Bifacial Photovoltaic Modules and Systems

Total Page:16

File Type:pdf, Size:1020Kb

Bifacial Photovoltaic Modules and Systems Task 13 Performance, Operation and Reliability of Photovoltaic Systems Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications 2021 Report IEA-PVPS T13-14:2021 PVPS Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems What is IEA PVPS TCP? The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with a belief that the future o f energy security and sustainability starts with global collaboration. The programme is made up of 6.000 experts across government, academia, and industry dedicated to advancing common research and the application of specific energy technologies. The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCP’s within the IEA and was established in 1993. The mission of the programme is to “enhance the international collaborative efforts which facilitate the role of photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the Programme’s participants have undertaken a variety of joint research projects in PV power systems applications. The overall programme is headed by an Executive Committee, comprised of one dele- gate from each country or organisation member, which designates distinct ‘Tasks,’ that may be research projects or activity a reas. The IEA PVPS participating countries are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, Korea, Malaysia, Mexico, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, and the United States of America. The European Commission, Solar Power Europe, the Smart Electric Power Alliance (SEPA), the Solar Energy Industries Association and the Cop- per Alliance are also members. Visit us at: www.iea-pvps.org What is IEA PVPS Task 13? Within the framework of IEA PVPS, Task 13 aims to provide support to market actors working to improve the operation, the reliability and the quality of PV components and systems. Operational data from PV systems in different climate zones compiled within the project will help provide the basis for estimates of the current situation regarding PV reliability and performance. The general setting of Task 13 provides a common platform to summarize and report on technical aspects affecting the quality, performance, reliability and lifetime of PV systems in a wide variety of environments and applications. By working together across national boundaries we can all take advantage of research and experience from each member country and combine and integrate this knowledge into valuable summaries of best practices and methods for ensuring PV systems perform at their optimum and continue to provide competitive return on investment. Task 13 has so far managed to create the right framework for the calculations of various parameters that can give an indication of the quality of PV components and systems. The framework is now there and can be used by the industry who has expressed appreciation towards the results included in the high-quality reports. The IEA PVPS countries participating in Task 13 are Australia, Austria, Belgium, Canada, Chile, China, Denmark, Finland, France, Germany, Israel, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, Thailand, and the United States of America. DISCLAIMER The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publica- tions of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries. COVER PICTURE Bifacial photovoltaic modules at Sandia National Laboratories, Joshua S. Stein ISBN 978-3-907281-03-1 Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME IEA PVPS Task 13 Performance, Operation and Reliability of Photovoltaic Systems Bifacial Photovoltaic Modules and Systems: Experi- ence and Results from International Research and Pilot Applications Report IEA-PVPS T13-14:2021 April 2021 ISBN 978-3-907281-03-1 Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems AUTHORS Main Authors Joshua S. Stein, Sandia National Laboratories, USA Christian Reise, Fraunhofer ISE, Freiburg, Germany Johanna Bonilla Castro, TÜV Rheinland, Cologne, Germany Gabi Friesen, SUPSI, Switzerland Giosuè Maugeri, RSE, Italy Elías Urrejola, ATAMOSTEC, Chile Samuli Ranta, TUAS, Finland Contributing Authors Muhammad A. Alam, Purdue University, USA Marc Abou Anoma, SunPower Corporation, USA Silvana Ayala Pelaez, National Renewable Energy Laboratory, USA Djaber Berrian, ISC Konstanz, Germany Emmanuelle Bertrand, LABORELEC, Belgium Matthieu Chiodetti, EDF, France Dimitrij Chudinzow, University of Stuttgart, Germany Hervé Colin, INES, France Ignacia Devoto, ISC Konstanz, Germany Roger French, Case Western Reserve University, USA Edward Fuentealba, University of Antofagasta, Chile Florent Haffner, INES, France Andreas Halm, ISC Konstanz, Germany Joan Haysom, J.L. Richards & Associates Limited, Canada Karin Hinzer, University of Ottawa, Canada Imre T. Horvath, IMEC, Belgium Hugo Huerta, TUAS, Finland M. Ryyan Khan, Purdue University, USA Markus Klenk, ZHAW, Switzerland Radovan Kopecek, ISC Konstanz, Germany Joris Libal, ISC Konstanz, Germany Mattias Lindh, RISE, Sweden Bill Marion, National Renewable Energy Laboratory, USA Mark Mikofski, DNV GL, USA 4 Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems Ruben Roldan Molinero, SUPSI, Switzerland Mark Monarch, National Renewable Energy Laboratory, USA Anja Neubert, DNV GL, Germany M. Tahir Patel, Purdue University, USA Anna Malou Petersson, RISE, Sweden