NEtwork of Research Infrastructures for European Seismology

Deliverable D5 The European Earthquake Catalogue (1000-1600), demo version

Part 1 – The NA4 Calibration Initiative (april 2009)

Activity: Distributed Archive of Historical Earthquake Data Activity number: NA4

Deliverable: The Europena Earthquake Catalogue (1000- 1600), demo version. Part 1, The NA4 Calibration Initiative Deliverable number: D5

Responsible activity leader: Massimiliano Stucchi Responsible participant: INGV Author: A.A. Gomez Capera, C. Meletti, R. Musson and M. Stucchi with the collaboration of S. Alvarez Rubio, J. Batllo, A. Cassera, V. D’Amico, D. Faeh, M. Locati, C. Mirto, C. Papaioannou, A. Rovida, C. Ventouzi, P. Gasperini, O. Scotti and D. Giardini reviewed by W. Bakun, june 2009

Sixth Framework Programme EC project number: 026130 NA4 Distributed Archive of Historical Earthquake Data

Index

0. Introduction 1. Methods and software 2. Calibration: input data 3. Calibration: procedures and results 4. Validation: data 5. Validation: procedures and results 6. Conclusion References

Review by W. Bakun

Tables A to F Annexes 1 to 6

Abstract The aim of this initiative was to calibrate, in a homogeneous way, three methods for determining earthquake parameters from macroseismic data, Boxer, Meep, Bakun & Wentworth, in five European areas: Aegean, Iberian, Italian, Great Britain and Switzerland. For each area a dataset of about fifteen earthquakes of the 20th century, selected to cover the largest magnitude range, was compiled according to homogeneous procedures. The Boxer and Meep methods are accompanied by codes which provide calibrated coefficients from the input dataset. The Bakun & Wentworth method requires an intensity attenuation relation as function of the moment magnitude and hypocentral distance. Such relations were obtained for each area calibrating the coefficients of a log-linear function with regression procedures from the same dataset used for calibrating the other methods. As the Bakun & Wentworth method accepts any attenuation relation, other recently published relations were also considered.

The calibrated coefficients were then validated determining the parameters of another ten events. For Boxer and Meep one set of coefficients only was available for each area; therefore, the validation exercise was devoted to survey whether the use of such coefficients would lead to realistic results. For the Bakun & Wentworth at least two alternatives were available in all areas; the scope was, therefore, to select the “best performing” one.

The results will be used for assessing the parameters of the historical earthquakes in the frame of NA4.

------

Note. The input data used in this work, described at paragraph 2 and 4, and the maps resulting from the application of the results are available on the NA4 website

http://emidius.mi.ingv.it/neries_NA4/

partner login (user and password to be delivered by the NA4 coordination unit)

D5

2 NA4 Distributed Archive of Historical Earthquake Data

0. Introduction One of the scopes of NA4 is to assess earthquake parameters from macroseismic data in a homogeneous way, using transparent, repeatable procedures and homogeneous input data.

Several methods are available today: Boxer (Gasperini et al., 1999); Meep (Musson and Jiménez, 2008), developed within NA4; the method BW proposed by Bakun & Wentworth (1997), coming with varied implementation; the method proposed by ITSAK, etc. Many of them are promising, none is perfect, yet. The main point remains the magnitude determination, which is strongly dependent on the regional attenuation; the location determination appears more successful and not so regionally dependent, although to date no method is completely successful in distinguishing coastal and offshore events and related problems.

This situation needs to be improved; reliable, regional calibration for the three adopted methods (BW, Boxer, Meep) are needed to be used ASAP for the determination of the parameters of the NA4 historical events. Therefore, NA4 has foreseen in an initiative for calibrating – on a regional basis - the current methods using homogeneous software, input data and procedures (Ann.1, “NA4 detailed implementation plan for the next 8 months, months 29-36). The initiative was developed from October 2008 to March 2009 according to the following steps:

1) updated versions of the eligible software were delivered to partners under the coordination of BGS and INGV-MI; 2) input intensity data for about fifteen, 20th century events, selected by NA4 partners to cover the largest possible magnitude range for each area and to carry reliable instrumental Mw and location (calibration dataset) and of another 10 events, selected with the same criteria (validation dataset), were homogenised and formatted by INGV-MI according to the standard agreed in Deliverable 3 and then release through a dedicated web page (http://emidius.mi.ingv.it/neries_NA4/calibration/); 3) NA4 partners calibrated models in their regions. INGV-MI assisted IGC, ITSAK and, partly, ETHZ; 4) calibrated coefficients and parameters were applied to determine the parameters of the earthquakes of the validation dataset; 5) results and problems were discussed in a meeting (Milano, 4-5 December 2008; minutes are in Ann.2); 6) a further series of tests was performed until mid March 2009; 7) the results were put together, made available through a web page and analyzed. For the BW method the “best performing” relations and coefficients were selected; 8) the final set of relations and coefficients to be used for the next NA4 phase (determining parameters of historical events) was adopted.

3 NA4 Distributed Archive of Historical Earthquake Data

1. Methods and software

1.1 Boxer (Gasperini et al., 1999) Gasperini et al (1999) proposed a method where the epicentre is the barycentre of the highest intensities, and Mw is evaluated from the felt area of each intensity class. The last version is the 3.3 (2004). Executable program and manual can be downloaded from the webpage http://ibogfs.df.unibo.it/user2/paolo/www/boxer/boxer.html. The method groups all macroseismic observations in classes of integer values (the intermediate values are grouped together with the lower integer class). The epicentre corresponds to the mean coordinates of the observations in the highest intensity class (if there are less than 3 points, it considers the lower class too), after the removal of the outliers. From this epicentre a mean radius for each intensity class is determined (as the mean epicentre-to-site distance). By applying the Sibol et al. (1987) formula [Mi = f(Ai, Io), where Mi is the magnitude calculated for the i intensity, Ai the area for that intensity, Io the epicentral intensity] to each intensity mean distance, a set of magnitudes is calculated: the weighted average value is the proposed magnitude with the related standard deviation. The calibration of the Sibol et al. (1987) formula can be performed through a special option in the Boxer program [COMPCOEF], using a dataset of earthquakes with reliable magnitudes. A tutorial about the calibration procedure, with an example of input and output files, was delivered by P. Gasperini (Ann.3, Recalibraton_tutorial.pdf).

1.2 Meep (Musson and Jimenez, 2008) Meep (Macroseismic Estimation of Earthquake Parameters) was developed by R. Musson and M.J. Jiménez in the framework of NA4 (Deliverable D3). The method distinguishes 2 phases: the epicentre determination with the residuals minimization approach (by using the Kovesligethy, 1907 model) and the magnitude determination following the felt area approach by Frankel (1994). This code returns a depth determination too. Starting from a centroid solution calculated in a way similar to the Boxer approach, Meep defines a large search grid, to be reduced at the half at each iteration: by applying the Kovesligethy model to each intensity data point, the grid point with the minimum rms is the center of the next smaller search grid. In the last iteration the depth is also taken into account, by moving the possible hypocentre from 0 to 30 km. Once the hypocentre is determined, the magnitude is assessed through the Frankel approach, where the perceptibility area of an earthquake (normally corresponding to intensity 3 area) is proportional to the magnitude and the remaining isoseismals are scaled by the C constant. By testing all the magnitudes from 3 to 8.5, the proposed magnitude is that value that minimizes the residuals of the observed isoseismal areas versus the theoretical ones. The relevant uncertainties do not represent real standard deviation, but they come from considerations about the errors in the approach. The location uncertainty is defined as the distance for which the ratio of the worst RMS over the best one is approximately 2; the magnitude uncertainty is the interval for which the RMS approximately doubles the best fit. As a side program, Meep is accompanied by Calimeep, a code to calibrate some constants required by Meep from a learning dataset. Meep last version, 1.6, containing both the source code and the executable file, was delivered by R. Musson. The full description of the format of the input files is reported in D3.

1.3 BW (Bakun and Wentworth, 1997) Bakun and Wentworth (1997) developed a method (BW from now on) for the analysis of intensity data that results in an intensity magnitude MI calibrated to equal moment magnitude. They use a point source model, an assumed source depth h, and an appropriate intensity attenuation model

I = f (M, epicentral distance ∆). They calculate MI and rms[MI] over a grid of trial source locations. MI = mean (Mi), where Mi is the M estimated for site i. rms[MI] = [rms (MI - Mi) - rms0

(MI- Mi)], where rms0 (MI- Mi) is the minimum rms over the grid. Bakun and Wentworth’s (1997)

4 NA4 Distributed Archive of Historical Earthquake Data

distance weighting is used. MI at feasible trial source locations within the appropriate confidence-level contours are the best estimates of M for those source locations. The trial source location for which rms[MI] is minimum represents the point source of seismic energy that best satisfies the available intensity data. This location, called the intensity center by Bakun (1999). corresponds more to the moment centroid than to the epicenter. The code does not evaluate the uncertainty of the estimated parameters; Bakun & Wenthworth (1999) report the rms values corresponding to the 95% confidence level, based on the training-set events and the number of observations (Ann.4.). The software of the BW method was made available by W. Bakun, first to INGV and later by INGV to NA4. It was slightly modified and recompiled by INGV in order to allow to add several attenuation relationships inside the original code in a simple way. A tutorial that explains to the users the use of the code (together with an example of input and output files) was released by C.Meletti and V. D’Amico (Ann.5).

1.4 “Greek” (under development) Ventouzi, Papazachos and Papaioannou (2008) have suggested another method to estimate the macroseismic epicenter and an equivalent moment magnitude from macroseismic data points. They assume a point source and the Kovesligethy relation between intensity I at distance ∆, epicentral intensity I0, source depth h, a geometrical spreading factor n, and an anelastic attenuation coefficient c. They assume anisotropic radiation and adopt Papazachos’s (1992) versions of the Kovesligethy relation to estimate ellipticity of the isoseismals, the azimuth of the major axis of the elliptical isoseismals, and the azimuth of each IDP site. Following Papazachos and Papaioannou (1997), they estimate the macroseismic epicenter by regression analysis after weighting the data with distance. With h fixed at 7 km, n is estimated, and the epicenter is taken to be the point in a 1°x1° grid with the smallest rms error. Macroseismic magnitude, calibrated against moment magnitude, is then estimated from the isoseismals.

The main characteristics of the 4 methods are roughly summarised in Tab.1.1. NA4 agreed to adopt the first three methods. All methods have a “bootstrap” version for epicentre determination under development.

Tab.1.1 – Main characteristics of the four methods, compared.

characteristics Boxer 3.3 Meep1.6 BW “Greek” ad hoc calibration yes yes no yes? can use atten. relations no no yes yes from literature residuals residuals residuals epicentre determination barycentre minimum minimum minimum (Kovesl.) (varied) (Kovesl.) for epicentre determination high all all all MDPs uses: MDPs MDPs MDPs (weigthed) epicentre determination: confidence no attempt no uncertainty level accepts fixed epicentre no yes yes yes mean value scaling Mw: approach Sibol Frankel of all point Mwi relation for determining Mw uses: all MDPs all MDPs all MDPs all MDPs standard confidence Mw: uncertainty attempt no dev. level depth no yes no yes

5 NA4 Distributed Archive of Historical Earthquake Data

2. Calibration: input data About fifteeen, 20th century events were selected by each NA4 partner, in such a way to cover the largest possible magnitude range for thei area and to carry reliable instrumental Mw, Mw uncertainty and location (Tab. A; Fig. 2.1 - 2.5). The location of some events of Switzerland and Aegean is reported as mixed (instrumental and macroseismic): such locations are flagged in Tab. A. Damaging aftershock were not included to avoid intensity bias. Deep earthquakes were also not included.

AE

Fig. 2.1 – Aegean area: calibration events, ordered by Mw. Full circles indicate native Mw.

IB

Fig. 2.2 – Iberian area: calibration events, ordered by Mw. Full circles indicate native Mw.

6 NA4 Distributed Archive of Historical Earthquake Data

IT

Fig. 2.3 – Italian area: calibration events, ordered by Mw. Full circles indicate native Mw.

UK

Fig. 2.4 – Great Britain area: calibration events, ordered by Mw. Full circles indicate native Mw.

7 NA4 Distributed Archive of Historical Earthquake Data

CH

Fig. 2.5 – Swiss area: calibration events, ordered by Mw. Full circles indicate native Mw.

The relevant MDPs (a total number of 21.221) were homogenised and formatted by INGV-MI according to the procedures described in Deliverable D4 (Stucchi and Locati, 2008). In particular, the convention Ic2 was adopted, with the exception of UK where also a new Ic3 convention was tested.

Fig. 2.6 - Distribution of epicentres and MDPs of the calibration dataset.

8 NA4 Distributed Archive of Historical Earthquake Data

3. Calibration: procedures and results Software and calibration datasets were made available to NA4 partners through a dedicated webpage. Each partner had the task to calibrate Boxer, Meep and BW using the same, regional dataset.

3.1 Boxer. The location procedure does not require regional calibration. As for Mw, an option of the Boxer program [COMPCOEF] allows, as mentioned before, the calibration of the coefficients of the Sibol et al (1987) formula. For this purpose Io, instrumental Mw and standard deviation must to be supplied for each event. The user may select the intensity degrees for which the calibration is calculated. If only integer values are listed, the intermediate intensities are considered together to the lower integer intensity.

3.2 Meep. Calimeep needs the list of the earthquakes in the calibration dataset (listed with date, instrumental location, magnitude and depth) and in the dialogue phase asks for the coefficient Q and alpha. After the run, the coefficients K and C are calculated. In order to determine the best combination of the 4 parameters (i.e. the minimum misfit) multiple runs were performed, by changing Q and alpha combination and by looking for the best fit.

3.3 BW. The BW method requires to input an intensity attenuation relation as a function of M and distance. This relation can be provided according to two alternatives:

a) using an available relation; b) calibrating the coefficients of an attenuation relation, using for instance the procedure by Bakun & Wentworth (1997).

NA4 considered both alternatives: alternative a), for using more robust relations; alternative b), for obtaining a relation calibrated against the same dataset as Boxer and Meep.

3.3.a. Available attenuation models Several types of relations (linear, log, log-linear) are currently available for describing intensity attenuation with epi- or hypocentral distance. Bakun & Wentworth (1997), Hinzen and Oemisch, (2001) used a linear model for California and the Northern Rhine area. Fäh et al. (2003) use a bilinear, regionalised model, epicentral distance for Switzerland; the relevant coefficients were supplied by Zuerich for NA4. Mezcua et al. (2004) for Iberia, Musson (2005) for UK, Bakun and Scotti (2006) for France use a logaritmic one; Papazachos & Papaioannou (1997) for the South Balkan area, Bakun (2005, 2006a, 2006b) for Japan and Southern California, Pasolini et al. (2008) for adopted a log-linear model, hypocentral distance, also following the model of Bakun and Joyner (1984), Frankel (1994) and Johnston (1996). Na4 selected the following relations, which include updated coefficients of the Faeh et al. (2003) relation:

Tab. 3.1. Intensity attenuation relations selected.

N of Time M Author Area Function size dist eqs. interval interval Papazachos and AE log-linear Mw hyp 356 1901-1995 4.1-7.7 Papaioannou (1997) Hinzen and Oemisch (2001) CH linear ML epi 14 1963-1998 2.9-5.9 Fäh et al. (2003), upd. CH bi-linear Mw epi 15 1910-1999 3.6-6.1 Mezcua et al. (2004) IB logarithmic Mw epi 5 1993-1999 4.8-7.9 Musson (2005) UK logarithmic ML hyp 376 1382-2002 2.0-6.1 Pasolini et al. (2008) IT log-linear IE hyp 470 1200-2002 3.9-7.4

9 NA4 Distributed Archive of Historical Earthquake Data

3.3.a. calibrating. NA4 agreed to calibrate the coefficients of a log-linear relation:

I = a + bMw - cR - dlogR (1) where R is the hypocentral distance. For the Ic2 option Edinburgh adopted a logaritmic model. Following a suggestion by Bakun, h was assumed = 10 km for AE, IB, IT, CH. UK let it free, obtaining h = 1.34km and h = 1.07 for the two options Ic2 and Ic3, respectively.

After the Milan meeting, MDPs were re-selected according to common criteria to avoid very weak datasets. W. Bakun recommended not to use MDPs with I<3; the recommendation was adopted by AE, CH and IT, but it turned out impossible for IB and UK.

Tab. 3.2 – Classes of MDPs used.

Region MDPs used Hyp. distance AE (Mi) I ≥ 3-4 R ≤ 300 IT I ≥ 4 R ≤ 400 CH (Mi) I ≥ 3 R ≤ 250 IB (Mi) I ≥ 2 R ≤ 200 UK I ≥ 3 (mostly) R ≤ 200 (mostly)

In addition, outliers, such as MDPs with hypocentral distances larger than  2 standard deviation from the mean hypocentral distance, were removed. Finally, events showing very bad distribution were also removed, having agreed after a long discussion that the calibration dataset must contain the best possible data. This was the case of the events of Golfo de Cádiz, 1964 (Fig.3.1) and Friuli, 1976 (Fig.3.2); the two earthquakes, initially included in the calibration dataset, were later transferred to the validation dataset.

Fig. 3.1 - Intensity vs hypocentral distance of the MDPs of the 1964.03.15, Golfo de Cádiz event (IB).

10 NA4 Distributed Archive of Historical Earthquake Data

Fig. 3.2 - Intensity vs hypocentral distance of the MDPs of the 1976.05.06, Friuli event (IT).

Once the dataset was established, epicentral distances (Di) from instrumental location were computed for each MDP. Hypocentral distances (Ri) were calculated as R = (D2+h2)1/2, assuming h as above. The median hypocentral distance for each event and intensity degree was calculated. Fig. 3.3 to 3.7 present some examples: blue circles represent MDPs, mean and median hypocentral distance for each intensity class are green open and red solid squares, respectively. Green bars represent  1 standard deviation with respect to the mean value.

