohio LINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: James Francis Malika, Student Date Approvals: Dr. Clovis A. Linkous, Thesis Advisor Date Dr. Timothy R. Wagner, Committee Member Date Dr. Christopher Arnsten, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date ABSTRACT The semiconductor cadmium telluride (CdTe) has become the leading material for thin- film photovoltaic applications. Among the many techniques for preparing these thin films, electroless deposition, commonly known as chemical bath deposition, deserves special focus since it has been shown to be a pollution-free, low-temperature and inexpensive method. In this project, CdTe thin films were deposited on stainless steel 304 by the electroless deposition method using cadmium acetate and tellurium oxide dissolved in pH 12.5 NH3(aq). The deposition was based on the gradual release of 2+ 2- cadmium ions (Cd ) and the gradual addition of tellurium as TeO3 and their subsequent reduction in a hot aqueous alkaline chemical bath at 70 oC. This was attained by adding a complexing agent such as ammonia and a chemical reducing agent.
    [Show full text]
  • 13.4.2 Cadmium Telluride Solar Cells
    13. Thin-Film Solar Cells 205 Kesterites Figure 13.1 shows the abundance in the Earth’s crust for several elements. As we can see, indium is a very rare element. However, it is a crucial element of CIGS solar cells. Because of its scarcity, In might be the limiting step in the upscaling of the CIGS PV technology to future terawatt scales. In addition, the current thin-film display industry depends on In as well, as ITO is integrated in many display screens. As a consequence, other chalcogenic semiconductors are investigated that do not con- tain rare elements. A interesting class of materials are the kesterites which are quarternary or pentary semiconductors consisting of four or five elements, respectively. While the name giving mineral kesterite [Cu2(ZnFe)SnS4], where zinc and iron atoms can substitute each other, is not used as a semiconductor, kesterite without iron (Cu 2ZnSnS4) is used. It also is known as copper zinc tin sulphide (CZTS) and is a I 2-II-IV-VI4 semiconductor. Other kester- ites are for example copper zinc tin selenide (Cu2ZnSnSe4, CZTSe), or ones using a mixture of sulphur and selenium, Cu 2ZnSn(SSe)4 (CZTSS). In difference to CIGS, CZTS is based on non-toxic and abundantly available elements. The current record efficiency is 12%. It is achieved with an CZTSS solar cells on lab-scale by IBM [ 47 ]. 13.4.2 Cadmium telluride solar cells In this section we will discuss the cadmium telluride (CdTe) technology, which currently is the thin-film technology with the lowest demonstrated cost per Wp.
    [Show full text]
  • Prospects and Limitations in Thin Film Photovoltaic Technology R&D
    IEEE Electron Devices Society (EDS) Webinar, 15 April 2020 From Universiti Tenaga Nasional (UNITEN), Malaysia Prospects and Limitations in Thin Film Photovoltaic Technology R&D Deepest condolences to those who lost nears and dears due to COVID-19. Sincerest empathy to those who Dr. Nowshad Amin are still fighting to recover from 1. Professor, COVID-19 and gratitude to all Institute of Sustainable Energy, super heroes working round the Universiti Tenaga Nasional @ UNITEN clock around the world. (The National Energy University) 2. Adjunct Professor, FKAB, Universiti Kebangsaan Malaysia @ UKM Putrajaya, Malaysia (The National University of Malaysia) Acknowledgement • Thin Film Solar PV R&D Group of Universiti Tenaga Nasional (@The Energy University) of Malaysia. • Solar Energy Research Institute of Universiti Kebangsaan Malaysia (@The National University of Malaysia). • Collaboration Partners around the world from both universities (TokyoTech, USF) and corporates. • The Ministry of Education of Malaysia (MOE) as well as Ministry of Science and Technology of Malaysia (MOSTI-> MESTEC) for grants provided all these years. • All the useful literatures that are being referenced from various sources/journals/proceedings. We are Committed for a Solar-Green-Earth Our Collaborative Effort on Solar Photovoltaic Technology 31 KM UNITEN UNITEN The National The National Energy University of University Malaysia 44 KM Our Effort in High Impact Research on Energy RESEARCH Key Outcomes . Increased publications . Increased principal researchers INSTITUTES . Increased research grants / . Increased postgraduate students 5 consultancy revenues secured / postdoctoral researchers Institute of Institute of Institute of Institute of Institute of Power Energy Policy Energy Informatics & Sustainable Engineering & Research Infrastructure Computing in Energy (ISE) (IPE) (IEPRe) (IEI) Energy (IICE) .