Gizem Nogay Poulin, CSEN, Switzerland Santhosh Ramesh, IMEC, Belgium Oume Lgheit Rhazi, EDF, France Nicholas Riedel-Lyngskær, Fotonik Technical University of Denmark, Denmark Daniel Riley, Sandia National Laboratories, USA Annie C.J. Russell, University of Ottawa, Canada Andreas Schneider, ISC Konstanz, Germany Cameron T. Stark, Sandia National Laboratories, USA Tudor Timofte, ISC Konstanz, Germany Daniel Tune, ISC Konstanz, Germany Jill Tymchak, J.L. Richards & Associates Limited, Canada Christopher E. Valdivia, University of Ottawa, Canada Felipe Valencia, ATAMOSTEC, Chile Menghong Wang, Case Western Reserve University, USA Editors Joshua S. Stein, Sandia National Laboratories, USA Boris Farnung, VDE Renewables, Germany 5 Task 13 Performance, Operation and Reliability of Photovoltaic Systems – Bifacial PV Modules and Systems TABLE OF CONTENTS Acknowledgements .................................................................................................. 7 List of abbreviations ................................................................................................. 8 Executive summary ................................................................................................ 12 Introduction ...................................................................................................... 15 Bifacial cell types ............................................................................................. 16 2.1 Introduction to bifacial cells ..................................................................... 16 2.2 PERC cells ............................................................................................. 17 2.3 N-PERT .................................................................................................. 19 2.4 Hetero-junction cells ............................................................................... 20 2.5 Thermodynamic limits of a bifacial solar cell ........................................... 21 Bifacial modules .............................................................................................. 28 3.1 Test standards and certification of bifacial PV modules .......................... 28 3.2 Bifacial cells in modules with white encapsulant ..................................... 36 3.3 Bifacial-specific cell and module degradation issues .............................. 38 Bifacial systems ............................................................................................... 42 4.1 Albedo .................................................................................................... 42 4.2 Bifacial gain ............................................................................................ 44 4.3 Nonuniform rear-side irradiance ............................................................. 46 4.4 Bifacial system maximum currents ......................................................... 51 4.5 Fixed-tilt systems .................................................................................... 54 4.6 Single-axis tracking systems .................................................................. 62 4.7 Optimization and performance of bifacial solar cells: A global perspective ............................................................................................................... 65 International survey of bifacial PV configurations and field performance .......... 74 Bifacial modeling Comparison ........................................................................
Recommended publications
  • Countervailing Duty Administrative (NAICS 621) About Telemedicine Solar Cells from China
    Federal Register / Vol. 85, No. 237 / Wednesday, December 9, 2020 / Notices 79163 service delivery for the healthcare DEPARTMENT OF COMMERCE days.2 On July 21, 2020, Commerce industry, and its importance has tolled the due date for these final results increased during the current pandemic. International Trade Administration an additional 60 days.3 On September 25, 2020, Commerce extended the Expanding the collection of data on [C–570–980] telemedicine use will support deadline for issuing the final results of measurement on changes in its adoption Crystalline Silicon Photovoltaic Cells, this review by 60 days, until November 4 during this unprecedented public health Whether or Not Assembled Into 27, 2020. emergency. SAS currently asks Modules, From the People’s Republic Scope of the Order of China: Final Results of ambulatory health care providers The products covered by the order are Countervailing Duty Administrative (NAICS 621) about telemedicine solar cells from China. A full Review; 2017 services in relation to patient visits. description of the scope of the order is This proposal will add a question about AGENCY: Enforcement and Compliance, contained in the Issues and Decision revenues from telemedicine services for International Trade Administration, Memorandum.5 hospitals (NAICS 622) and nursing Department of Commerce. homes (NAICS 623). Furthermore, to Analysis of Comments Received SUMMARY: The Department of Commerce standardize content across industries All issues raised in interested parties’ (Commerce) determines that and provide consistency for briefs are addressed in the Issues and countervailable subsidies are being respondents, the current telemedicine Decision Memorandum accompanying provided to producers/exporters of this notice.