Fig. 3.3. Intensity vs hypocentral distance of the MDPs of the 1978.06.20, Thessaloniki event (AE).

11 NA4 Distributed Archive of Historical Earthquake Data

Fig. 3.4. Intensity vs hypocentral distance of the MDPs of the 1933.08.12 Moudon event (CH).

Fig. 3.5. Intensity vs hypocentral distance of the MDPs of the Ebingen/Swabian Jura event (CH).

12 NA4 Distributed Archive of Historical Earthquake Data

Fig. 3.6. Intensity vs hypocentral distance of the MDPs of the Espejo event (IB).

Fig. 3.7. Intensity vs hypocentral distance of the MDPs of the Arenales de San Gregorio event (IB).

13 NA4 Distributed Archive of Historical Earthquake Data

The median hypocentral distances for each intensity class and event were then put together in a single plot for each region (Fig. 3.8 to Fig. 3.11).

CH

Fig. 3.8 - Distribution of median hypocentral distances values versus intensity for the Swiss area.

IB

Fig. 3.9 - Distribution of median hypocentral distances values versus intensity for the Iberian area.

14 NA4 Distributed Archive of Historical Earthquake Data

IT

Fig. 3.10 - Distribution of median hypocentral distances values versus intensity for the Italian area.

AE

Fig. 3.11 - Distribution of median hypocentral distances values versus intensity for the Aegean area.

15 NA4 Distributed Archive of Historical Earthquake Data

The coefficients of relation (1) were then obtained by means of a non linear regression (IB, IT, CH, UK) from these data and Mw. For the Aegean area two sets of coefficients were determined: i) one by Milan, with the procedure described above; ii) one by Thessaloniki, using the whole set of distances without computing the medians (Fig. 3.12).

Fig. 3.12 – Distribution of hypocentral distances of the whole dataset of AE.

Further detail on the whole elaboration by Thessaloniki are found in Ann.5.

As a result of this phase, Tab.B summarizes the Boxer and Meep coefficients and the BW relations adopted for the five regions, which will be used in the next phase.

16 NA4 Distributed Archive of Historical Earthquake Data

4. Validation: data The validation dataset was compiled homogenising MDPs of about ten events for each area, selected according to the same criteria as for the calibration dataset (Tab.C). The distribution of epicentres and MDPs is presented in Fig.4.1; Mw distributions are presented together the results in the next section (Fig.5.1-5.28).

Fig.4.1 - Distribution of epicentres and MDPs of the validation dataset.

5. Validation: procedures and results Coefficients and parameters obtained in the previous phase were used with the relevant methods for determining the parameters of the validation dataset. For all areas the Ic2 convention was used; UK also tested the Ic3 convention. Special care was adopted in using the B&W method - in the same way as in the calibration phase - to scale the grid search of trial epicentres with the dimension of the area delimited by the MDPs’ network, to avoid fake minimum of residuals.

The results are summarised in Tab.D, which summarises the solutions obtained from the varied methods. This table also contains the values of the so called “current macroseismic parameters”, that are, the values which one user would adopt today from the national catalogues. Tab.E presents: i) the differences among instrumental Mw and macroseismic values obtained in this phase; ii) the distances among relevant instrumental and macroseismic locations. sTab.F presents the reference codes.

Individual maps with results are available at the webpage http://emidius.mi.ingv.it/neries_NA4/calibration/val_maps/ username: NA4 password: calib

17 NA4 Distributed Archive of Historical Earthquake Data

The results are also analysed in the following plots. For each area (AE = Aegean; IB = Iberia; IT = Italy; UK = Great Britain; CH = Switzerland) 5 to 6 plots are presented, where Mw calculated with varied method and calibrations are displayed against instrumental ones (Mw_inst.) with relevant standard deviation, when available (Fig.5.1 to 5.28). The first one displays all Mw together, the other four or five display one calculated Mw each. Large gaps between Mw (inst.) and Mw from BW method may still flag solutions which did not converge.

Large gaps in the distance may affect Mw values. For a more comprehensive analysis, five more plots, one for each area, are proposed, where differences among Mw obtained with varied methods and Mw_inst. are plotted against distances among the relevant locations (Fig.5.29 to 5.33). “Wild” cases are flagged with the date.

6. Conclusion The main scope of the initiative was to provide reliable, regional parameters for the three methods (Boxer, BW, Meep), to be used ASAP for the determination of the parameters of the NA4 events.

The results show varied patterns which cannot be easily used for assessing preferences among methods and calibrations. Therefore, as already agreed, the three methods will be applied. As a general feeling, the number of events in the calibration datasets (around fifteen) may be too small for areas where M covers a broad range and tectonic settings are rather different. On the other hand, providing fifteen reliable events was difficult for some areas, which makes impossible to propose a more detailed regionalisation.

Meep and Boxer coefficients are determined by ad hoc procedures; although some values of the Q, coefficient in Meep may appear unrealistic, they will be used as they are. This is largely due to a problem of non-uniqueness in the trade-off between different parameters. This also affects other applications of Q, notably in studies that involve both Q and corner frequency (Rietbrock 2009, pers. comm.).

As for the BW method, the following relations will be adopted:

Aegean Papazachos and Papaioannou, 1997. It seems better performing and it has been calibrated by means of a larger dataset; Iberia NA4. It does not perform much better than the one by Mezcua et al. 2004, but the lattest was calibrated against a smaller dataset; Italy NA4. It can be improved by using a larger dataset; UK NA4 (Ic3). It seems to perform better, because of good reporting of low intensities, many observations coded as “felt” may be as low as intensity 2. CH Regionalised relations were out of the scope of the initiative. The only suitable relationship at this stage is NA4. However, as ETHZ is performing an independent calibration campaign, NA4 will adopt Mw values supplied by ETHZ.

The final set of relations and coefficients adopted for the next NA4 phase (determining parameters of historical events) is presented in Tab.G.

18 NA4 Distributed Archive of Historical Earthquake Data

AE

Fig.5.1 – Aegean area: plot of instrumental and calculated (all) Mw.

AE

Fig.5.2 – Aegean area: plot of instrumental and calculated (BW, NA4 calibr., Thess.) Mw.

19 NA4 Distributed Archive of Historical Earthquake Data

AE

Fig.5.3 – Aegean area: plot of instrumental and calculated (BW, NA4 calibr., Milan) Mw.

AE

Fig.5.4 – Aegean area: plot of instrumental and calculated (BW, Papazachos and Papaioannou, 1997) Mw.

20 NA4 Distributed Archive of Historical Earthquake Data

AE

Fig.5.5 – Aegean area: plot of instrumental and calculated (Meep, NA4) Mw.

AE

Fig.5.6 – Aegean area: plot of instrumental and calculated (Boxer, NA4) Mw.

21 NA4 Distributed Archive of Historical Earthquake Data

IB

Fig.5.7 – Iberian area: plot of instrumental and calculated (all) Mw.

IB

Fig.5.8 – Iberian area: plot of instrumental and calculated (BW, NA4 calibr., Milan) Mw.

22 NA4 Distributed Archive of Historical Earthquake Data

IB

Fig.5.9 – Iberian area: plot of instrumental and calculated (BW, Mezcua et al., 2004) Mw.

IB

Fig.5.10 – Iberian area: plot of instrumental and calculated (Meep, NA4) Mw.

23 NA4 Distributed Archive of Historical Earthquake Data

IB

Fig.5.11 – Iberian area: plot of instrumental and calculated (Boxer, NA4) Mw.

IT

Fig.5.12 – Italian area: plot of instrumental and calculated (all) Mw.

24 NA4 Distributed Archive of Historical Earthquake Data

IT

Fig.5.13 – Italian area: plot of instrumental and calculated (BW, NA4 calibr.) Mw.

IT

Fig.5.14 – Italian area: plot of instrumental and calculated (BW, Pasolini et al., 2008) Mw.

25 NA4 Distributed Archive of Historical Earthquake Data

IT

Fig.5.15 – Italian area: plot of instrumental and calculated (Meep, NA4) Mw.

IT

Fig.5.16 – Italian area: plot of instrumental and calculated (Boxer, NA4) Mw.

26 NA4 Distributed Archive of Historical Earthquake Data

UK

Fig.5.17 – Great Britain area: plot of instrumental and calculated (all) Mw.

UK

Fig.5.18 – Great Britain area: plot of instrumental and calculated (BW, NA4, Ic2) Mw.

27 NA4 Distributed Archive of Historical Earthquake Data

UK

Fig.5.19 – Great Britain area: plot of instrumental and calculated (BW, NA4, Ic3) Mw.

UK

Fig.5.20 – Great Britain area: plot of instrumental and calculated (BW, Musson, 2005) Mw.

28 NA4 Distributed Archive of Historical Earthquake Data

UK

Fig.5.21 – Great Britain area: plot of instrumental and calculated (Meep, NA4) Mw.

UK

Fig.5.22 – Great Britain area: plot of instrumental and calculated (Boxer, NA4) Mw.

29 NA4 Distributed Archive of Historical Earthquake Data

CH

Fig.5.23 – Swiss area: plot of instrumental and calculated (all) Mw.

CH

Fig.5.24 – Swiss area: plot of instrumental and calculated (BW, NA4, Milan) Mw.

30 NA4 Distributed Archive of Historical Earthquake Data

CH

Fig.5.25 – Swiss area: plot of instrumental and calculated (BW, provided by Zuerich) Mw.

CH

Fig.5.26 – Swiss area: plot of instrumental and calculated (BW, Hinzen and Oem., 2001) Mw.

31 NA4 Distributed Archive of Historical Earthquake Data

CH

Fig.5.27 – Swiss area: plot of instrumental and calculated (Meep, NA4) Mw.

CH

Fig.5.28 – Swiss area: plot of instrumental and calculated (Boxer, NA4) Mw.

32 NA4 Distributed Archive of Historical Earthquake Data

Fig.5.29 – Aegean area: Mw differences plotted against location distance.

Fig.5.30 – Iberian area: Mw differences plotted against location distance.

33 NA4 Distributed Archive of Historical Earthquake Data

Fig.5.31 – Italian area: Mw differences plotted against location distance.

Fig.5.32 – Iberian area: Mw differences plotted against location distance.

34 NA4 Distributed Archive of Historical Earthquake Data

5.33 – Swiss area: Mw differences plotted against location distance.

35 NA4 Distributed Archive of Historical Earthquake Data

References Bakun W.H., 1999. Seismicity activity of the San Francisco Bay Region. Bull. Seismol. Soc. Amer., 89, 3, 764-784. Bakun W.H., 2005. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake. J. Geophys. Res., 110, B02304, doi:10.1029/2004JB003329. Bakun W.H., 2006a. Estimating locations and magnitudes of earthquakes in southern California from Modified Mercalli intensities. Bull. Seismol. Soc. Amer., 96, 4A, 1278-1295. Bakun W.H., 2006b. MMI Attenuation and historical earthquakes in the Basin and Range Province of Western North America. Bull. Seismol. Soc. Amer., 96, 6, 2206-2220. Bakun W.H. and Joyner W.B., 1984. The ML scale in Central California. Bull. Seism. Soc. Am., 74, 1827- 1843. Bakun W.H. and Wentworth C.M., 1997. Estimating earthquake location and magnitude from seismic intensity data. Bull. Seism. Soc. Am., 87, 1502-1521. Bakun W.H. and Wentworth C.M., 1999. Estimating earthquake location and magnitude from seismic intensity data. Erratum. Bull. Seism. Soc. Am., 89, 557. Bakun W.H. and Scotti O., 2006. Regional intensity attenuation models for France and estimation of magnitudo and location of historical earthquakes. Geophys. J. Int., 164, 596-610. Fäh D., Giardini D., Bay F., Bernardi F., Braunmiller J., Deichmann N., Furrer M., Gantner L., Gisler M., Isenegger D., Jimenez M.J., Kaestli P., Koglin R., Masciadri V., Rutz M., Scheidegger C., Schibler R., Scorlemmer D., Schwarz-Zanetti G., Steimen S., Sellami S., Wiemer S. and Wossner J. (2003). Earthquake catalogue of Switzerland (ECOS) and the related macroseismic database. Eclogae Geol. Helv., 96, 219-236. Frankel A., 1994. Implications of felt area-magnitude relations for earthquake scaling and average frequency of perceptible ground motion. Bull. Seismol. Soc. Amer., 84, 462-465. Gasperini P., Bernardini F., Valensise G., Boschi E., 1999. Defining seismogenic sources from historical felt reports. Bull. Seism Soc. Am., 89, 94-110, 1999. Hinzen K.G. and Oemisch M., 2001. Location and Magnitude from Seismic Intensity Data of Recent and Historic Earthquakes in the Northern Rhine Area, Central Europe. Bull. Seism. Soc. Am, 91,1, 40-56. Kövesligethy R., 1907. Seismischer Stärkegrad und Intensittät der Beben, Gerl. Beitr. Geophys. 8, 24- 103. Johnston A.C., 1996. Seismic moment assessment of earthquakes in stable continental regions. II. Historical seismicity, Geophys. J. Int., 125, 639-678. Mezcua J., Rueda J. and Garcia Blanco R.M., 2004. Reevaluation of historical earthquakes in Spain. Seismological Research Letters, 75, 1, 75-81. Musson, R.M.W., 2005. UK earthquake catalogue working file. Unpublished. Musson R.M.W. and Jiménez M.J., 2008. Macroseismic estimation of earthquake parameters. NA4 deliverable D3, Neries Project. Papazachos B.C., 1992. Anisotropic radiation modelling of macroseismic intensities for estimation of attenuation structure of the upper crust in Grece. Pure and Appl. Geophys., 138, 445-469. Papazachos C. and Papaioannou Ch., 1997. The macroseismic field of the Balkan area. Journ. Seismology, 1, 181-201. Pasolini C., Albarello D., Gasperini P., D’Amico V. and Lolli B., 2008. The attenuation of seismic intensity in Italy: Part II: Modeling and Validation, Bull. Seism. Soc. Am., 98, 692-708. Stucchi M. and Locati M., 2008. European macroseismic database (demo version) 1000-1600, M>5.0. NA4, D4 deliverable, Neries Project, 41pp. Sibol M.S., Bollinger G.A. and Birch J.B., 1987. Estimations of magnitudes in central and eastern North America using Intensity and Felt Area. Bull. Seism. Soc. Am., 77, 1635-1654. Ventouzi Ch., Papazachos C., Papaioannou Ch., 2008. Estimating earthquake parameters using macroseismic intensity data: application to historical events of the Aegean area. Abstract. European Seismological Commission, 31st General Assembly, Hersonissos, Greece, 7-12 Septembre, p. 70

36 NA4 Distributed Archive of Historical Earthquake Data

June 11, 2009

Review of “The NA4 Calibration Initiative for Improving the Determination of Earthquake Parameters from Macroseismic Data ; Final Report-draft 9 (April 2009)”

The NA4 calibration initiative is an ambitious research program that substantially advances the state of the science of estimating the location and magnitude of significant earthquakes that occurred before the introduction of seismic instrumentation. Damaging earthquakes occur throughout Europe and their location and magnitude are important to society because these infrequent events define regional seismic hazard, future earthquake risk, and the building codes, insurance rates, etc. that are adopted to address that risk. Countries in Europe are small enough that the larger earthquakes cause damage in multiple adjoining countries. Sharing information about past earthquake damage and adopting the best analysis techniques provide improved location and magnitude estimates for all. Testing analysis techniques in different countries, as was done in this work, clarifies which methods are robust enough to use in a variety of situations and tectonic settings. That is, the five participating countries learned much about the historical earthquakes most important to them. Other countries in Europe will profit by building on the lessons learned in the NA4 work.

The NA4 initiative successfully integrated different macroseismic intensity scales and different analyses methods. Comparison of results in the different cooperating countries using three independent methods highlighted the strengths and weaknesses of different analytical methods. Estimates of location depend critically on the quantity and quality of the macroseismic data, and the geometry of the data field relative to the earthquake source –no technique can provide reliable source locations for events outside the field of macroseismic data. All of the analyses techniques considered by the NA4 initiative provide useful locations for events with numerous data at sites surrounding the source. Magnitude estimates depend critically on an a intensity attenuation model, calibrated using recent events for which instrumental data sufficient to determine location and magnitude and macroseismic data are available. The intensity attenuation model is not critical for location. This report describes in detail the development and testing of intensity attenuation models for the regions of the five participating countries.

The NA4 initiative is a scientific success story, as well as a practical success story for Europe. The NA4 initiative was the first attempt to use independent methodologies to estimate earthquake parameters from macroseismic data. In addition to evaluating the different approaches, the NA4 approach provides a path to estimate objective uncertainties in the earthquake parameters. The NA4 use of results from multiple independent models provides a basis for estimating the epistemic uncertainty. Probabilistic seismic hazard analysis (PSHA), now in routine use worldwide for the critical evaluation of seismic safety, assumes a knowledge of epistemic uncertainty. All future PSHAs will look back to this NA4 report.

The NA4 initiative accomplished much, but it should be viewed as a new starting point. Critical macroseismic data was not available to the NA4 initiative. In particular, the calibration models obtained for the Switzerland and Iberian regions would have benefited much if the macroseismic data for the adjoining regions of France that are listed in the SisFrance catalog might have been used. That is, access to all of the relevant European data, would allow for even better regional intensity attenuation models, and better estimates of location and magnitude for critical historical earthquakes.