    [Show full text]
  • High-Efficiency N-Type Silicon PERT Bifacial Solar Cells with Selective
    Solar Energy 193 (2019) 494–501 Contents lists available at ScienceDirect Solar Energy journal homepage: www.elsevier.com/locate/solener High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts T ⁎ Don Dinga, Guilin Lua,b, Zhengping Lia, Yueheng Zhanga, Wenzhong Shena,c, a Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, PR China b Lu’an Photovoltaics Technology Co., Ltd, Shanxi 046000, PR China c Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, PR China ARTICLE INFO ABSTRACT Keywords: Bifacial crystalline silicon (c-Si) solar cells have currently attracted much attention due to the front high-effi- c-Si solar cells ciency and additional gain of power generation from the back side. Here, we have presented n-type passivated n-PERT bifacial emitter and rear totally-diffused (n-PERT) bifacial c-Si solar cells featuring front selective emitter (SE) and Poly-Si based passivating contacts polysilicon (poly-Si) based passivating contacts. The SE formation was scanned with laser doping based on front Nano-layer SiO x boron-diffusion p+ emitter. The poly-Si based passivating contacts consisting of nano-layer SiO of ~1.5 nm Selective emitter x thickness grown with cost-effective nitric acid oxidation and phosphorus-doped polysilicon exhibited excellent passivation for high open-circuit voltage. We have successfully achieved the large-area (156 × 156 mm2) n-PERT bifacial solar cells yielding top efficiency of 21.15%, together with a promising short-circuit current density of 2 40.40 mA/cm .
    [Show full text]
  • Impact of Excess and Disordred Sn Sites on Cu2znsns4 Absorber Material and Device Performance: a 119Sn Mossbauer Study
    Impact of excess and disordred Sn sites on Cu2ZnSnS4 absorber material and device performance: A 119Sn Mossbauer Study Goutam Kumar Gupta1, V R Reddy2,and Ambesh Dixit1,a 1Department of Physics &Center for Solar Energy, Indian institute of technology Jodhpur, Rajasthan, 342037 India 2UGC-DAE CSR Indore Center, Indore, 452017 India a)Corresponding author: [email protected] Abstract Mossbauer analysis is carried out on CZTS samples, subjected to a low temperature processing at 3000C (S1) and high temperature processing at 5500C under sulfur environment (S2). Loss of Sn is observed in sample S2 due to high temperature thermal treatment.The isomer shifts obtained in the Mossbauer spectra confirms the existence of Sn at its 4+ valance state in both the samples. Relatively high quadriple splitting is observed in S1 with respect to S2, suggesting dislocations and crystal distortion present in S1, which are reduced drastically by high temperature annealed S2 sample. The fabricated solar cell with S1 and S2 absorbers showed significant improvement in efficiency from ~0.145% to ~1%. The presence of excess Sn in S1 allows enhanced recombination and the diode ideality factor shows larger value of 4.23 compared to 2.17 in case of S2. The experiments also validate the fact that S1 with Sn rich configuration shows lower acceptor carrier concentration as compared to S2 because of enhanced compensating defects in S1. Keywords: 119Sn Mossbauer spectroscopy, CZTS compound semiconductor, Solar Cell; Valence state, Defects 1 Introduction Kesterite material Cu2ZnSnS4, also named as CZTS, has emerged as a promising photovoltaic (PV) absorber layer material. Its attractive optical and electronic properties such as high absorption coefficient and optimum direct band gap make it a suitable alternative for silicon photovoltaics.
    [Show full text]
  • Novel TCO Contacts for Fabrication of CIGS Bifacial Solar Cells
    Dottorato di Ricerca in Fisica Ciclo XXX Novel TCO contacts for fabrication of CIGS bifacial solar cells Coordinator: Prof. Cristiano Viappiani Supervisors: Prof. Roberto Fornari Dott. Edmondo Gilioli Candidate: Nicholas Cavallari A mio papà Abstract Object of this thesis is the development of viable technological processes for the fabrication of efficient bifacial solar cells. To this extent, a great effort was first made in order to prepare transparent conductive electrodes based on different oxide compounds and, secondly, to deposit the absorber and form the cell junction on such transparent back contacts. The new technological procedures were coupled to extensive simulation and characterization of both individual materials and working devices, which provided the necessary feedback for technology optimization. The bifacial solar cells (BFSC) considered in this thesis are all based on the compound Cu(In1-x,Gax)Se2 (CIGS), which is a very efficient light absorber. A major task of this work consisted in replacing the standard molybdenum back contact with a suitable transparent conductive oxide (TCO), and then tuning the physical properties of both TCO and absorber in order to maximize the transport of the photo-generated carriers across their interface. For all studied devices, both the absorber and the back TCO were grown via low-temperature pulsed electron deposition (LTPED). LTPED is a non-equilibrium deposition technique that relies on the ablation of a ceramic target by short and high-energy electron pulses. At IMEM-CNR in Parma, CIGS is deposited via LTPED at T=250°C. As it will be shown in the thesis, thanks to this low T (compared to alternative growth methods), high-quality CIGS may be obtained without post-deposition selenization on alternative and novel substrates, including TCOs.
    [Show full text]