    [Show full text]
  • Enhancing the Power Output of Bifacial Solar Modules by Applying Effectively Transparent Contacts (Etcs) with Light Trapping Rebecca Saive , Thomas C
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF PHOTOVOLTAICS 1 Enhancing the Power Output of Bifacial Solar Modules by Applying Effectively Transparent Contacts (ETCs) With Light Trapping Rebecca Saive , Thomas C. R. Russell, and Harry A. Atwater Abstract—We have performed a computational study on the enhancement of the power output of bifacial solar modules with ef- fectively transparent contacts (ETCs). ETCs are triangular cross- sectional silver grid fingers that redirect light to the active area of the solar cell, therefore mitigating grid finger shading losses. Furthermore, ETCs can be spaced densely leading to light trap- ping. We modeled bifacial silicon heterojunction solar modules with varying front and rear illumination and ETC coverages. We determined that shading losses can be almost fully mitigated and that light absorption can be increased by up to 4.7% compared with state-of-the-art screen-printed bifacial modules. Furthermore, we calculated that grid resistance and silver usage can be improved when using ETCs. Index Terms—Bifacial solar modules, effectively transparent contacts (ETCs), light trapping. I. INTRODUCTION Fig. 1. Schematic of the cross section of a bifacial silicon heterojunction solar IFACIAL solar cells have been gaining momentum due module with effectively transparent contacts. B to their promise for price reductions of photovoltaic (PV) generated electricity by increasing power output [1], [2]. In ad- dition to front-side illumination, bifacial solar cells also accept output if charge carriers can be extracted and transported effi- photons incident on the rear side.
    [Show full text]
  • Project Bond Focus Issue 4 | Project Bonds: New Energies – Solar
    Project Bond Focus Issue 4 | Project Bonds: New Energies – Solar Project Bonds: New Energies – Solar Crédit Agricole CIB, a leader in the global Project Bond market, is authoring a series of articles covering key topics for issuers to consider. New Energies Solar Project Bonds The volume of Project Bonds issued for renewable energy Solar Project Bonds projects has steadily increased in recent years. (Global volume in $MM equivalent) 2,400 The Capital Markets opened its doors to renewable energy 2,200 1,896 2,000 projects with a wind Project Bond in 2003, followed by 1,780 solar Project Bonds a few years later in 2010. 1,800 1,600 1,446 1,284 1,421 These trail-blazing transactions allowed investors to gain 1,400 1,200 1,034 familiarity with the technologies, risks, and contractual 1,000 arrangements related to renewable assets. They also 800 paved the way for future issuances, as rating agencies 600 400 started publishing specific methodologies dedicated to this 258 200 newly accessible asset class. 0 2010 2011 2012 2013 2014 2015 2016 Renewables have grown to represent nearly 25% of power Source: PFI, CA CIB Project Bonds and 10% of total Project Bonds issued in just over a decade. In 2015, renewable energy projects Historically, the first solar Project Bond issuance was the accounted for $3.5BN of Project Bond issuances globally. €196MM Andromeda Finance offering for a 51MW utility- scale PV Italian solar project in December 2010. In 2011, Power Project Bonds the $702MM Project Bond for NextEra Genesis Solar, a (Global volume in $MM equivalent) single-site Concentrating Solar Power (CSP) project with a 20,000 capacity of 250MW in California, marked the opening of 15,054 the US Debt Capital Markets for solar projects.
    [Show full text]
  • Solar Is Driving a Global Shift in Electricity Markets
    SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion .....................................................................................................................