Review by William H. Bakun, US Geological Survey, Menlo Park, CA

37 Tab. A - Format

Group Parameter Description Data source code: NA4 Partner Reg IB=Iberia; UK=United Kingdom; IT=Italy; AE=Aegean; CH=Switzerland Earthquake identifier ID Original earthquake identifier Date Earthquake original time (compact) Ax Denomination of the area where the largest effects are located Earthquake origin time MDP Source Source of the MDPs (short citation) and area of maximum effect Macroseismic intensity scale Mis (e.g.: MM, MCS, MSK78, MSK81, EM92, EM98, etc.)

NMDP Number of MDPs Macroseismic data points number and maximum intensity Ixm Maximum intensity value

Instrumental epicentral latitude LatIns (in geographic coordinate system, decimal degree) Instrumental epicentral longitude LonIns (in geographic coordinate system, decimal degree) Instrumental epicentre Depth Hypocentral depth (in kilometers) Type of epicentre determination method Type (hyb=hybrid: macroseismic and instrumental ) Hypoc. source Source of the instrumental hypocentre (short citation) Mw Moment magnitude DMw Uncertainty of Mw Type of Mw uncertainty determination: TDMw E = estimated, T = true Moment magnitude (instr.) Type of Mw determination: TMw O native, determined from the moment tensor; L, s, b when calculated from ML, Ms, mb, by means of regressions Mw source Source of Mw (short citation) Mwdet Source of regression used to determine Mw Tab.A - Earthquakes selected for the calibration phase (references are in Tab.F)

Reg ID Date Ax MDP source Mis NMDP Ixm LatIns LonIns Depth TypeHypoc. source Mw DMw TDMw TMw Mw source Mwdet IB 13 1930 06 02 01 52 L'Espluga de Francolí IGC MSK 39 5 41,375 0,973 -- IGC 4.40 0,20 E O Tatev. et al., 2006 IB 71 1995 05 15 15 37 Mediterrània IGC MSK 274 4 40,840 1,520 14.00 IGC 4.50 0,20 E C Rueda & M., 2002 IB 77,1 1997 05 21 23 50 N TRIACASTELA. LU IGN EMS92 171 6 42,783 -7,258 13.00 IGN 5.40 0,20 E O IGN IB 79 1999 02 02 13 45 N MULA. MU IGN EMS98 69 6 38,096 -1,501 1.00 IGN 5.10 0,20 E O Buforn et al., 2005 IB 82 1999 04 30 09 00 Leiria, W-Portugal IM MMI56 57 4-5 39,720 -8,960 16.00 IAG 4.00 0,20 E O IAG-CMT IB 90 2002 02 04 20 09 S GÉRGAL. AL IGN EMS98 51 5 37,093 -2,538 1.00 IGN 4.60 0,20 E O IGN-CMT IB 92 2002 06 21 02 26 Blanes IGC MSK 25 4 41,810 2,750 -- IGC 3.20 0,20 E C Rueda & M., 2002 IB 93 2002 08 06 06 16 SW BULLAS. MU IGN EMS98 26 5 37,892 -1,835 1.00 IGN 4.60 0,20 E O Buforn et al., 2005 IB 98,1 2003 01 23 10 13 SE VIDEMALA. ZA IGN EMS98 36 4-5 41,578 -6,002 10.00 IGN 3.90 0,20 E O IGN-CMT IB 99 2003 01 24 20 35 NW ESPEJO. CO IGN EMS98 54 5 37,757 -4,638 8.00 IGN 4.40 0,20 E O IGN IB 103 2003 09 21 10 34 GOLFO DE VALENCIA IGN EMS98 57 4 39,418 -0,013 10.00 IGN 4.20 0,20 E O IGN-CMT IB 104 2003 11 16 21 36 SW BENAMAUREL. GR IGN EMS98 43 4 37,572 -2,709 -- IGN 4.00 0,20 E O IGN IB 106 2004 09 18 12 52 W NAGORE. NA IGN EMS98 53 5 42,859 -1,422 7.00 IGN 4.50 0,20 E O IGN-CMT IB 107,1 2004 09 21 15 48 Puigcerdà IGC MSK 159 5-6 42,350 2,150 1.00 IGC 4.30 0,20 E O IGN-CMT IB 111 2005 01 29 07 41 NW ALEDO. MU IGN EMS98 35 7 37,853 -1,756 11.00 IGN 4.80 0,20 E O IGN-CMT IB 116 2006 03 10 19 33 E CASAS BAJAS. V IGN EMS98 70 5 40,025 -1,251 10.00 IGN 4.30 0,20 E O IGN-CMT IB 117 2006 04 23 05 31 ATLÁNTICO-GALICIA IGN EMS98 48 4 43,757 -9,120 11.00 IGN 4.30 0,20 E O IGN IB 122 2007 08 12 07 47 NE ARENALES DE S. GR. IGN EMS98 154 5 39,353 -2,990 5.00 IGN 4.70 0,20 E O IGN IB 123 2007 09 18 23 20 SE MORÓN DE LA FR. IGN EMS98 17 4 37,062 -5,390 6.00 IGN 3.90 0,20 E C IGN IB 125 2008 10 02 04 02 NE CORIPE. SE IGN EMS98 78 5 37,044 -5,416 5.00 IGN 4.70 0,20 E O IGN-CMT

UK 39 1970 08 09 20 09 Kirkby Stephen Musson et al 1984 MSK81 73 5 54,500 -2,470 20.00 Musson, 1994 3.70 0,30 E C ML Grünthal & W., 2003 UK 50 1979 12 26 03 57 Carlisle Musson & H 2002 EMS98 653 6 55,030 -2,820 11.00 Musson, 1994 4.30 0,30 E C ML Grünthal & W., 2003 UK 58 1986 09 29 01 33 Oban BGS MSK81 77 5 56,450 -5,650 23.00 Musson, 1994 3.70 0,30 E C ML Grünthal & W., 2003 UK 61 1988 09 12 14 23 Ambleside Ford et al. 1997 EMS92 37 5 54,429 -2,916 8.90 Ford et al., 1997 2.90 0,30 E C ML Grünthal & W., 2003 UK 68 1993 06 26 05 42 Grange-over-Sands Wright et al 1994 MSK81 81 5 54,206 -2,858 8.30 Wright et al., 1994 2.90 0,30 E C ML Grünthal & W., 2003 UK 69 1994 02 15 10 15 Norwich BGS EMS92 242 5 52,560 0,910 7.30 Walker and B., 1995 3.60 0,30 E C ML Grünthal & W., 2003 UK 81 1999 03 04 00 16 Arran Bott et al 2002a EMS98 229 5 55,400 -5,240 19.00 Walker, 2000 3.60 0,30 E C ML Grünthal & W., 2003 UK 84 1999 10 25 19 15 Sennybridge BGS EMS98 127 5 51,970 -3,570 14.10 Walker, 2000 3.30 0,30 E C ML Grünthal & W., 2003 UK 87 2000 09 23 04 23 Warwick Bott et al 2002b EMS98 283 5 52,280 -1,610 14.10 Walker, 2001 3.80 0,30 E C ML Grünthal & W., 2003 UK 88 2001 05 13 08 26 Dunfries BGS EMS98 37 5 55,100 -3,640 11.50 Walker, 2002 2.80 0,30 E C ML Grünthal & W., 2003 UK 89 2001 10 28 16 25 Melton Mowbray BGS EMS98 482 5-6 52,850 -0,860 11.60 Walker, 2002 3.70 0,30 E C ML Grünthal & W., 2003 UK 95 2002 09 22 23 53 Dudley BGS EMS98 757 5-6 52,528 -2,139 15.70 Baptie et al., 2005 4.10 0,20 E O Baptie et al., 2005 UK 114 2005 12 10 23 21 Fort William BGS EMS98 35 5 56,810 -5,310 10.80 Galloway, 2006 2.80 0,30 E C ML Grünthal & W., 2003 UK 121 2007 04 28 07 18 Folkestone Sargeant et al 2008 EMS98 234 7 51,102 1,169 6.00 Sargeant et al., 2008 4.00 0,20 E O Sargeant et al 2008 UK 124 2008 02 27 00 56 Market Rasen Musson 2008 EMS98 1020 6 53,404 -0,331 18.60 BGS 4.40 0,20 E O BGS

IT 3 1908 12 28 04 20 Calabria mer.-Messina Guidoboni et al., 2007 MCS 772 11 37,964 15,529 10.00 Michelini et al., 2004 7.10 0.18 T O Pino et al., 2000 IT 14 1930 07 23 00 08 Galli et al., 2002 MCS 542 10 41,070 15,360 14,6 Pino et al., 2008 6.65 0.37 T C Ms CPTI04 IT 40 1971 07 15 01 33 Parmense Guidoboni et al., 2007 MCS 229 8 44,781 10,291 -- ISC Bull. 5.38 0.29 T C Weigh. mean Ms-mb CPTI04 IT 46 1978 04 15 23 33 Golfo di Patti Guidoboni et al., 2007 MCS 330 8 38,268 15,112 22.00 Boll. Sism. ING 6.06 0.18 T O Global CMT IT 52 1980 11 23 18 34 Irpinia- Guidoboni et al., 2007 MCS 1394 10 40,724 15,414 12.00 Westaway, 1993 6.89 0.18 T O Global CMT IT 55 1984 04 29 05 02 GUBBIO/VALFABBRICA Arch.Mac.GNDT, 1995 MCS 709 7 43,204 12,585 8.63 GdL CSTI, 2005 5.65 0.18 T O Global CMT IT 56 1984 05 07 17 49 Appennino abruzzese Guidoboni et al., 2007 MCS 905 8 41,700 13,862 20.50 Castello et al., 2006 5.89 0.18 T O Global CMT IT 63 1990 02 11 07 00 CANAVESE Tertulliani, 1990 MCS 201 6 44,943 7,613 24.01 Castello et al., 2006 4.71 0.18 T O Pondrelli et al., 2006 IT 72 1995 09 30 10 14 GARGANO Boll. Macro. ING MCS 145 6 41,790 15,971 27.56 GdL CSTI, 2005 5.18 0.18 T O Global CMT IT 86 2000 08 21 17 14 Monferrato Boll. Macro. ING MCS 597 6 44,769 8,432 24.05 Castello et al., 2006 4.86 0.18 T O Pondrelli et al., 2002 IT 91 2002 02 14 03 18 Carnia Boll. Macro. INGV MCS 173 6 46,392 13,117 11.33 Castello et al., 2006 4.74 0.18 T O Pondrelli et al., 2004 IT 97 2002 11 13 10 48 Franciacorta Boll. Macro. INGV MCS 770 5-6 45,650 10,141 -- ISC Bull. 4.29 0.18 T O Pondrelli et al., 2004 IT 102 2003 09 14 21 42 Appennino bolognese Bernardini et al., 2003 MCS 133 7 44,255 11,380 8.30 Boll. Strum. INGV 5.29 0.18 T O INGV Reg. Mom. Tens. IT 105 2003 12 30 05 31 Monti dei Frentani Boll. Macro. INGV MCS 339 5-6 41,640 14,849 5.00 Boll. Strum. INGV 4.57 0.18 T O INGV Reg. Mom. Tens. IT 109 2004 12 04 22 20 Valle del Piave Boll. Macro. INGV MCS 115 5-6 45,942 11,996 5.19 Boll. Strum. INGV 3.82 0.25 T C ML CPTI04 IT 110 2004 12 09 02 44 Zona Teramo Boll. Macro. INGV MCS 224 5-6 42,790 13,791 5.00 Boll. Strum. INGV 4.18 0.18 T O SED-MT IT 112 2005 03 01 05 41 Monti dei Frentani Boll. Macro. INGV MCS 137 5-6 41,666 14,867 9.90 Boll. Strum. INGV 3.74 0.25 T C ML CPTI04 IT 113 2005 05 21 19 55 Irpinia Boll. Macro. INGV MCS 276 6 40,991 14,515 16.10 Boll. Strum. INGV 4.11 0.22 T C Weigh. mean ML-mb CPTI04 Reg ID Date Ax MDP source Mis NMDP Ixm LatIns LonIns Depth TypeHypoc. source Mw DMw TDMw TMw Mw source Mwdet

AE 6 1915 08 07 15 04 Cephalonia Pap. & P. 2003 MM 50 9 38,500 20,620 n hybPap. et al. 2000 6.70 <0.30 E C ML, NOA Bulletin Pap. et al., 1997 AE 128 1952 06 27 13 09 Thessaloniki Papaz. et al. 1999 MM 22 6 40.700 23.500 n hybPap. et al. 2000 5,00 <0.30 E C ML, NOA Bulletin Pap. et al., 1997 AE 129 1952 10 13 16 42 Euboea Isl. Papaz. et al. 1999 MM 34 8 39.000 23.400 n hybPap. et al. 2000 5,30 <0.30 E C ML, NOA Bulletin Pap. et al., 1997 AE 22 1952 12 17 23 03 Iraklion Pap. & P. 2003 MM 52 6 34,400 24,500 n hybPap. et al. 2000 7.00 <0.30 E C ML, NOA Bulletin Pap. et al., 1997 AE 130 1955 01 03 01 07 Phiotida Papaz. et al. 1999 MM 35 6-7 39.200 22.100 n hybPap. et al. 2000 5,60 <0.25 E C ML, NOA Bulletin Pap. et al., 1997 AE 131 1956 07 09 03 11 Amorgos Isl. Papaz. et al. 1999 MM 91 9 36.640 25.960 n hybPap. et al. 2000 7,50 <0.20 E C ML, NOA Bulletin Pap. et al., 1997 AE 28 1961 10 02 07 21 Elia Papaz. et al. 1999 MM 81 7 37,170 21,910 n Pap. et al. 2000 5.70 <0.20 E C ML, NOA Bulletin Pap. et al., 1997 AE 132 1964 04 29 18 11 Skopelos Isl. Papaz. et al. 1999 MM 178 6-7 39.200 23.700 n Pap. et al. 2000 5,50 0,20 E O North, 1977 AE 32 1967 03 04 17 58 Lesvos Isl. Pap. & P. 2003 MM 356 5-6 39,200 24,600 n Pap. et al. 2000 6.30 <0.20 E O Papadimitriou, 1988 AE 34 1968 02 19 22 54 Ag. Efstratios Isl. Pap. & P. 2003 MM 471 9 39,500 25,000 n Pap. et al. 2000 6.80 <0.20 E O Kiratzi et al., 1990 AE 133 1973 11 29 10 57 SW Chania Pap. & P. 2003 MM 139 7-8 35.180 23.750 n Pap. & P. 2003 5,80 <0.20 E O Taymaz et al., 1990 AE 44 1974 11 14 14 26 Boiotia Papaz. et al. 1999 MM 153 6-7 38,470 23,080 n Pap. et al. 2000 5.20 <0.20 E C ML, NOA Bulletin Pap. et al., 1997 AE 47 1978 06 20 20 03 Thessaloniki Pap. & P. 2003 MM 610 8-9 40,610 23,270 n Pap. et al. 2000 6.40 <0.20 E O Kulh. & Meyer, 1983 AE 134 1981 02 24 20 53 E. Corintiakos G. Pap. & P. 2003 MM 551 9-10 38.070 23.000 n Pap. et al. 2000 6,60 0.10 E O Global CMT AE 53 1981 12 19 14 10 Lesvos Isl. Pap. & P. 2003 MM 405 8 39,000 25,260 n Pap. et al. 2000 7.20 <0.20 E O Global CMT AE 135 1992 07 23 20 12 N. Aegean Sea Papaz. et al. 1999 MM 114 4 39.810 24.400 n Pap. et al. 2000 5,40 0,10 E O Global CMT AE 136 1992 11 18 21 10 Phokida Papaz. et al. 1999 MM 421 6 38.340 22.440 n Pap. et al. 2000 5,90 0,10 E O Global CMT AE 137 1995 06 15 00 15 Achaia Pap. & P. 2003 MM 396 8 38,270 22,150 n Pap. & P. 2003 6,50 0,10 E O Global CMT AE 83 1999 09 07 11 56 Attica Pap. & P. 2003 MM 82 9 38,060 23,530 n Pap. et al. 2000 6.00 <0.20 E O Global CMT AE 101 2003 08 14 05 14 Lefkas Isl. NOA Bulletin MM 51 7-8 39,160 20,610 n Pap. et al. 2000 6.20 <0.20 E O Global CMT