    [Show full text]
  • Solar Power for the Veneto
    Photovoltaics Rovigo solaR PRoject Rovigo solar farm and central inverter/transformer station 70 MW of solar power for the Veneto On a foggy November day, SunEdison Italy, its financial partners track record in utility-scale solar plants, using 840 km of cables, 50 km of conduits and more than 6 tons of and local officials inaugurated Europe’s largest solar farm in steel for the metal substructures and the like. Rovigo, Veneto. Hundreds of guests demonstrated the “The polycrystalline panels have been supplied by Canadian Solar, Trina Solar, Yingli and Solarfun,” importance of the project as a reference for its initiators, as well says Liborio Nanni, Country Manager at SunEdison Italia. The last modules were shipped by air cargo di- as a means to support local development. rectly from China, in order to stay within the deadline. “The Rovigo project is important for several reasons, not only for its size,” Pancho Perez, General Manager t first glance, the solar power plant is an exten- of SunEdison EMEA, points out. According to him, ded blue surface equalling a big inland lake in the solar farm is a reference for a quick and precise Asize. Having realised that the object is just a ve- project realisation, as it took only nine months from ry huge solar park, the passer-by can’t help seeing the the beginning of construction to the interconnection central inverter station, which manages the electricity in November 2010. produced and makes it compatible with the national “This milestone has been made possible with the grid. help of perfect timing for installation work and excel- Today, the Rovigo project is the largest European lent cooperation of the partners,” adds Perez, re- PV power plant – bigger than the 60 MW solar farm ferring first of all to financial partners MEMC and in Olmedilla, Spain, and the 50 MW project in SunEdison.
    [Show full text]
  • Changing the Way Business Is Powered
    Changing the way ANTI-REFLECTIVE GLASS business is powered. ULTRA-PURE, MONOCRYSTALLINE SILICON SOLID COPPER FOUNDATION ALL SOLAR PRODUCTS ARE NOT EQUAL. YOUR TURNKEY SOLUTION FOR SOLAR. SUNPOWER® MAXEON® CELL TECHNOLOGY PREMIUM PRODUCT WARRANTY COMMERCIAL FINANCING OPTIONS BEST-IN-CLASS INSTALLER NETWORK Maxeon solar cells are fundamentally better. • Offering the best 25-year Combined Power and There are a variety of financing options available in the market You can count on your local SunPower installation partner to Product Warranty and through our dealer partner network for businesses and provide the highest standards of quality and customer service. • More power and reliability from back-side contact design not-for-profit organizations. • No warranty restrictions for coastal applications • SunPower installation partners are pre-screened and • Efficiencies up to 22.8% • Purchase evaluated regularly • SunPower panels deliver 60% more energy from the same PREMIUM PERFORMANCE WARRANTY – Enjoy the benefits of ownership with no monthly • Installers receive industry leading design and installation space over 25 years2 payment training • Durable solid copper foundation • SunPower panels average only 0.25% power loss per year over the first 25 years2 – Keep the tax credits and any other state, local, or utility incentive5 MONITORING ENABLES PEAK PERFORMANCE 2 RIGOROUS TESTING & ANALYSIS • SunPower predicts its panels will have a useful life of 40 years • Lease SunPower monitoring is available to you and your installer in • Durability and
    [Show full text]
  • Q4 2018 / Q1 2019 Solar Industry Update
    Q4 2018/Q1 2019 Solar Industry Update David Feldman Robert Margolis May 2019 NREL/PR-6A20-73992 Executive Summary • At the end of 2018, global PV installations reached 509 GW-DC, • The United States installed 10.7 GW-DC of PV in 2018 (8.3 GW- an annual increase of 102 GW-DC from 2017. AC), with 4.2 GW-DC coming in Q4—cumulative capacity reached 62.5 GW-DC (49.7 GW-AC). – In 2018, the leading markets in terms of annual deployment were China (44 GW-DC), the United States (11 GW-DC), and – Analysts also expect U.S. PV capacity to double by 2022. India (8 GW-DC). • In 2018, global PV shipments were approximately 89 GW—a Analysts expect cumulative PV capacity to double by 2022. – decrease of 5% from 2017. More than 96% of those PV shipments used c-Si technology and were shipped from Asian • At the end of 2018, cumulative global CSP installations reached countries. 6.2 GW, up 710 MW from 2017. • In 2018, the United States produced approximately 1 GW of c-Si • Solar installations represented 22% of all new U.S. electric modules and 0.4 GW of thin film. generation capacity in 2018—second to natural gas (58%). – The United States expanded its PV manufacturing capacity • In 2018, solar represented 4.6% of net summer capacity and to 6 GW in Q1 2019 (up from 2.5 GW in 2017), and it is 2.3% of annual net generation. expected to add another 3 GW in the near future.
    [Show full text]
  • ALTERNATIVE ENERGY SYSTEMS in BUILDING DESIGN Mcgraw-HILL’S GREENSOURCE SERIES
    ALTERNATIVE ENERGY SYSTEMS IN BUILDING DESIGN McGRAW-HILL’S GREENSOURCE SERIES Gevorkian Alternative Energy Systems in Building Design Gevorkian Solar Power in Building Design: The Engineer’s Complete Design Resource GreenSource: The Magazine of Sustainable Design Emerald Architecture: Case Studies in Green Building Haselbach The Engineering Guide to LEED—New Construction: Sustainable Construction for Engineers Luckett Green Roof Construction and Maintenance Melaver and Mueller (eds.) The Green Building Bottom Line: The Real Cost of Sustainable Building Nichols and Laros Inside the Civano Project: A Case Study of Large-Scale Sustainable Neighborhood Development Yudelson Green Building Through Integrated Design Yudelson Greening Existing Buildings About GreenSource A mainstay in the green building market since 2006, GreenSource magazine and GreenSourceMag.com are produced by the editors of McGraw-Hill Construction, in partnership with editors at BuildingGreen, Inc., with support from the United States Green Building Council. GreenSource has received numerous awards, including American Business Media’s 2008 Neal Award for Best Website and 2007 Neal Award for Best Start-up Publication, and FOLIO magazine’s 2007 Ozzie Awards for “Best Design, New Magazine” and “Best Overall Design.” Recognized for responding to the needs and demands of the pro- fession, GreenSource is a leader in covering noteworthy trends in sustainable design and best practice case studies. Its award-winning content will continue to benefit key specifiers and buyers in the green design and construction industry through the books in the GreenSource Series. About McGraw-Hill Construction McGraw-Hill Construction, part of The McGraw-Hill Companies (NYSE: MHP), connects people, projects, and products across the design and construction industry.
    [Show full text]
  • Operation Construction Development
    Major Solar Projects in the United States Operating, Under Construction, or Under Development Updated March 7, 2016 Overview This list is for informational purposes only, reflecting projects and completed milestones in the public domain. The information in this list was gathered from public announcements of solar projects in the form of company press releases, news releases, and, in some cases, conversations with individual developers. It is not a comprehensive list of all major solar projects under development. This list may be missing smaller projects that are not publicly announced. Particularly, many smaller projects located outside of California that are built on a short time-scale may be underrepresented on this list. Also, SEIA does not guarantee that every identified project will be built. Like any other industry, market conditions may impact project economics and timelines. SEIA will remove a project if it is publicly announced that it has been cancelled. SEIA actively promotes public policy that minimizes regulatory uncertainty and encourages the accelerated deployment of utility-scale solar power. This list includes ground-mounted solar power plants 1 MW and larger. Example Projects Nevada Solar One Sierra SunTower Nellis Air Force Base DeSoto Next Generation Solar Energy Center Developer: Acciona Developer: eSolar Developer: MMA Renewable Ventures Developer: Florida Power & Light Co. Electricity Purchaser: NV Energy Electricity Purchaser: Southern Electricity Purchaser: Nellis AFB Electricity Purchaser: Florida Power & California
    [Show full text]
  • High-Efficiency N-Type Silicon PERT Bifacial Solar Cells with Selective
    Solar Energy 193 (2019) 494–501 Contents lists available at ScienceDirect Solar Energy journal homepage: www.elsevier.com/locate/solener High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts T ⁎ Don Dinga, Guilin Lua,b, Zhengping Lia, Yueheng Zhanga, Wenzhong Shena,c, a Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, PR China b Lu’an Photovoltaics Technology Co., Ltd, Shanxi 046000, PR China c Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, PR China ARTICLE INFO ABSTRACT Keywords: Bifacial crystalline silicon (c-Si) solar cells have currently attracted much attention due to the front high-effi- c-Si solar cells ciency and additional gain of power generation from the back side. Here, we have presented n-type passivated n-PERT bifacial emitter and rear totally-diffused (n-PERT) bifacial c-Si solar cells featuring front selective emitter (SE) and Poly-Si based passivating contacts polysilicon (poly-Si) based passivating contacts. The SE formation was scanned with laser doping based on front Nano-layer SiO x boron-diffusion p+ emitter. The poly-Si based passivating contacts consisting of nano-layer SiO of ~1.5 nm Selective emitter x thickness grown with cost-effective nitric acid oxidation and phosphorus-doped polysilicon exhibited excellent passivation for high open-circuit voltage. We have successfully achieved the large-area (156 × 156 mm2) n-PERT bifacial solar cells yielding top efficiency of 21.15%, together with a promising short-circuit current density of 2 40.40 mA/cm .