CH 2 1905 12 25 17 05 Domat/Ems ECOS EMS98 112 7 46,810 9,480 12,00 hyb ECOS 4,70 0,50 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 4 1911 11 16 21 25 EBINGEN ECOS EMS98 397 8 48,220 9,000 10,00 hyb ECOS 5,50 0,20 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 15 1933 08 12 09 58 Moudon VD ECOS EMS98 99 7 46,660 6,800 -- hyb ECOS 4,70 0,10 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 16 1935 06 27 17 19 SAULGAU ECOS EMS98 173 6 48,040 9,470 10.00 hyb ECOS 5,60 0,40 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 18 1943 05 28 01 24 ONSTMETTINGEN ECOS EMS98 145 5 48,270 8,980 9.00 hyb ECOS 5,40 0,40 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 19 1946 01 25 17 32 Ayent VS ECOS EMS98 236 8 46,350 7,400 12.00 hyb ECOS 5,80 0,20 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 24 1954 05 19 09 35 Mayens de My, VS ECOS EMS98 75 6 46,280 7,310 12.00 hyb ECOS 5,30 0,50 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 26 1960 03 23 23 10 Brig/VS ECOS EMS98 310 8 46,370 8,020 12.00 hyb ECOS 5,00 0,20 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 29 1964 02 17 12 20 Flüeli OW ECOS EMS98 93 7 46,880 8,270 5.00 hyb ECOS 4,80 0,20 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 30 1964 03 14 02 39 Alpnach/OW ECOS EMS98 352 7 46,870 8,320 -- hyb ECOS 5,30 0,30 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 38 1968 08 19 00 36 Chablais ECOS EMS98 19 6 46,290 6,550 10.00 hyb ECOS 4,70 0,30 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 41 1971 09 29 07 18 Vorstegstock, GL ECOS EMS98 280 6 46,900 9,010 12.00 hyb ECOS 4,90 0,20 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 48 1978 09 03 05 08 Ebingen/Sw. Jura ECOS EMS98 280 6 48,280 9,030 6.00 ECOS 5,50 0,10 T O Bernardi et al., 2005 CH 51 1980 07 15 12 17 PLAINE DE HAUTE-ALS. ECOS EMS98 180 5 47,690 7,400 15.00 ECOS 4,80 0,10 T C Bernardi et al., 2005 surf.-wave ampl. meas. CH 70 1994 12 14 08 56 GENEVOIS ECOS EMS98 91 4 45,980 6,390 2.00 ECOS 4,30 0,10 T O Bernardi et al., 2005 CH 75 1996 07 15 00 13 AVANT-PAYS SAV. ECOS EMS98 23 5 45,930 6,090 2.00 ECOS 4,60 0,10 T O Bernardi et al., 2005 CH 80 1999 02 14 05 57 Fribourg ECOS EMS98 121 5 46,790 7,220 5.00 ECOS 4,00 0,10 T O Deichmann et al., 2000 CH 85 1999 12 29 20 42 Bormio ECOS EMS98 69 4-5 46,530 10,310 12.00 ECOS 4,80 0,10 T O Bernardi et al., 2005

Tab.B - Relations and coefficients obtained from the calibration process or selected from the literature

BW. st. Reg Code Source Relation [I = I (Mw, D)] Relation [Mw = Mw (I, D)] h (km) dev. AE Bk1(TH) NA4 cal. 0.49 Mw = 0.538*I +2.056logR+0.002R-0.32 10 AE Bk2(MI) NA4 cal. (perf. by MI) I = 3.796 + 1.133*Mw - 0.0059*R - 2.699*log(R) 0.75 Mw = 0.883*I + 2.3825*log(R) + 0.005*R - 3.35 10 Papazachos and AE BkLit 0.48 Mw = 0.621*I +2.035logR+0.002R-0.78 10 Papaioannou (1997)

IB Bk1(MI) NA4 cal. (perf. by MI) I = 2.419 + 1.184*Mw - 0.0003*R - 2.564*log(R) 0.60 Mw = (I - 2.419 + 0.0003*R + 2.564*log(R))/1.184 10 IB BkLit Mezcua et al., 2004 I = 1.960 + 1.410*Mw - 2.930*log(D) - Mw = (I - 1.960 + 2.930*log(D))/1.410

IT Bk1(MI) NA4 cal. I = 2.181 + 1.654*Mw - 0.011*R - 3.252*log(R) 0.64 Mw = (I - 2.181 + 0.011*R + 3.252*log(R)) / 1.654 10 IT BkLit Pasolini et al., 2008 I = - 5.862 + 2.460*Mw - 0.0086*(R-h) - 1.037*[ln(R)-ln(h)] 0.87 Mw = (I + 5.862 + 0.0086*(R-h) + 1.037*[ln(R) - ln(h)]) / 2.460 3.91

UK Bk2(Ic3) NA4_Ic3 ? Mw = 0.874*I + 0.497*ln(R) + 0.00034*R - 1.453 1.34 UK Bk1(Ic2) NA4_Ic2 ? Mw = 1.894*I + 0.585*ln(R) - 5.843 1.07 UK BkLit ? Mw = 0.67 + 0.56*ML + 0.046*ML^2 (Gruenthal & Wahl. 2003) Musson, 2005 0.45 where ML = (I - 3.31 + 1.22*ln (R))/1.28

CH Bk1(MI) NA4 cal. (perf. by MI) I = 0.094 + 1.93*Mw - 0.0007*R - 3.057*log(R) 0.78 Mw = (I - 0.094 + 0.0007*R + 3.057*log(R))/1.93 10 CH Bk2(ZH) ECOS02 (Revised) 10 CH Bk2(ZH) D<55 km, Shallow I = - 0.9079 + 1.5248*Mw - 0.0430*D 0,62 CH Bk2(ZH) D<55 km, Deep I = - 2.8941 + 1.7196*Mw - 0.0300*D 0.57 CH Bk2(ZH) D>55 km, Shallow-For. I = - 2.6539 + 1.5248*Mw - 0.0115*D - CH Bk2(ZH) D>55 km, Shallow-Alp. I = - 2.9339 + 1.5248*Mw - 0.0064*D 0.59 CH Bk2(ZH) D>55 km, Deep-For. I = - 3.9241 + 1.7196*Mw - 0.0115*D 0.71 CH Bk2(ZH) D>55 km, Deep-Alpine I = - 4.2041 + 1.7196*Mw - 0.0064*D 0.58 CH BkLit Hinzen & Oem., 2001 I = - 0.7374 + 1.2673*Mw - 0.0184*D -

MEEP Q C alpha K AE 320 2.50 0.004 3.00 IB 950 2.38 0.003 3.30 IT 300 1.50 0.009 2.10 UK 720 1.57 0.003 7.20 CH 1800 2.58 0.001 2.80

1

Boxer st. dev. weight norm. deg. of freedom a coeff. x b coeff. x Intensity Coeff. a Coeff. B Coeff. C of regr. factor of regr. M-Io eq. M-Io eq. AE 2.0 1.37392 0.18275 0.00000 0.2195 16.2000 3 4.517 0.242 3.0 3.16855 0.08826 0.01938 0.2584 51.1250 13 4.0 4.02939 0.06906 0.01615 0.2939 105.4706 14 5.0 5.08576 0.07371 0.00000 0.2345 53.3158 17 6.0 5.83892 0.04663 0.00000 0.2357 26.2308 11 7.0 6.10379 0.04030 0.00000 0.3406 19.1429 5 8.0 6.57308 0.00791 0.00000 0.4240 7.8000 3

IB 2.0 2.90825 0.07783 0.00000 0.2412 22.5000 16 7.950 -0.450 3.0 3.38110 0.07073 0.00000 0.2512 20.4211 17 4.0 2.89200 0.04926 0.04067 0.1813 24.0833 9 5.0 4.97347 0.06432 -0.01335 0.0000 18.6667 0

IT 2.0 2.72168 0.06502 0.02294 0.2543 18.5385 10 1.831 0.500 3.0 2.91254 0.05820 0.02368 0.2919 55.7222 15 3.9 25.81147 -0.86902 0.00000 0.0000 7.0000 0 4.0 2.66605 0.15810 0.00000 0.2011 88.8889 16 5.0 3.72208 0.03952 0.02307 0.2298 73.8125 13 6.0 4.29467 0.00505 0.02452 0.1619 120.7143 4 7.0 4.45819 0.15915 0.00000 0.2482 117.0000 4 8.0 3.66031 0.19864 0.00884 0.0000 86.6667 0 9.0 5.14999 0.23878 0.00000 0.0000 16.5000 0

UK 2.0 1.78417 0.06393 0.02404 0.0068 6.2500 1 0.330 0.667 3.0 2.11746 0.09871 0.00000 0.1167 52.8462 11 4.0 2.41146 0.10227 0.00000 0.1411 87.6000 13 5.0 3.57644 0.06216 0.00000 0.2052 121.6000 3

CH 2.0 3.78845 0.04826 0.00000 0.3610 21.8000 8 3.835 0.190 3.0 3.77517 0.06630 0.00000 0.3023 42.8667 13 4.0 3.75863 0.07859 0.00000 0.3505 52.1176 15 5.0 4.44374 0.06161 0.00000 0.2007 73.1000 8 6.0 4.97757 0.04223 0.00000 0.2751 33.0000 2

2 Tab. C, D, E - Format

Group Parameter Description Data source code: NA4 Partner Reg IB=Iberia; UK=Uinted Kingdom; IT=Italy; AE=Aegean; CH=Switzerland Earthquake identifier ID Original earthquake identifier

Date Earthquake original time (compact)

Earthquake origin time and area of maximum effect Ax Denomination of the area where the largest effects are located MDP source Source of the MDPs (short citation) Macroseismic intensity scale Mis (e.g.: MM, MCS, MSK78, MSK81, EM92, EM98, etc.)

NMDP Ic2 Number of MDPs Macroseismic data points number and maximum intensity Ixm Ic2 Maximum intensity value Instrumental epicentral latitude LatIns (in geographic coordinate system, decimal degree) Instrumental epicentral longitude LonIns (in geographic coordinate system, decimal degree) Instrumental epicentre Depth Hypocentral depth (in kilometers) Type of epicentre determination method Type (hyb=hybrid: macroseismic and instrumental ) Hypo. source Source of the instrumental hypocentre

Mw Moment magnitude DMw Uncertainty of Mw Type of Mw uncertainty determination: TDMw E = estimated, T = true Moment magnitude (instr.) Type of Mw estimate: TMw O native, determined from the moment tensor; L, s, b when calculated from ML, Ms, mb, by means of regressions Mw source Source of Mw (short citation) Mwdet Source of regression used to determine Mw LatM Current macroseismic latitude (in geographic coordinates decimal degree) Curr.Macro (macro Mw from current catalogue:IB=Mezcua y Martinez S. (1983), UK= Musson (1994), IT=CPTI04, AE=Papaz. and Papai. (1997), CH= ECOS02) Curr.Macro (macro Mw from current catalogue:IB=Mezcua y Martinez S. LonM Current macroseismic longitude (in geographic coordinate decimal degree) (1983), UK= Musson (1994), IT=CPTI04, AE=Papaz. and MwM Current macroseismic moment magnitude Papai. (1997), CH= ECOS02) DMwM Uncertainty of the current macroseismic Mw estimate

Epicentral latitude calculated with Bakun calibrated with the NA4 exercise Lat (in geographic coordinate system, decimal degree)

Epicentral longitude calculated with Bakun calibrated with the NA4 exercise Bk1 Lon (in geographic coordinate system, decimal degree) (parameters determined with coefficients obtained by the NA4 exercise) Mw Moment magnitude calculated with Bakun calibrated with the NA4 exercise DMw Uncertainty of the Mw estimate with Bakun calibrated with the NA4 exercise Number of macroseismic data point actually used for Bakun NA4 NMDP used calibrations (it may differ from the availabale ones) Epicentral latitude calculated with other determinations Lat Epicentral longitude calculated with other determinations Bk2 Lon (other determinations: ECOS upd. relationships for CH; IC3 calibration for UK; NA4_Milan for AE) Mw Moment magnitude calculated with other determinations DMw Uncertainty of the Mw estimate with other determinations NMDP used Number of macroseismic data point actually used with other determinations

Lat Epicentral latitude calculated using published intensity relationships BkLit Lon Epicentral longitude calculated using published intensity relationships (parameteres determined with the relevant literature relationships) Mw Moment magnitude calculated using published intensity relationships DMw Uncertainty of the Mw estimate using published intensity relationships

Lat Epicentral latitude calculated with MEEP Lon Epicentral longitude calculated with MEEP MEEP Mw Moment magnitude calculated with MEEP (parameters determined with coefficients obtained by the NA4 exercise) DMw Uncertainty of the Mw estimate with MEEP h Hypocentral depth (in kilometers) calculated with MEEP EpErr Epicentral uncertainty estimate with MEEP Epicentral latitude calculated with Boxer Lat (in geographic coordinate system, decimal degree) Boxer Epicentral longitude calculated with Boxer Lon (parameters determined with coefficients obtained by the (in geographic coordinate system, decimal degree) NA4 exercise) Boxer (parameters determined with coefficients obtained by the NA4 exercise) Mw Moment magnitude calculated with Boxer DMw Uncertainty of the Mw estimate with Boxer

curr. macro-ins Difference between current macro Mw and instrumental Mw Bk1-ins Difference between Bk1 Mw and instrumental Mw Bk2-ins Difference between Bk2 Mw and instrumental Mw Mwmacro-Mwins BkLit-ins Difference between BkLit Mw and instrumental Mw Meep-ins Difference between MEEP Mw and instrumental Mw Bx-ins Difference between Boxer Mw and instrumental Mw

curr. macro-ins Distance between current macro and instrumental epicentre Bk1-ins Distance between Bk1 location and instrumental epicentre Bk2-ins Distance between Bk2 location and instrumental epicentre location distances BkLit-ins Distance between BkLit location and instrumental epicentre Meep-ins Distance between MEEP location and instrumental epicentre Bx-ins Distance between Boxer location and instrumental epicentre Tab.C - Earthquakes selected for the validation phase

NMDP Ixm Reg ID Date Ax MDP source Mis LatIns LonIns Depth Type Hypoc. source Mw DMw TDMw TMw Mw source Mwdet Ic2 Ic2

IB 9 1923 11 19 03 55 Viella (Lleida) IGC MSK 734 8 42.667 0.700 - IGC 5.40 - - O Susagna et al., 1994 IB 31 1964 03 15 22 30 Golfo de Cadiz IM MMI56 83 7 36.230 -7.610 27.00 ISC Bull. 6.60 - - O Pondrelli et al., 1999 IB 73 1996 02 18 01 45 Pyrénées-France IGC MSK 348 4 42.790 2.540 8.00 IGC 5.30 - - C ML Rueda & M., 2002 IB 100 2003 02 26 03 32 Pyrénées-Catalonia IGC MSK 38 4-5 42.300 2.220 7.00 IGC 3.60 - - C ML Rueda & M., 2002 IB 118 2006 11 17 18 19 Hautes Pyrénées IGC MSK 217 F 43.020 0.000 5.00 IGC 4.50 - - O IGN-CMT

UK 57 1985 09 16 20 50 ARDENTINNY Redmayne & M., 1986 MSK81 138 5 56.040 -4.900 4.00 Musson, 1994 3.00 0.30 E C ML Grünthal & W., 2003 UK 64 1990 04 02 13 46 BISHOP'S CASTLE BGS EMS98 425 6 52.430 -3.030 14.00 Musson, 1994 4.70 0.30 E C ML Grünthal & W., 2003 UK 66 1992 02 17 01 22 PETERBOROUGH BGS EMS92 145 5 52.490 -0.200 10.00 Musson, 1994 3.10 0.30 E C ML Grünthal & W., 2003 UK 67 1992 07 29 18 05 CAERNARVON Walker et al., 1993 EMS92 116 5 53.130 -4.390 11.00 Musson, 1994 3.20 0.30 E C ML Grünthal & W., 2003 UK 76 1996 11 10 09 28 PENZANCE BGS EMS92 97 5 50.000 -5.580 8.00 Walker, 1997 3.50 0.30 E C ML Grünthal & W., 2003 UK 119 2006 12 26 10 40 DUMFRIES Baptie B., 2007 EMS98 80 6 55.090 -3.640 7.00 Simpson, 2006 3.20 0.30 E C ML Grünthal & W., 2003 UK 126 2008 10 10 04 28 FORT WILLIAM BGS EMS98 69 5 56.820 -5.560 14.00 BGS 3.10 0.30 E C ML Grünthal & W., 2003 UK 127 2008 10 26 18 06 BROMYARD BGS EMS98 134 5 52.230 -2.510 10.00 BGS 3.30 0.30 E C ML Grünthal & W., 2003

IT 25 1958 06 24 06 07 L'Aquila Guidoboni et al., 2007 MCS 152 7-8 42.350 13.433 - Boll. Strum. ING 5.16 0.37 T C Ms GdL MPS, 2004 IT 33 1967 10 31 21 08 Monti Nebrodi Guidoboni et al., 2007 MCS 60 8 37.840 14.600 - ISC Bull. 5.24 0.29 T C weigh. mean Ms-mb GdL MPS, 2004 IT 42 1972 02 04 02 42 Medio Adriatico Guidoboni et al., 2007 MCS 75 8 43.716 13.436 - ISC Bull. 4.86 0.29 T C weigh. mean Ms-mb GdL MPS, 2004 IT 43 1972 02 29 20 54 ADRIATICO MER. Arch.Mac.GNDT, 1995 MCS 21 6 41.967 15.376 - ISC Bull. 4.41 0.47 T C mb GdL MPS, 2004 IT 45 1976 05 06 20 00 FRIULI Arch.Mac.GNDT, 1995 MCS 769 9-10 46.262 13.299 5.71 Slejko et al., 1999 6.46 0.18 T O Pondrelli et al., 2001 IT 49 1979 09 19 21 35 Valnerina Guidoboni et al., 2007 MCS 694 8-9 42.730 12.956 6.00 Boll. Sism. ING 5.86 0.18 T O Global CMT IT 54 1984 04 22 17 39 LIVORNO Boll. Macro. ING MCS 39 D 43.551 10.184 0.06 Castello et al., 2006 4.64 0.18 T O Pondrelli et al., 2006 IT 60 1988 04 13 21 28 Costa Calabra Boll. Macro. ING MCS 272 6-7 39.682 16.879 2.78 GdL CSTI, 2005 4.56 0.19 T C weigh. mean ML-Ms-mb GdL MPS, 2004 IT 62 1989 09 13 21 54 PASUBIO Boll. Macro. ING MCS 779 6-7 45.823 11.237 1.54 GdL CSTI, 2005 4.88 0.18 T O Pondrelli et al., 2006 IT 78 1997 12 24 17 53 GARFAGNANA Boll. Macro. ING MCS 98 5-6 44.168 10.487 16.00 Castello et al., 2006 4.36 0.18 T O Pondrelli et al., 2002 IT 94 2002 09 06 01 21 PALERMO Azzaro et al., 2003a MCS 132 6 38.381 13.654 27.01 Castello et al., 2006 5.94 0.18 T O Pondrelli et al., 2004 IT 96 2002 10 31 10 32 MOLISE Bosi et al., 2002 MCS 51 8-9 41.716 14.893 25.15 Castello et al., 2006 5.74 0.18 T O Pondrelli et al., 2004 IT 108 2004 11 24 22 59 Lago di Garda Bernardini et al., 2005 MCS 176 7-8 45.685 10.521 5.40 Boll. Strum. INGV 5.06 0.18 T O INGV Reg. Mom. Tens. IT 115 2005 12 15 13 28 Valle del Topino Boll. Macro. INGV MCS 361 5-6 42.738 12.760 18.40 Boll. Strum. INGV 4.53 0.22 T C weigh. mean ML-mb GdL MPS, 2004