    [Show full text]
  • REVISED 2020 Power Source Disclosure Filing
    DOCKETED Docket Number: 21-PSDP-01 Project Title: Power Source Disclosure Program - 2020 TN #: 238715 Document Title: REVISED 2020 Power Source Disclosure Filing Public Redacted version of the 2020 Power Source Disclosure Description: Annual Filing of Direct Energy Business, LLC Filer: Barbara Farmer Organization: Direct Energy Business, LLC Submitter Role: Applicant Submission Date: 7/7/2021 1:51:24 PM Docketed Date: 7/7/2021 Version: April 2021 2020 POWER SOURCE DISCLOSURE ANNUAL REPORT For the Year Ending December 31, 2020 Retail suppliers are required to use the posted template and are not allowed to make edits to this format. Please complete all requested information. GENERAL INSTRUCTIONS RETAIL SUPPLIER NAME Direct Energy Business, LLC ELECTRICITY PORTFOLIO NAME CONTACT INFORMATION NAME Barbara Farmer TITLE Reulatory Reporting Analyst MAILING ADDRESS 12 Greenway Plaza, Suite 250 CITY, STATE, ZIP Houston, TX 77046 PHONE (281)731-5027 EMAIL [email protected] WEBSITE URL FOR https://business.directenergy.com/privacy-and-legal PCL POSTING Submit the Annual Report and signed Attestation in PDF format with the Excel version of the Annual Report to [email protected]. Remember to complete the Retail Supplier Name, Electricity Portfolio Name, and contact information above, and submit separate reports and attestations for each additional portfolio if multiple were offered in the previous year. NOTE: Information submitted in this report is not automatically held confidential. If your company wishes the information submitted to be considered confidential an authorized representative must submit an application for confidential designation (CEC-13), which can be found on the California Energy Commissions's website at https://www.energy.ca.gov/about/divisions-and-offices/chief-counsels-office.
    [Show full text]
  • Alternative Back Contacts for CZTS Thin Film Solar Cells
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1900 Alternative back contacts for CZTS thin film solar cells SVEN ENGLUND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0866-1 UPPSALA urn:nbn:se:uu:diva-403583 2020 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Regementsvägen 1, Uppsala, Friday, 20 March 2020 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr. Levent Gütay (University of Oldenburg). Abstract Englund, S. 2020. Alternative back contacts for CZTS thin film solar cells. (Alternativa bakkontakter för CZTS tunnfilmssolceller). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1900. 106 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0866-1. In this thesis, alternative back contacts for Cu2ZnSnS4 (CZTS) thin film solar cells were investigated. Back contacts for two different configurations were studied, namely traditional single-junction cells with opaque back contacts and transparent back contacts for possible use in either tandem or bifacial solar cell configuration. CZTS is processed under chemically challenging conditions, such as high temperature and high chalcogen partial pressure. This places great demands on the back contact. Mo is the standard choice as back contact, but reacts with chalcogens to form MoS(e)2 while the CZTS decomposes, mainly into detrimental secondary phases. Thin MoS(e)2 is assumed to be beneficial for the electrical contact, but excessive thickness is detrimental to solar cell performance. The back contact acts as diffusion medium for Na during annealing when soda- lime glass is used as substrate.
    [Show full text]