AE 17 1941 03 01 03 52 Larisa Pap. & P. 2003 MM 37 9 39.670 22.540 n hyb Pap. et al. 2000 6.30 <0.30 E C ML NOA Bulletin Pap. et al. 1997 AE 138 1947 10 06 19 55 Messinia Pap. & P. 2003 MM 26 9 36.960 21.680 n hyb Pap. et al. 2000 7.00 <0.30 E C ML NOA Bulletin Pap. et al. 1997 AE 139 1948 04 22 10 42 Lefkas Isl. Pap. & P. 2003 MM 17 9 38.710 20.570 n hyb Pap. et al. 2000 6.50 <0.30 E C ML NOA Bulletin Pap. et al. 1997 AE 140 1953 03 18 19 06 NW Turkey Pap. & P. 2003 MM 114 9-10 40.020 27.530 n hyb Pap. et al. 2000 7.40 <0.25 E C ML NOA Bulletin Pap. et al. 1997 AE 141 1953 08 09 07 41 Ithaca Isl. NOA Bulletin MM 47 8-9 38.500 20.700 n hyb Pap. et al. 2000 6.40 <0.20 E C ML NOA Bulletin Pap. et al. 1997 AE 23 1953 08 11 03 32 Cephalonia NOA Bulletin MM 59 9-10 37.850 20.450 n hyb Pap. et al. 2000 6.80 <0.20 E C ML NOA Bulletin Pap. et al. 1997 AE 142 1953 09 05 14 18 Corinthia NOA Bulletin MM 65 8 37.900 23.100 n hyb Pap. et al. 2000 5.80 <0.30 E C ML NOA Bulletin Pap. et al. 1997 AE 143 1965 03 09 17 57 Alonisos Isl. NOA Bulletin MM 322 9-10 39.160 23.890 n Pap. et al. 2000 6.10 0.20 E O North 1977 AE 144 1967 01 04 05 58 Achaia NOA Bulletin MM 57 8 38.400 22.000 n Pap. et al. 2000 5.50 <0.30 E C ML NOA Bulletin Pap. et al. 1997 AE 145 1969 06 12 15 31 Herakleion NOA Bulletin MM 37 5 34.400 25.000 n Pap. et al. 2000 5.90 <0.20 E O Taymaz et al. 1990 AE 146 1974 11 14 14 26 Boeotia NOA Bulletin MM 153 6-7 38.500 23.100 n Pap. et al. 2000 5.20 <0.25 E C ML NOA Bulletin Pap. et al. 1997 AE 147 1975 01 08 19 32 Corinthia NOA Bulletin MM 226 5-6 38.200 22.600 n Pap. et al. 2000 5.60 <0.20 E O Bezzeghoud 1987 AE 148 1975 02 02 21 12 Kastoria NOA Bulletin MM 36 5 40.500 21.400 n Pap. et al. 2000 4.60 <0.25 E C ML NOA Bulletin Pap. et al. 1997 AE 149 1975 02 28 19 51 Pieria NOA Bulletin MM 31 4-5 40.700 22.500 n Pap. et al. 2000 4.50 <0.25 E C ML NOA Bulletin Pap. et al. 1997 AE 150 1995 05 04 00 34 Centr. Macedonia NOA Bulletin MM 183 6 40.541 23.634 n Pap. et al. 2000 5.30 0.20 E O Global CMT AE 151 1997 11 18 13 07 Messinia Pap. & P. 2003 MM 85 7 37.580 20.570 n Pap. et al. 2000 6.60 0.10 E O Global CMT

CH 1 1905 04 29 01 59 MONT-BLANC ECOS EMS98 183 7 46.090 6.900 - hyb MECOS 5.10 0.50 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 7 1915 08 25 02 13 Martigny/VS ECOS EMS98 42 7 46.100 7.060 12.00 hyb MECOS 4.60 0.10 T C surf.-wave ampl. meas. Bernardi et al., 2005 NMDP Ixm Reg ID Date Ax MDP source Mis LatIns LonIns Depth Type Hypoc. source Mw DMw TDMw TMw Mw source Mwdet Ic2 Ic2 CH 10 1924 04 15 12 49 Brig/VS ECOS EMS98 70 7 46.300 7.960 12.00 hyb MECOS 5.20 0.20 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 11 1925 01 08 02 45 Ballaigues ECOS EMS98 99 6 46.740 6.390 12.00 hyb MECOS 4.80 0.10 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 12 1929 03 01 10 32 Bioley-Magnoux VD ECOS EMS98 115 7 46.730 6.720 5.00 hyb MECOS 5.00 0.10 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 20 1946 01 26 03 15 Ayent VS ECOS EMS98 54 6 46.280 7.430 12.00 hyb MECOS 4.70 0.20 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 21 1946 05 30 03 41 Ayent VS ECOS EMS98 94 7 46.300 7.420 12.00 hyb MECOS 5.50 0.20 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 27 1961 08 09 13 10 St. Valentin I ECOS EMS98 5 5 46.810 10.500 - hyb MECOS 4.90 0.50 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 36 1968 06 27 15 43 CHABLAIS ECOS EMS98 1 3 46.290 6.730 9.00 hyb MECOS 4.60 0.30 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 65 1991 11 20 01 54 Vaz/GR ECOS EMS98 366 6 46.730 9.530 12.00 ECOS 4.70 0.10 T C surf.-wave ampl. meas. Bernardi et al., 2005 CH 74 1996 03 31 06 08 Valpelline/I ECOS EMS98 41 4 45.940 7.460 4.00 ECOS 4.20 0.10 T O Braunmiller et al., 2005 Tab.D - Results of the validation

Curr.Macro Bk1 Bk2 BkLit Meep Boxer NMDP Ixm NMDP NMDP Ep Reg ID Date LatM LonM MwM DMwM Lat Lon Mw DMw Lat Lon Mw DMw Lat Lon Mw DmW Lat Lon Mw DmW h Lat Lon Mw DMw Ax Ic2 Ic2 used used Err

Mezcua y Martinez S., 1983 MI Mezcua et al. 2004 IB 9 1923 11 19 03 55 Viella (Lleida) 734 8 42.683 0.833 - - 42.579 0.824 5.68 0.25 734 42.606 0.869 5.57 0.25 42.653 0.853 5.30 0.50 9 4.5 42.700 0.778 4.84 0.05 IB 31 1964 03 15 22 30 Golfo de Cadiz 83 7 36.132 -7.750 - - 37.184 -7.403 6.71 0.28 83 37.130 -7.313 6.56 0.28 37.551 -7.808 6.10 0.20 30 19.0 37.288 -7.590 5.62 0.14 IB 73 1996 02 18 01 45 Pyrénées-France 348 4 - - - - 42.422 2.065 4.62 0.25 348 42.422 2.092 4.69 0.25 41.871 1.980 4.70 0.40 27 1.8 41.919 1.999 4.35 0.06 IB 100 2003 02 26 03 32 Pyrénées-Catalonia 38 4-5 - - - - 42.469 2.330 4.05 0.33 38 42.532 2.375 4.26 0.33 42.347 2.275 4.10 0.20 18 9.0 42.289 2.177 3.89 0.20 IB 118 2006 11 17 18 19 Hautes Pyrénées 217 F - - - - 41.837 1.242 3.49 0.25 217 41.873 1.251 3.73 0.25 41.806 1.209 4.50 0.20 19 1.4 41.639 1.029 4.40 0.12

Musson, 1994 Ic2 Ic3 Musson 2005 UK 57 1985 09 16 20 50 ARDENTINNY 138 5 - - - - 56.030 -4.900 1.90 0.26 138 56.040 -4.960 2.80 0.26 138 56.050 -4.960 2.70 0.26 56.050 -4.920 3.20 0.30 10 2.4 56.040 -4.880 3.30 0.00 UK 64 1990 04 02 13 46 BISHOP'S CASTLE 425 6 - - - - 52.704 -2.756 4.30 0.25 425 52.610 -2.920 4.30 0.25 425 52.650 -3.050 4.50 0.25 52.610 -2.880 4.30 0.60 20 0.0 52.660 -2.880 4.40 0.00 UK 66 1992 02 17 01 22 PETERBOROUGH 145 5 - - - - 52.590 -0.280 2.80 0.26 145 52.600 -0.310 3.30 0.26 143 52.580 -0.460 3.20 0.26 52.550 -0.420 3.50 0.20 20 0.0 52.550 -0.270 3.60 0.19 UK 67 1992 07 29 18 05 CAERNARVON 116 5 - - - - 53.170 -4.310 2.80 0.26 116 53.170 -4.310 3.10 0.29 64 53.180 -4.350 2.90 0.29 53.170 -4.310 3.00 0.30 7 1.4 53.190 -4.280 3.10 0.10 UK 76 1996 11 10 09 28 PENZANCE 97 5 - - - - 50.160 -5.460 3.40 0.27 97 50.170 -5.460 3.50 0.30 57 49.950 -5.400 3.60 0.30 50.160 -5.390 3.40 0.40 16 9.6 50.180 -5.440 3.70 0.01 UK 119 2006 12 26 10 40 DUMFRIES 80 6 - - - - 55.100 -3.650 4.40 0.28 80 55.100 -3.650 3.70 0.33 36 55.080 -3.650 3.30 0.33 55.100 -3.680 3.00 0.20 5 2.2 55.080 -3.630 3.60 0.39 UK 126 2008 10 10 04 28 FORT WILLIAM 69 5 - - - - 56.740 -5.810 3.50 0.29 69 56.740 -5.900 3.80 0.39 18 56.600 -6.280 4.10 0.39 56.770 -5.720 3.40 0.40 18 9.0 56.850 -5.300 3.20 0.16 UK 127 2008 10 26 18 06 BROMYARD 134 5 - - - - 52.150 -2.810 4.00 0.26 134 52.110 -2.850 3.90 0.31 48 52.020 -3.040 4.00 0.31 52.130 -2.610 3.40 0.30 16 10.6 52.120 -2.690 3.60 0.22

CPTI04 MI Pasolini et al. 2008 IT 25 1958 06 24 06 07 L'Aquila 152 7-8 42.340 13.477 5.17 0.03 42.325 13.458 4.63 0.27 106 42.325 13.458 5.15 0.27 42.360 13.478 4.20 0.90 3 17.5 42.340 13.478 5.23 0.17 IT 33 1967 10 31 21 08 Monti Nebrodi 60 8 37.870 14.420 5.50 0.07 37.864 14.353 5.51 0.29 60 37.864 14.353 5.73 0.29 37.902 14.277 5.00 1.40 6 12.3 37.862 14.413 5.74 0.20 IT 42 1972 02 04 02 42 Medio Adriatico 75 8 43.633 13.550 5.18 0.09 43.765 13.412 5.76 0.28 75 43.720 13.412 5.87 0.28 43.672 13.413 5.00 2.00 6 16.1 43.590 13.295 5.70 0.15 IT 43 1972 02 29 20 54 ADRIATICO MER. 21 6 41.967 15.383 4.87 0.24 42.174 15.319 5.20 0.36 20 42.084 15.319 5.40 0.36 41.972 15.440 4.70 0.70 28 12.1 41.841 15.459 4.97 0.10 IT 45 1976 05 06 20 00 FRIULI 769 9-10 46.241 13.119 6.43 0.06 46.296 13.035 6.33 0.25 767 46.296 13.035 6.25 0.25 46.303 13.060 6.80 0.90 14 16.3 46.241 13.119 6.36 0.36 IT 49 1979 09 19 21 35 Valnerina 694 8-9 42.720 13.070 5.90 0.01 42.712 13.097 5.64 0.25 691 42.712 13.052 5.76 0.25 42.690 13.040 5.20 0.90 9 1.6 42.713 13.072 5.72 0.35 IT 54 1984 04 22 17 39 LIVORNO 39 D - - - - 43.631 10.177 4.39 0.33 37 43.631 10.222 4.96 0.33 43.619 10.139 4.10 0.20 5 16.6 43.619 10.331 4.64 0.12 IT 60 1988 04 13 21 28 Costa Calabra 272 6-7 39.764 16.275 4.98 0.09 39.841 17.022 5.46 0.26 128 39.841 17.022 5.60 0.26 39.847 16.811 5.00 1.30 16 4.8 39.764 16.275 5.17 0.22 IT 62 1989 09 13 21 54 PASUBIO 779 6-7 45.870 11.172 4.96 0.05 45.795 11.143 5.10 0.25 757 45.840 11.143 5.41 0.25 45.844 11.155 4.60 0.70 10 18.9 45.870 11.172 5.17 0.17 IT 78 1997 12 24 17 53 GARFAGNANA 98 5-6 - - - - 44.185 10.491 4.00 0.29 66 44.230 10.491 4.83 0.29 44.178 10.306 3.70 0.40 8 14.0 44.195 10.383 4.24 0.02 IT 94 2002 09 06 01 21 PALERMO 132 6 38.081 13.422 5.89 0.18 38.487 13.789 6.03 0.26 130 38.487 13.774 5.94 0.26 38.407 13.602 5.60 0.20 30 1.5 38.081 13.422 5.22 0.03 IT 96 2002 10 31 10 32 MOLISE 51 8-9 41.694 14.925 5.78 0.18 41.699 14.945 4.76 0.30 51 41.699 14.945 5.31 0.30 41.709 14.991 4.10 0.90 1 0.0 41.695 14.925 5.43 0.04 IT 108 2004 11 24 22 59 Lago di Garda 176 7-8 - - - - 45.614 10.475 4.82 0.25 172 45.614 10.520 5.32 0.25 45.658 10.508 5.30 0.70 20 12.3 45.628 10.492 5.54 0.17 IT 115 2005 12 15 13 28 Valle del Topino 361 5-6 - - - - 42.820 12.851 4.42 0.27 102 42.820 12.851 5.02 0.27 42.766 12.829 4.10 0.60 9 16.2 42.812 12.844 4.55 0.02

Papaz. and Papai., 1997 TH MI D Papaz. and Papai., 1997 AE 17 1941 03 01 03 52 Larisa 37 9 39.670 22.540 6.50 - 39.648 22.462 6.50 0.31 37 39.657 22.507 6.18 0.33 37 39.648 22.498 6.40 0.31 39.636 22.497 5.80 0.50 4 3.0 39.648 22.542 6.52 0.02 AE 138 1947 10 06 19 55 Messinia 26 9 36.960 21.680 6.90 - 36.724 21.545 7.30 0.33 26 36.814 21.662 7.14 0.35 26 36.815 21.653 7.00 0.33 36.837 21.634 7.10 0.70 9 8.0 36.942 21.766 6.73 0.19 AE 139 1948 04 22 10 42 Lefkas Isl. 17 9 38.710 20.570 6.10 - 38.697 20.434 6.50 0.36 17 38.697 20.480 6.64 0.39 17 38.697 20.471 6.70 0.36 38.631 20.506 6.30 0.40 6 7.0 38.747 20.617 6.50 0.14 AE 140 1953 03 18 19 06 NW Turkey 114 9-10 40.020 27.530 7.70 - 40.164 27.215 7.61 0.26 114 40.047 27.340 7.85 0.26 114 40.038 27.350 7.52 0.26 39.990 27.632 8.30 1.00 30 2.0 40.000 27.495 7.03 0.10 AE 141 1953 08 09 07 41 Ithaca Isl. 47 8-9 38.530 20.700 6.30 - 38.428 20.631 6.60 0.30 47 38.420 20.596 6.39 0.31 47 38.429 20.596 6.60 0.30 38.419 20.477 5.90 1.00 9 19.0 38.496 20.582 6.54 0.07 AE 23 1953 08 11 03 32 Cephalonia 59 9-10 38.100 20.600 7.70 - 38.111 20.539 7.00 0.29 65 38.166 20.521 7.08 0.30 65 38.166 20.521 7.00 0.29 38.058 20.564 6.60 1.10 7 39.0 38.164 20.563 6.75 0.13 AE 142 1953 09 05 14 18 Corinthia 65 8 37.900 23.000 5.40 - 37.940 23.065 5.90 0.28 59 37.922 23.011 5.17 0.29 59 37.922 23.029 5.70 0.28 37.913 23.109 5.50 0.40 6 12.0 37.917 23.000 6.08 0.12 AE 143 1965 03 09 17 57 Alonisos Isl. 322 9-10 39.160 23.890 6.20 - 39.218 23.947 6.50 0.25 322 39.174 23.876 6.02 0.25 322 39.183 23.876 6.30 0.25 39.119 24.055 6.50 0.80 5 18.0 39.135 23.841 6.67 0.17 AE 144 1967 01 04 05 58 Achaia 57 8 38.250 21.980 5.00 - 38.178 21.954 5.60 0.29 57 38.214 21.972 4.89 0.30 57 38.196 21.972 5.50 0.29 38.256 21.961 4.90 0.60 5 14.0 38.272 22.000 5.96 0.10 AE 145 1969 06 12 15 31 Herakleion 37 5 - - - - 34.184 25.072 6.27 0.33 37 34.247 25.081 5.56 0.33 37 34.201 25.054 6.05 0.33 35.172 24.799 4.80 0.60 30 95.0 35.181 25.097 4.75 0.30 AE 146 1974 11 14 14 26 Boeotia 153 6-7 38.470 23.080 5.40 - 38.434 23.156 5.70 0.25 153 38.434 23.138 4.84 0.25 153 38.434 23.138 5.50 0.25 38.420 23.165 5.00 0.20 16 9.0 38.403 23.097 5.88 0.16 AE 147 1975 01 08 19 32 Corinthia 226 5-6 38.220 22.720 5.50 - 38.243 22.733 5.80 0.25 226 38.262 22.751 4.97 0.25 226 38.262 22.751 5.60 0.25 38.336 22.849 5.30 0.30 27 34.0 38.374 22.708 5.73 0.24 AE 148 1975 02 02 21 12 Kastoria 36 5 - - - - 40.497 21.444 4.90 0.31 35 40.506 21.426 3.81 0.33 35 40.497 21.435 4.73 0.33 40.656 21.537 4.40 0.40 16 16.0 40.690 21.497 5.37 0.38 AE 149 1975 02 28 19 51 Pieria 31 4-5 - - - - 40.250 22.545 5.11 0.33 31 40.250 22.509 3.97 0.33 31 40.250 22.518 4.89 0.33 40.467 22.526 4.40 0.20 20 16.0 40.528 22.555 4.63 0.43 AE 150 1995 05 04 00 34 Centr. Macedonia 183 6 40.560 23.640 5.10 - 40.570 23.701 5.60 0.25 183 40.562 23.746 4.73 0.25 183 40.571 23.792 5.40 0.25 40.579 23.674 5.00 0.20 19 3.0 40.545 23.605 5.74 0.04 AE 151 1997 11 18 13 07 Messinia 85 7 - - - - 37.160 20.928 6.89 0.28 85 37.205 21.018 6.59 0.28 85 37.196 21.009 6.76 0.28 37.409 21.534 6.00 0.50 20 117.0 37.335 21.648 6.53 0.17 NMDP Ixm NMDP NMDP Ep Reg ID Date LatM LonM MwM DMwM Lat Lon Mw DMw Lat Lon Mw DMw Lat Lon Mw DmW Lat Lon Mw DmW h Lat Lon Mw DMw Ax Ic2 Ic2 used used Err

ECOS02 MI ZH (Ecos revised) Hinzen & Oem., 2001 CH 1 1905 04 29 01 59 MONT-BLANC 183 7 46.090 6.900 5.70 - 46.028 7.340 5.50 0.25 183 46.036 7.341 5.45 0.25 - 46.528 7.739 5.40 0.25 45.940 7.237 5.30 1.10 5 21.8 46.113 7.162 5.52 0.30 CH 7 1915 08 25 02 13 Martigny/VS 42 7 46.100 7.060 4.90 - 45.650 6.710 5.50 0.31 42 45.849 6.747 5.32 0.31 - 46.463 8.033 5.28 0.31 46.014 7.069 5.20 0.40 9 23.5 46.100 7.070 5.15 0.33 CH 10 1924 04 15 12 49 Brig/VS 70 7 46.300 7.960 5.50 - 46.396 8.014 5.06 0.28 70 46.315 7.996 5.15 0.28 - 46.360 8.176 5.14 0.28 46.269 8.059 5.10 0.70 12 17.9 46.322 8.002 5.28 0.39 CH 11 1925 01 08 02 45 Ballaigues 99 6 46.740 6.390 5.00 - 47.010 6.190 5.34 0.28 99 47.461 6.433 5.60 0.28 - 47.461 6.586 5.54 0.28 46.879 5.755 5.30 0.80 6 33.1 46.868 6.966 5.11 0.20 CH 12 1929 03 01 10 32 Bioley-Magnoux VD 115 7 46.730 6.720 5.30 - 46.743 6.713 4.00 0.26 115 46.743 6.714 3.63 0.26 - 46.743 6.678 3.67 0.26 46.783 6.749 4.50 0.50 1 36.3 46.763 6.717 4.84 0.25 CH 20 1946 01 26 03 15 Ayent VS 54 6 46.280 7.430 5.20 - 46.791 8.045 5.20 0.30 54 46.097 6.991 5.53 0.30 - 46.322 8.225 5.71 0.30 45.856 6.244 5.40 0.80 29 43.9 46.494 7.165 5.50 0.28 CH 21 1946 05 30 03 41 Ayent VS 94 7 46.300 7.420 6.00 - 46.334 7.440 5.55 0.27 94 46.235 7.432 5.67 0.27 - 46.317 7.495 5.91 0.27 46.090 7.505 5.80 0.50 4 25.0 46.270 7.336 5.62 0.20 CH 27 1961 08 09 13 10 St. Valentin /I 5 5 46.810 10.500 5.00 - 47.050 10.540 5.29 0.58 5 46.924 10.630 5.34 0.58 - 46.420 10.027 5.51 0.58 47.726 11.069 5.00 0.60 26 42.4 46.900 9.655 5.59 0.86 CH 36 1968 06 27 15 43 CHABLAIS 1 3 46.290 6.730 5.10 - 46.475 6.955 3.20 1.22 1 46.520 7.000 3.64 1.22 - 46.520 7.000 3.13 1.22 46.430 6.910 3.00 0.10 5 0.0 46.430 6.910 4.41 - CH 65 1991 11 20 01 54 Vaz/GR 366 6 - - - - 46.610 9.457 4.66 0.25 366 46.691 9.565 4.66 0.25 - 46.691 9.583 4.45 0.25 45.993 10.205 5.40 0.50 9 5.0 46.733 9.492 5.00 0.12 CH 74 1996 03 31 06 08 Valpelline/I 41 4 - - - - 45.932 7.635 3.66 0.31 41 45.959 7.644 3.13 0.31 - 45.301 7.752 3.80 0.31 45.760 9.220 5.10 0.50 13 0.0 46.233 7.697 4.53 0.39 Tab.E - Differences among instrumental and macroseismic values

Mwmacro-Mwins location distances NMDP Ixm curr. macro Meep- curr. macro Reg ID Date Ax Bk1-ins Bk2-ins BkLit-ins Bx-ins Bk1-ins Bk2-ins BkLit-ins Meep-ins Bx-ins Ic2 Ic2 -ins ins -ins

IB 9 1923 11 19 03 55 Viella (Lleida) 734 8 - 0.28 0.17 -0.10 -0.56 11.01 14.08 15.39 12.60 7.35 IB 31 1964 03 15 22 30 Golfo de Cadiz 83 7 - 0.11 -0.04 -0.50 -0.98 16.62 107.59 103.44 147.83 117.57 IB 73 1996 02 18 01 45 Pyrénées-France 348 4 - -0.68 -0.61 -0.60 -0.95 - 56.40 54.90 111.99 106.48 IB 100 2003 02 26 03 32 Pyrénées-Catalonia 38 4-5 - 0.45 0.66 0.50 0.29 - 20.83 28.74 6.91 3.74 IB 118 2006 11 17 18 19 Hautes Pyrénées 217 F - -1.01 -0.77 0.00 -0.10 - 166.29 163.59 167.42 175.18

UK 57 1985 09 16 20 50 ARDENTINNY 138 5 - -1.10 -0.20 -0.30 0.20 0.30 - 1.11 3.73 3.89 1.67 1.24 UK 64 1990 04 02 13 46 BISHOP'S CASTLE 425 6 - -0.40 -0.40 -0.20 -0.40 -0.30 - 35.65 21.35 24.50 22.42 27.49 UK 66 1992 02 17 01 22 PETERBOROUGH 145 5 - -0.30 0.20 0.10 0.40 0.50 - 12.36 14.31 20.23 16.30 8.18 UK 67 1992 07 29 18 05 CAERNARVON 116 5 - -0.40 -0.10 -0.30 -0.20 -0.10 - 6.94 6.94 6.17 6.94 9.91 UK 76 1996 11 10 09 28 PENZANCE 97 5 - -0.10 0.00 0.10 -0.10 0.20 - 19.74 20.75 14.02 22.35 22.35 UK 119 2006 12 26 10 40 DUMFRIES 80 6 - 1.20 0.50 0.10 -0.20 0.40 - 1.28 1.28 1.28 2.78 1.28 UK 126 2008 10 10 04 28 FORT WILLIAM 69 5 - 0.40 0.70 1.00 0.30 0.10 - 17.63 22.54 50.29 11.21 16.15 UK 127 2008 10 26 18 06 BROMYARD 134 5 - 0.70 0.60 0.70 0.10 0.30 - 22.30 26.75 43.06 13.03 17.31

IT 25 1958 06 24 06 07 L'Aquila 152 7-8 0.01 -0.53 -0.01 -0.96 0.07 3.78 3.45 3.45 3.86 3.86 IT 33 1967 10 31 21 08 Monti Nebrodi 60 8 0.26 0.27 0.49 -0.24 0.50 16.14 21.83 21.83 29.16 16.59 IT 42 1972 02 04 02 42 Medio Adriatico 75 8 0.32 0.90 1.01 0.14 0.84 13.00 5.78 1.98 5.23 18.01 IT 43 1972 02 29 20 54 ADRIATICO MER. 21 6 0.46 0.79 0.99 0.29 0.56 0.58 23.48 13.82 5.32 15.59 IT 45 1976 05 06 20 00 FRIULI 769 9-10 -0.03 -0.13 -0.21 0.34 -0.10 14.03 20.62 20.62 18.91 14.03 IT 49 1979 09 19 21 35 Valnerina 694 8-9 0.04 -0.22 -0.10 -0.66 -0.14 9.37 11.68 8.09 8.17 9.66 IT 54 1984 04 22 17 39 LIVORNO 39 D -0.25 0.32 -0.54 0.00 8.91 9.40 8.38 14.04 IT 60 1988 04 13 21 28 Costa Calabra 272 6-7 0.42 0.90 1.04 0.44 0.61 52.42 21.48 21.48 19.23 52.42 IT 62 1989 09 13 21 54 PASUBIO 779 6-7 0.08 0.22 0.53 -0.28 0.29 7.25 7.92 7.52 6.76 7.25 IT 78 1997 12 24 17 53 GARFAGNANA 98 5-6 -0.36 0.47 -0.66 -0.12 1.92 6.90 14.47 8.81 IT 94 2002 09 06 01 21 PALERMO 132 6 -0.05 0.09 0.00 -0.34 -0.72 39.00 16.64 15.74 5.37 39.00 IT 96 2002 10 31 10 32 MOLISE 51 8-9 0.04 -0.98 -0.43 -1.64 -0.31 3.61 4.71 4.71 8.17 3.53 IT 108 2004 11 24 22 59 Lago di Garda 176 7-8 -0.24 0.26 0.24 0.48 8.66 7.89 3.17 6.72 IT 115 2005 12 15 13 28 Valle del Topino 361 5-6 -0.11 0.49 -0.43 0.02 11.75 11.75 6.43 10.70

AE 17 1941 03 01 03 52 Larisa 37 9 0.20 0.20 -0.12 0.10 -0.50 0.22 0.00 7.11 3.17 4.31 5.27 2.45 AE 138 1947 10 06 19 55 Messinia 26 9 -0.10 0.30 0.14 0.00 0.10 -0.27 0.00 28.86 16.30 16.34 14.26 7.89 AE 139 1948 04 22 10 42 Lefkas Isl. 17 9 -0.40 0.00 0.14 0.20 -0.20 0.00 0.00 11.89 7.94 8.72 10.39 5.79 AE 140 1953 03 18 19 06 NW Turkey 114 9-10 0.30 0.21 0.45 0.12 0.90 -0.37 0.00 31.19 16.43 15.44 9.30 3.72 AE 141 1953 08 09 07 41 Ithaca Isl. 47 8-9 -0.10 0.20 -0.01 0.20 -0.50 0.14 3.34 10.01 12.68 12.04 21.39 10.27 AE 23 1953 08 11 03 32 Cephalonia 59 9-10 0.90 0.20 0.28 0.20 -0.20 -0.05 30.05 30.75 35.66 35.64 25.18 36.26 AE 142 1953 09 05 14 18 Corinthia 65 8 -0.40 0.10 -0.63 -0.10 -0.30 0.28 8.76 8.77 8.18 6.68 1.65 8.97 AE 143 1965 03 09 17 57 Alonisos Isl. 322 9-10 0.10 0.40 -0.08 0.20 0.40 0.57 0.00 8.10 1.97 2.82 14.93 5.05 AE 144 1967 01 04 05 58 Achaia 57 8 -0.50 0.10 -0.61 0.00 -0.60 0.46 16.77 25.01 20.81 22.79 16.36 14.22 AE 145 1969 06 12 15 31 Herakleion 37 5 - 0.37 -0.34 0.15 -1.10 -1.15 - 24.89 18.55 22.66 87.72 87.23 AE 146 1974 11 14 14 26 Boeotia 153 6-7 0.20 0.50 -0.36 0.30 -0.20 0.68 3.76 8.81 8.04 8.04 10.54 10.78 AE 147 1975 01 08 19 32 Corinthia 226 5-6 -0.10 0.20 -0.63 0.00 -0.30 0.13 10.72 12.56 14.87 14.87 26.46 21.51 AE 148 1975 02 02 21 12 Kastoria 36 5 - 0.30 -0.79 0.13 -0.20 0.77 - 3.73 2.30 2.98 20.84 22.64 AE 149 1975 02 28 19 51 Pieria 31 4-5 - 0.61 -0.53 0.39 -0.10 0.13 - 50.14 50.01 50.02 25.98 19.67 AE 150 1995 05 04 00 34 Centr. Macedonia 183 6 -0.20 0.30 -0.57 0.10 -0.30 0.44 2.17 6.51 9.74 13.70 5.41 2.49 AE 151 1997 11 18 13 07 Messinia 85 7 - 0.29 -0.01 0.16 -0.60 -0.07 - 56.36 57.45 57.64 87.08 98.90

CH 1 1905 04 29 01 59 MONT-BLANC 183 7 0.60 0.40 0.35 0.30 0.20 0.42 0.00 34.62 34.52 80.72 30.89 20.35 CH 7 1915 08 25 02 13 Martigny/VS 42 7 0.30 0.90 0.72 0.68 0.60 0.55 0.00 56.86 36.90 84.91 9.58 0.77 CH 10 1924 04 15 12 49 Brig/VS 70 7 0.30 -0.14 -0.05 -0.06 -0.10 0.08 0.00 11.44 3.23 17.86 8.35 4.05 NMDP Ixm curr. macro Meep- curr. macro Reg ID Date Ax Bk1-ins Bk2-ins BkLit-ins Bx-ins Bk1-ins Bk2-ins BkLit-ins Meep-ins Bx-ins Ic2 Ic2 -ins ins -ins CH 11 1925 01 08 02 45 Ballaigues 99 6 0.20 0.54 0.80 0.74 0.50 0.31 0.00 33.63 80.18 81.47 50.70 46.06 CH 12 1929 03 01 10 32 Bioley-Magnoux VD 115 7 0.30 -1.00 -1.37 -1.33 -0.50 -0.16 0.00 1.54 1.51 3.51 6.29 3.67 CH 20 1946 01 26 03 15 Ayent VS 54 6 0.50 0.50 0.83 1.01 0.70 0.80 0.00 73.71 39.42 61.20 102.85 31.27 CH 21 1946 05 30 03 41 Ayent VS 94 7 0.50 0.05 0.17 0.41 0.30 0.12 0.00 4.08 7.28 6.06 24.23 7.26 CH 27 1961 08 09 13 10 St. Valentin I 5 5 0.10 0.39 0.44 0.61 0.10 0.69 0.00 26.84 16.06 56.40 110.45 64.98 CH 36 1968 06 27 15 43 CHABLAIS 1 3 0.50 -1.40 -0.96 -1.47 -1.60 -0.19 0.00 26.83 32.88 32.88 20.80 20.80 CH 65 1991 11 20 01 54 Vaz/GR 366 6 - -0.04 -0.04 -0.25 0.70 0.30 14.45 5.09 5.92 96.87 2.91 CH 74 1996 03 31 06 08 Valpelline/I 41 4 - -0.54 -1.07 -0.40 0.90 0.33 13.55 14.37 74.54 137.67 37.33 Tab. F - References for Tab. A, C, D, E

Source Reference code Reference Archivio Macrosismico GNDT, 1995. Studi preliminari di terremoti attraverso i repertori sismologici, UR MI. Archivio IT Arch.Mac.GNDT, 1995 macrosismico del GNDT, Milano. Azzaro R., Camassi R., D'Amico S., Mostaccio A. e Scarfì L., 2003. Il terremoto di Palermo del 6 settembre 2002: IT Azzaro et al., 2003a effetti macrosismici. Quad. Geof., 31, 15 pp. Baptie B. (ed) 2007. UK earthquake monitoring 2006/2007. British Geological Survey Commissioned Report, UK Baptie B., 2007 OR/07/010. Baptie B., Ottemöller L., Sargeant S.L., Ford G., and O'Mongain A., 2005. The Dudley earthquake of 2002: a moderate UK Baptie et al., 2005 sized earthquake in the UK. Tectonophysics, 401, 1-22. Bernardi F., Braunmiller J. and Giardini D., 2005.Seismic Moment from Regional Surface-Wave Amplitudes: CH Bernardi et al., 2005 Applications to Digital and Analog Seismograms. Bulletin of the Seismological Society of America, 95, 2, 408-418. Bernardini F., Camassi R., Castelli V., Ercolani E., Frapiccini M., Vannucci G., Giovani L. e Tertulliani A., 2003. Rilievo IT Bernardini et al., 2003 macrosismico degli effetti prodotti dalla sequenza sismica iniziata il 14 settembre 2003 (Appennino Bolognese). Rapporto tecnico QUEST, Bologna, 10 pp. Bernardini F., Camassi R., Castelli V., Del Mese S., Ercolani E., Giovani L., Massucci S., Milana G., Rossi A., IT Bernardini et al., 2005 Tertulliani A. e Vecchi M., 2005. Rilievo macrosismico del terremoto del Garda del 24 novembre 2004. Ingegneria Sismica, XXII, 2, 44-58. AE Bezzeghoud, 1987 Bezzeghoud, M., 1987. Inversion et analyse spectrale des ondes P. Ph. D. Thesis, University Paris VII, 232pp. UK BGS British Geological Survey. Unpublished working files IT Boll. Macro. ING Istituto Nazionale di Geofisica. Bollettino macrosismico mensile. IT Boll. Macro. INGV Istituto Nazionale di Geofisica e Vulcanologia. Bollettino macrosismico mensile. IT Boll. Strum. ING Istituto Nazionale di Geofisica. Bollettino sismico mensile. Istituto Nazionale di Geofisica e Vulcanologia. Bollettino sismico mensile. IT Boll. Strum. INGV http://legacy.ingv.it/roma/reti/rms/bollettino/index.php?lang=it Bosi V., Galli P., Gallipoli M.R., Del Mese S., Massucci A., Rossi A., Camassi R., Ercolani E., Piccarreda C., Bernardini IT Bosi et al., 2002 F., Tertulliani A., Vecchi M., Maramai A. e Mucciarelli M., 2002. Rilievo degli effetti prodotti dalla sequenza sismica molisana dell’ottobre-novembre 2002, Rapporto tecnico QUEST, Roma, 13 pp. Bott J. D. J., Henni P. H. O. and Ford G., 2002a. The 4.0 ML Arran earthquake of 4 March 1999. British Geological UK Bott et al., 2002a Survey, Technical Report CR/01/120N. Bott J. D. J., Henni P. H. O. and Galloway D. D., 2002b. The 4.2 ML Warwick earthquake of 23 September 2000. UK Bott et al., 2002b British Geological Survey Technical Report, CR/01/121N. Braunmiller J., Deichmann N., Giardini D., Wiemer S. and the CH Braunmiller et al., 2005 SED Magnitude Working Group, 2005. Homogeneous Moment-Magnitude Calibration in Switzerland. BSSA, 95, 1, 58– 74, doi: 10.1785/0120030245 Buforn E., Benito B., Sanz de Galdeano C., del Fresno C., Muñoz D., and Rodriguez I. , 2005. Study of the Damaging IB Buforn et al., 2005 Earthquakes of 1911, 1999, and 2002 in the Murcia, Southeastern Spain, Region: Seismotectonic and Seismic-Risk Implications, BSSA, 95, 549-567. Castello B., Selvaggi G., Chiarabba C. e Amato A., 2006. CSI Catalogo della sismicità italiana 1981-2002, versione IT Castello et al., 2006 1.1. INGV-CNT, Roma. http://www.ingv.it/CSI/ IT CPTI04 Gruppo di lavoro CPTI, 2004. Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna. Deichmann N., Baer M., Braunmiller J., Ballarin Dolfin D., Bay F., Delouis B., Faeh D., Giardini D., Kastrup U., Kind F., CH Deichmann et al., 2000 Kradolfer U., Kuenzle W., Roethlisberger S., Schler T., Salichon J., Sellami S., Spuehler E. and Wiemer S., 2000. Earthquakes in Switzerland and surrounding regions during 1999, Eclogae geol. Helv., 93/3, 395-406. Swiss Seismological Service, 2002. ECOS - Earthquake Catalog of Switzerland. ECOS Report to PEGASOS, Version CH ECOS02 31. 3. 2002, Appendix A: ECOS Database. SED, Zürich. http://histserver.ethz.ch/ Ford G., Galloway D. D., Henni P. H. O. and Walker A. B., 1997. The Ambleside earthquakes of 12 September 1988. UK Ford et al., 1997 British Geological Survey Technical Report, WL/97/44. Galli P., Molin D., Galadini F. and Giaccio B., 2002. Aspetti sismotettonici del terremoto irpino del 1930. In: S. IT Galli et al. 2002 Castenetto e M. Sebastiano (eds.), Il "terremoto del Vulture" 23 luglio 1930, VIII dell'Era fascista. Roma, 217-262. UK Galloway, 2006 Galloway D. D. (ed) (2006). Bulletin of British earthquakes 2005. British Geological Survey, Report IR/06/047. Gruppo di Lavoro CSTI, 2005. Catalogo Strumentale dei Terremoti Italiani dal 1981 al 1996 (Versione 1.1). IT GdL CSTI, 2005 http://ibogfs.df.unibo.it/user2/paolo/www/gndt/Versione1_1/Leggimi.htm Gruppo di Lavoro MPS, 2004. Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM del 20 IT GdL MPS, 2004 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici. AE, IT Global CMT Global Centroid Moment Tensor Catalogue. http://www.globalcmt.org Grünthal G. and Wahlström R., 2003. An Mw based earthquake catalogue for central, northern and northwestern UK Grünthal & W., 2003 Europe using a hierarchy of magnitude conversions. Journal of Seismology, 7, 507-531. Guidoboni E., Ferrari G., Mariotti D., Comastri A., Tarabusi G. and Valensise G., 2007. Catalogo dei forti terremoti 461 IT Guidoboni et al., 2007 a.C.-1997. http://storing.ingv.it/cfti4med/ Hinzen K.G. and Oemisch M. (2001). Location and Magnitude from Seismic Intensity Data of Recent and Historic CH Hinzen & Oem. , 2001 Earthquakes in the Northern Rhine Area, Central Europe. Bull. Seism. Soc. Am, 91,1, 40-56 IB IAG http://www.ugr.es/~iag/red.html IB IAG-CMT http://www.ugr.es/~iag/tensor/mtc.html Institut Geologic de Catalunya. IB IGC http://www.igc.cat/web/gcontent/es/sismologia/igc_sismologia_sismicitat.html IB IGN http://www.ign.es/ign/es/IGN/SisCatalogo.jsp IB IGN-CMT http://www.ign.es/ign/es/IGN/SisCalculo.jsp Instituto de Meteorologia, IP, Potugal. IB IM http://www.meteo.pt/pt/produtosservicos/catalogo_de_publicacoes/anuario.sismo/index.html European-Mediterranean Regional Centroid-Moment Tensors. IT INGV Reg. Moment Tens. http://www.bo.ingv.it/RCMT/ IT, IB ISC Bull. Bullettin of the International Seismological Centre. http://www.isc.ac.uk/index.html Kiratzi A., Wagner G. and Langston C., 1990. source parameters of some large earthequakes in northern AE Kiratzi et al., 1990 Aegeandetermined by body waveform inversion. Pageoph, 135, 515-527. Kulhanek O. and Meyer K., 1983. Spectral sutdy of the June 20, 1978. Tessaloniki earthquake, Seism. Section, AE Kulh. & Meyer, 1983 Uppsala University, 25 pp. Swiss Seismological Service, 2002. Macroseismic Earthquake Catalog of Switzerland. Zuerich. CH MECOS 2002 http://histserver.ethz.ch/ Mezcua J., J. Rueda and Garcia Blanco R.M., 2004. Reevaluation of historical earthquakes in Spain. Seismological IB Mezcua et al., 2004 Research Letters, 75, 1, 75-81. Mezcua J. and Martinez Solarez J.M., 1983. Sismicidad del Area Ibero-Mogrebi. Instituto Geografico Nacional, Publ. IB Mezcua y Martinez S., 1983 303, Madrid, 189 pp. Michelini A., Lomax A., Nardi A., Rossi A., Palombo B., and Bono A., 2004. A modern re-examination of the locations IT Michelini et al., 2004 of the 1905 Calabria and the 1908 Messina Straits earthquakes. Geophysical Research Abstracts 6, 07642. Musson R. M. W., 1994. A catalogue of British earthquakes. British Geological Survey Global Seismology Report, UK Musson, 1994 WL/94/04. UK Musson, 2005 Musson, R.M.W. 2005. UK earthquake catalogue working file. Unpublished Musson R. M. W., 2008. The macroseismic survey of the 27 February 2008 Market Rasen earthquake. SECED UK Musson, 2008 Newsletter, 20, 1-5. Musson R. M. W. and Henni P. H. O., 2002. The felt effects of the Carlisle earthquake of 26 December 1979. Scottish UK Musson & H., 2002 Journal of Geology, 38, 113-126. Musson R. M. W., Neilson G. and Burton P. W., 1984. Macroseismic reports on historical British earthquakes I: UK Musson et al., 1984 Northwest England and Southwest Scotland. British Geological Survey Global Seismology Report, 207. National Earthquake Information Center - NEIC, Preliminary Determinations of Epicenters, Monthly Listing. IT NEIC-PDE Cat. http://neic.usgs.gov/neis/epic/epic_global.html AE NOA Bulletin Bulletin of the Seismological Institute. National Observatory Athens North R., 1977. Seismic moments, source dimensions and stress associated with earthquakes in the Mediterranean AE North 1977 and Middle East. Geophys. J. R. astr. Soc., 49, 137. Papazachos B.C. and Papazachou K., 2003. The earthquakes of Greece 3rd editino. Ziti Publ. Co., Thessaloniki, 286 AE Pap. & P., 2003 pp. Papazachos B. C., Kiratzi A.A. and Karakostas B.G., 1997. Toward a homogeneous moment-magnitude determination AE Pap. et al., 1997 for earthquakes in Greece and the surrounding area. Bull. Seism. Soc. Am., 87, 474-483. Papazachos B.C., Comninakis P.E., Karakaisis G.F., Karakostas B.G., Papaioannou ChA., Papazachos C.B. and AE Pap. et al., 2000 Scordilis E.M., 2000. A catalogue of earthquakes in Greece and surrounding area for the period 550BC-1999. Publ. Geophys. Laboratory, University of Thessaloniki, 1, 333pp. http://geophysics.geo.auth.gr/ss/ Papadimitriu P., 1988. Etude de la structure du manteau superieur de l’Europe et modelisation des ondes de volume AE Papadimitriu, 1988 engendrees par des seismes Egeens, PH. D. Thesis, University of fParis, VII, 211 pp. AE Papaz. and Papai., 1997 Papazachos C. and Papaioannou Ch., 1997. The macroseismic field of the Balkan area. Jour. Seismology, 1, 181-201. Papazachos B.C, Savaidis A.A., Papaioannou Ch. A. and Papazachos C.B., 1999. The S. Balkan dBank of Shallow AE Papaz. et al. 1999 and Intermediate Depth Earthquake Macroseismic Data. XXII Gen. Ass. of the IUGG, Birmingham, UK July 1999 (abstracts volume). Pasolini C., Albarello D., Gasperini P., D’Amico V. and Lolli B., 2008. The attenuation of seismic intensity in Italy: Part IT Pasolini et al., 2008 II: Modeling and Validation, Bull. Seism. Soc. Am., 98, 692-708. Pino N.A., Giardini D. and Boschi E., 2000. The December 28, 1908, Messina Straits, Southern Italy, earthquake: IT Pino et al., 2000 waveform modelling of regional seismograms. J. Geoph. Res. 105, B11, 25473-25492. Pino N.A., Palombo B., Ventura G., Perniola B. and Ferrari G., 2008. Waveform modelling of historical seismograms of IT Pino et al., 2008 the 1930 Irpinia earthquake provides insight on "blind" faulting in Southern Apennines (Italy). J. Geoph. Res. 113, B05303, doi:10.1029/2007JB005211. Pondrelli, S., Ekström G., Morelli A., and Primerano S., 1999. Study of source geometry for tsunamigenic events of the IB Pondrelli et al., 1999 Euro-Mediterranean area, in International Conference on Tsunamis, 297–307, UNESCO Books, Paris. Pondrelli S., Ekstrom G. and Morelli A., 2001. Seismotectonic re-evaluation of the 1976 Friuli, Italy, seismic sequence. IT Pondrelli et al., 2001 Journal of Seismology, 5, 73-83. Pondrelli S., Morelli A., Ekström G., Mazza S., Boschi E. and Dziewonski A.M., 2002. European-Mediterranean IT Pondrelli et al., 2002 regional centroid-moment tensors: 1997-2000. Phys. Earth Planet. Int., 130, 71-101. Pondrelli S., Morelli A. and Ekström G., 2004. European-Mediterranean Regional Centroid Moment Tensor catalogue: IT Pondrelli et al., 2004 solutions for years 2001 and 2002. Phys. Earth Planet. Int., 145, 1-4, pp. 127-147. Pondrelli S., Salimbeni S., Ekström G., Morelli A., Gasperini P. and Vannucci G., 2006. The Italian CMT dataset from IT Pondrelli et al., 2006 1977 to the present. Phys. Earth Planet. Int., 159, 3-4, 286-303. Redmayne D. W. and Musson R. M. W., 1987. The Dunoon earthquake of 16 September 1985. British Geological UK Redmayne & M., 1987 Survey Global Seismology Report, 311. Rueda J. And Mezcua J., 2002. Estudio del terremoto de 23 de Septiembre de 2001 en Pego (Alicante). Obtención de IB Rueda & M., 2002 una relación mbLg-Mw para la Península Ibérica, Rev. Soc. Geol. España, 15 (3-4), 159-173. Sargeant S. L., Stafford P. J., Lawley R., Weatherill G. Weston A-J S., Bommer J. J., Burton P. W., Free M., Musson R. UK Sargeant et al., 2008 M. W., Kuuyour T. and Rossetto T., 2008. Observations from the Folkestone, U.K., Earthquake of 28 April 2007. Seismological Research Letters, 79, 5, 672-687. IT SED-MT RealTime Local Swiss Moment Tensor Catalogue. http://www.seismo.ethz.ch/mt/ UK Simpson, 2006 Simpson B. A. (ed), 2006. Bulletin of British earthquakes 2006. British Geological Survey Report, OR/07/003. Slejko D., Neri G., Orozova I., Renner G. and Wyss M., 1999. Stress field in Friuli (NE Italy) from fault plane solutions IT Slejko et al., 1999 of activity following the 1976 mainshock. Bull. Seism. Soc. Am. 89, 1037-1052. Susagna T., Roca A., Goula X. and Batlló J., 1994. Analysis of macroseismic and instrumental data for the study of the IB Susagna et al., 1994 November 19, 1923 earthquake in the Aran Valley (Central Pyrenees). Natural Hazards, 10, 7-17. Tatevossian R., Ugalde A., Batlló J. and Macià, R., 2006. Macroseismic and instrumental data comprehensive IB Tatev. et al., 2006 analysis: Earthquake of June 2, 1930 in Catalonia, Russian Journal of Earth Sciences, 8, 11 pp., doi:10.2205/2005ES000195 Taymaz, T., Jackson J. and Westaway R., 1990. Earthquake mechanisms in the Hellenic Trench near Crete. Geophys. AE Taymaz et al. 1990 J. Int., 102, 695-731. Tertulliani A.,1990. Indagine sugli effetti del terremoto del Canavese 11 febbraio 1990. Rapporto interno ING, Roma, 4 IT Tertulliani, 1990 pp. Walker A. B. and Browitt C. W. A., 1995. UK earthquake monitoring 1994/95: Sixth annual report. British Geological UK Walker and B., 1995 Survey Technical Report, WL/95/14. Walker A. B., Ford G. and Musson R. M. W., 1993. The Caernarfon Bay earthquake, 29 July 1992 (3.5 ML). British UK Walker et al., 1993 Geological Survey Technical Report, WL/93/05.

Walker A. B., 1997. UK earthquake monitoring 1996/97: Seventh annual report. British Geological Survey Technical UK Walker, 1997 Report, WL/97/16. Walker A. B., 2002. UK earthquake monitoring 2001/2002: Thirteenth annual report. British Geological Survey UK Walker, 2002 Technical Report, IR/02/053. Walker A. B., 2000. UK earthquake monitoring 1999/2000: Eleventh annual report. British Geological Survey Technical UK Walker,. 2000 Report, WL/00/03. Westaway R., 1993. Fault rupture geometry for the : a working hypothesis. Ann. Geof. 36, 51- IT Westaway, 1993 70. Wright F., Richards J. A., Musson R. M. W. and Henni P. H. O., 1994. The Grange-over-Sands earthquake of 26 June UK Wright et al., 1994 1993 (3.0 ML). British Geological Survey Technical Report, WL/94/11.

NA4 Distributed Archive of Historical Earthquake Data

Tab.G - Relations and coefficients adopted for determining NA4 earthquake parameters

BW. st. h Reg Code Source Relation [I = I (Mw, D)] Relation [Mw = Mw (I, D)] dev. (km) Papazachos and AE BkLit Papaioannou 0.48 Mw = 0.621*I +2.035logR+0.002R-0.78 10 (1997)

NA4 cal. IB Bk1(MI) I = 2.419 + 1.184*Mw - 0.0003*R - 2.564*log(R) 0.60 Mw = (I - 2.419 + 0.0003*R + 2.564*log(R))/1.184 10 (perf. by MI)

IT Bk1(MI) NA4 cal. I = 2.181 + 1.654*Mw - 0.011*R - 3.252*log(R) 0.64 Mw = (I - 2.181 + 0.011*R + 3.252*log(R)) / 1.654 10

UK Bk2(Ic3) NA4_Ic3 ? Mw = 0.874*I + 0.497*ln(R) + 0.00034*R - 1.453 1.34

will supply parameters. CH In case of need the relation below will be adopted NA4 cal. Bk1(MI) I = 0.094 + 1.93*Mw - 0.0007*R - 3.057*log(R) 0.78 Mw = (I - 0.094 + 0.0007*R + 3.057*log(R))/1.93 10 (perf. by MI)

MEEP Q C alpha K AE 320 2.50 0.004 3.00 IB 950 2.38 0.003 3.30 IT 300 1.50 0.009 2.10 UK 720 1.57 0.003 7.20 CH 1800 2.58 0.001 2.80

1 NA4 Distributed Archive of Historical Earthquake Data

Boxer deg. of st. dev. weight freedom a coeff. x b coeff. x Intens. Coeff. a Coeff. B Coeff. C of regr. norm. factor of regr. M-Io eq. M-Io eq. AE 2.0 1.37392 0.18275 0.00000 0.2195 16.2000 3 4.517 0.242 3.0 3.16855 0.08826 0.01938 0.2584 51.1250 13 4.0 4.02939 0.06906 0.01615 0.2939 105.4706 14 5.0 5.08576 0.07371 0.00000 0.2345 53.3158 17 6.0 5.83892 0.04663 0.00000 0.2357 26.2308 11 7.0 6.10379 0.04030 0.00000 0.3406 19.1429 5 8.0 6.57308 0.00791 0.00000 0.4240 7.8000 3 IB 2.0 2.90825 0.07783 0.00000 0.2412 22.5000 16 7.950 -0.450 3.0 3.38110 0.07073 0.00000 0.2512 20.4211 17 4.0 2.89200 0.04926 0.04067 0.1813 24.0833 9 5.0 4.97347 0.06432 -0.01335 0.0000 18.6667 0 IT 2.0 2.72168 0.06502 0.02294 0.2543 18.5385 10 1.831 0.500 3.0 2.91254 0.05820 0.02368 0.2919 55.7222 15 3.9 25.81147 -0.86902 0.00000 0.0000 7.0000 0 4.0 2.66605 0.15810 0.00000 0.2011 88.8889 16 5.0 3.72208 0.03952 0.02307 0.2298 73.8125 13 6.0 4.29467 0.00505 0.02452 0.1619 120.7143 4 7.0 4.45819 0.15915 0.00000 0.2482 117.0000 4 8.0 3.66031 0.19864 0.00884 0.0000 86.6667 0 9.0 5.14999 0.23878 0.00000 0.0000 16.5000 0 UK 2.0 1.78417 0.06393 0.02404 0.0068 6.2500 1 0.330 0.667 3.0 2.11746 0.09871 0.00000 0.1167 52.8462 11 4.0 2.41146 0.10227 0.00000 0.1411 87.6000 13 5.0 3.57644 0.06216 0.00000 0.2052 121.6000 3 CH 2.0 3.78845 0.04826 0.00000 0.3610 21.8000 8 3.835 0.190 3.0 3.77517 0.06630 0.00000 0.3023 42.8667 13 4.0 3.75863 0.07859 0.00000 0.3505 52.1176 15 5.0 4.44374 0.06161 0.00000 0.2007 73.1000 8 6.0 4.97757 0.04223 0.00000 0.2751 33.0000 2

2 Ann. 1

1$'LVWULEXWHG$UFKLYHRI+LVWRULFDO(DUWKTXDNH'DWD

'HWDLOHGLPSOHPHQWDWLRQSODQIRUWKHQH[WPRQWKV PRQWKV 6HSWHPEHU

$VUHTXHVWHGE\WKH1(5,(6FRRUGLQDWRU'*LDUGLQLLQ&UHWHWKHIROORZLQJGHWDLOHG LPSOHPHQWDWLRQSODQKDVEHHQSUHSDUHGDIWHUFRQVLGHULQJKLVPHVVDJHRI6HSWHPEHU DWWDFKHG WKH'RZLQFOXGHGLQWKHVHFRQG\HDU1(5,(6UHSRUW DWWDFKHG DQGWKH FRPPHQWVE\WKHSDUWQHUV

$UFKLYHJHQHUDOSKLORVRSK\7KHFRQVWUXFWLRQRIWKHGLVWULEXWHGDUFKLYH LQYHQWRU\ VWXGLHVGDWDSRLQWV LVWKHPDLQJRDORIWKH1$PRGXOH7KH1$DUFKLYHFRQVLVWVRI ORFDOSRVVLEO\FRKHUHQWSXEOLFXQLWVDQGDFHQWUDOFRUH HDUWKTXDNHVWXGLHVLQYHQWRU\DQG ,'3VGDWDEDVHIRUODUJHHYHQWVDWOHDVW WREHFRQVWDQWO\XSGDWHG ,WLVDJUHHGWKDWWKH1$LQYHQWRU\DQGDUFKLYHZLOOFRQVLGHU³DYDLODEOH´PDWHULDORQO\ ³$YDLODEOH´PHDQVPDWHULDOZKLFKLVSXEOLVKHGRULQVRPHVWDEOHDQGSXEOLFIRUPIRU LQVWDQFHRQWKHZHE8QRIILFLDORU³LQSURJUHVV´PDWHULDOZLOOEHFRQVLGHUHGZKHQUHOHDVHG LQWRWKHSXEOLFGRDLQLQVRPDPDQQHU$Q\QHZPDWHULDOFRUUHVSRQGLQJWRWKHVHVWDQGDUGV ZLOOEHFRQVLGHUHGDVVRRQDVLWZLOODSSHDU

$UFKLYHORFDOLPSOHPHQWDWLRQ1$SDUWQHUVDUHUHVSRQVLEOHIRUGHYHORSLQJWKHLUSXEOLF DUFKLYH HDUWKTXDNHVWXGLHVDQGGLJLWDO,'3V ,QSDUWLFXODU

‡ ,WDO\DQG6ZLW]HUODQGPDWHULDOLVIRXQGLQWKHRIILFLDO'%0,DQG(&26ZHEVLWHVRULQ PRUHUHFHQWSXEOLVKHGVWXGLHV1HZ'%0,DQG(&26UHOHDVHVZLOOEHLPSOHPHQWHG DVVRRQDVWKH\ZLOODSSHDU ‡ &DWDOXQ\DSGIPDWHULDOLVDYDLODEOHRQWKHZHE ‡ 8.%*6ZLOOSXEOLVKSGIPDWHULDODWOHDVW ‡ $87+ZLOOSXEOLVKSGIPDWHULDODWOHDVW

,QDGGLWLRQ DVIDUDVSRVVLEOH 

‡ ,1*90,ZLOOEHUHVSRQVLEOHIRUD DGGLWLRQDOPDWHULDOUHODWHGWRWKH0HGLWHUUDQHDQ E PDWHULDOIURPWKH%DONDQVF LQYHQWRU\LQJDQGOLQNLQJGDWDIURP6LVIUDQFH ‡ ,*&ZLOOEHUHVSRQVLEOHIRUWKHPDWHULDOIURPWKH,EHULDQSHQLQVXOD ‡ PDWHULDOIURPRWKHUDUHDVZLOOEHVHDUFKHGIRURQDFDVHE\FDVHEDVLV

$UFKLYHFHQWUDOFRUH7KHLQYHQWRU\LVFRPSLOHGDQGXSGDWHGE\,1*90,RQWKHEDVLVRI WKHDERYHPHQWLRQHGORFDODUFKLYHV 7KHLQYHQWRU\LVQRZGHYHORSHGIRUWKHWLPHZLQGRZ0•DQHZZHELQWHUIDFH LVDOVREHLQJGHYHORSHG1$FDQGHYHORSLWZLWK0•DOVRIRUWKHWLPHZLQGRZ ZKLOHIRUWKHUHPDLQLQJWLPHZLQGRZVWKHZRUNZLOODGGUHVVPDLQO\WKHODUJHHYHQWV DVDJUHHG$QLQYHQWRU\ZLOOEHDYDLODEOHIURP,1*90,E\1RYHPEHU WKHUHOHYDQWPDWHULDOVKRXOGEHPDGHDYDLODEOHE\WKHSDUWQHUVE\WKHHQGRI'HFHPEHU 7KHLQYHQWRU\RIWKHODUJHHYHQWVZLOOEHGHOLYHUHGE\,1*90,E\0DUFK DQGWKHUHOHYDQWPDWHULDOZLOOEHPDGHDYDLODEOHDFFRUGLQJO\ ,'3VUHODWHGWRWKHODUJHHYHQWVKDYHEHHQFROOHFWHGDQGKRPRJHQLVHGDFFRUGLQJWRWKH DJUHHGSURFHGXUHVIRUWKHWLPHZLQGRZ ' 7KHXSJUDGHGYHUVLRQ ZLOOEHPDGHDYDLODEOHE\)HEUXDU\7KHYHUVLRQZLOOIROORZE\0D\ 7KHSRUWLRQZLOOEHGHDOWVWDUWLQJIURP-XQH

(DUWKTXDNHSDUDPHWHUGHWHUPLQDWLRQIURP,'3V$VIRUHDUWKTXDNHVZLWK,'3VVHYHUDO PHWKRGVDUHWRGD\DYDLODEOH0((3GHYHORSHGZLWKLQ1$%DNXQDQG:HQWZRUWK FRPLQJZLWKYDULHGLPSOHPHQWDWLRQVRIWZDUH%R[HUWKHPHWKRGXVHGE\$87+HWF0DQ\ of them are promising, none is perfect, yet. The main point remains the magnitude determination, which is strongly dependent on the regional attenuation; the location determination appear more successful and not so dependent, although to date, no method is completely successful in distinguishing coastal and offshore events, and related problems.

To improve this situation, NA4 will perform a coordinated testing campaign based on homogeneous software, input data and procedures. The steps are as follows:

• updated versions of the eligible software will be delivered to the partners under the coordination of BGS and INGV-MI by October 2008 • data will be available as mentioned at point 5. Some compilation details are to be quickly agreed, such as the translation of F (Felt), D (Damage), range intensities, etc. into the code format (sub tests on the influence of different translations can also be performed). It is important that NA4 partners adopt a common translation, no matter how they deal with for their national issues • NA4 partners will be responsible for calibrating the models in their regions. INGV-MI will help IGC and AUTH • results will be made available on the above mentioned website so that they can be monitored by all partners • results and problems will be discussed in a NA4 meeting (4-5 December) • further regional tests and meetings, involving also non NA4 partners, will follow in the first months of 2009.

5. Archive, IDPs calibration subset. For performing the first phase of point 4, a subset of IDPs of 20th century earthquakes with reliable instrumental M estimates is needed. The calibration procedure must be transparent in terms of both software and input data. Therefore, input IDPs and M are to be of the same value and quality of those of the other time-windows, that is, they must: a) correspond to the requirements of point 1; b) be compiled homogeneously according to NA4 standard. For this purpose:

• About 15 events are needed for the calibration, while another 10 will be used for testing the efficiency of the methods. NA4 partners will make available to INGV-MI, by October 20, two sets of IDPs of at least 15 plus 10, 20th century events, selected at their choice in order to cover the largest possible magnitude range for each area, together with M and epicentral instrumental location (and related sources). An ad- hoc format will be delivered soon. ETHZ data being available from the web, only a list is needed • INGV-MI will homogenise them, provide additional data from other areas if possible and make the homogeneous dataset progressively available through a dedicated website.

It is recommended not to limit the time-window of this dataset only to 1980-on, in order to cover a good magnitude range. The only requirement is that data are accompanied by reliable instrumental magnitude estimates and that reliable instrumental M to Mw conversion are available.

6. Parametric earthquake catalogue. A preliminary, T(o) earthquake catalogue, Mw≥5, 1000-1600 will be compiled by January 2009. INGV (Mediterranean and the Balkans) and BGS (Continental Europe) will share the coordination. Earthquake parameters will be determined according to varied methods from the most reliable material (IDPs or studies) and one solution will be flagged. The updated version 1000-1750 will be compiled by March 2009. The portion 1751-1900 will be dealt starting from June 2009. 7. Relationships with GFZ initiatives. As discussed in Crete: a) GFZ is performing an independent goal, funded by private initiatives and, therefore, constrained by them: b) GFZ has been consistently informed of NA4 goals and deliverable scheme. Therefore, as soon as GFZ will be able to release public material, contacts will be established between NA4 and GFZ for a possible joint venture.

Summary schedule and deadlines

Oct. 10 INGV-MI delivers format for the calibration IDPs subset Oct. 20 Partners deliver to INGV-MI the calibration IDPs subset Oct. 30 BGS and INGV-MI release the software for eq. parameters determination Nov. 10 INGV-MI releases the calibration, homogenised IDPs subset Nov. 30 INGV-MI releases the inventory 1601-1750 Dec. 4/5 NA4 meeting on eq parameters determination Dec. 31 Partners BGS, IGC and AUTH release material 1601-1750 Jan. 31 BGS and INGV-MI releases T(o) catalogue 1000-1600 Feb. 28 INGV-MI releases homogenised IDPs 1601-1750 Mar. 31 BGS and INGV-MI releases T(o) catalogue 1000-1750 Mar. 31 INGV-MI releases inventory 1900-1963 (large events) Apr. 30 Partners release material 1900-1963 (large events) May 31 INGV-MI releases homogenised IDPs 1900-1963 (large events)

2009 further regional and/or global meetings

June 1 and forward: to be planned in detail Ann. 2

NA4 Distributed Archive of Historical Earthquake Data

Minutes of the NERIES NA4 Workshop on earthquake parameters determination from macroseismic datapoints Milano, INGV, 4-5 December 2008

The workshop was organised to match the following goals:

1) to review the current methods for earthquake parameters determination from Macroseismic Data Points 2) to review the calibration of the three main methods (Boxer, Bakun & W., MEEP) in the NA4 partner areas 3) to review the performance of methods and calibrations in the NA4 partner areas 4) to review the state-of-the-art of NA4, with special reference to the European Macroseismic Database, NA4 Working File, public versus restricted data policy, NA4 parametric catalogue, etc.

The workshop gathered NA4 partners and leading scientists in the topics, namely W. Bakun, P. Gasperini, M.J. Jimenez, O. Scotti. It was also attended by the NERIES director, D. Giardini. Schedule and participants are given in the Annex.

M. Stucchi, ad interim NA4 coordinator, introduced the state-of-the-art of NA4, with special reference to the recently released deliverable D4, and the scope of the Workshop. D. Giardini, NERIES coordinator, introduced the expectations by NERIES, also in the view of ready-to-start projects like SHARE (EU), GEM, etc.

The current approaches for earthquake parameters determination were reviewed by R. Musson (MEEP), W. Bakun (Bakun & W.), P. Gasperini (Boxer). The last two also introduced the new versions in progress, the main improvement being the implementation of the boot strap technique. M. Locati introduced the datasets to be used for calibrating and validating the methods in the five selected regions (UK, Switzerland, Iberia, Italy, Aegean). Data provided by the partners were homogenised according to geographical issues and to the NA4 D4 standards. Partners had access to the data through a dedicated web page.

The results of the homework performed by the partners were presented by R. Musson, C. Meletti, Ch. Papaioannou, S. Alvarez Rubio and A.A. Gomez Capera, introduced by X. Goula. Each presentation was followed by questions and comments; experiences and hints for improving the exercise were exchanged.

The main part of the workshop was concluded with the agreement of the partners to review the exercises (input data, methods applications etc.) in the light of the discussion and to submit the final results early 2009. It has been recommended to review the data making sure that instrumental parameters are really instrumental and that the same dataset is used to calibrate the three approaches.

The results are intended as: NA4 Distributed Archive of Historical Earthquake Data

• a set of coefficients for the three approaches for each region • a set of parameters (lat, lon, Mw, DMw) obtained from the application of the mentioned coefficients and approaches to the validation datasets.

The set of coefficients will be used to determine NA4 parameters for the events 1000- 1750. The experimental nature of the exercise has been stressed again; the results will not challenge the current, national determinations.

In addition to the main topic, C. Ventouzi presented the so-called “Greek method”, the software of which was said to be delivered in a few months. O. Scotti presented the results of previous, similar initiatives in France, and outlined the current project for assessing intensity attenuation relationships on a European scale. W. Bakun discussed the issue of uncertainty. A. Rovida discussed the influence on the results caused by varied translations of the alphanumerical macroseismic assignments (F, D, etc.). P. Albini showed examples of the influence of improved historical information.

The last part of the Workshop was devoted to review the state-of-the-art of the other NA4 activities, stressing the importance of matching the deadlines.

Participants

Domenico Giardini NERIES coordinator

Donat Faeh ETH, Zuerich Sonia Alvarez Rubio

Roger W.M. Musson BGS, Edinburgh

Xavier Goula IGC, Barcelona

Christos Papaioannou ITSAK, Thessaloniki Crisanthi Ventouzi

Maria Josè Jimenez CSIC, Madrid

Oona Scotti IRSN, Fontenay-aux-Roses

William Bakun USGS, Menlo Park

Paolo Gasperini Univ. of Bologna

Massimiliano Stucchi INGV, Milano Paola Albini Carlo Meletti Antonio A. Gomez Capera Mario Locati Andrea Rovida Carmen Mirto NA4 Distributed Archive of Historical Earthquake Data

NERIES NA4 Workshop on earthquake parameters determination from macroseismic datapoints Milano, INGV, 4-5 December 2008

Schedule

December 4

09.30 M. Stucchi, introduction to the Workshop (NERIES, NA4, European Macroseismic Database, calibration initiative, etc.) 10.10 D. Giardini, NERIES, NA4, SHARE, GEM 10.30 The current approaches for earthquake parameter determination, basic principles: R. Musson P. Gasperini W. Bakun 11.30 coffee break 12.00 The calibration sub-dataset: description, M. Locati 12.20 The calibration exercise: Italy, C. Meletti 13.00 lunch 14.00 The calibration exercise: United Kingdom, R.M.W. Musson Greece, Ch. Papaioannou Switzerland, D. Faeh Iberian peninsula, A.A. Gomez Capera 16.00 coffee break 16.30 Previous experiences: France, O. Scotti 17.00 Discussion 18.00 Closing

20.30 Dinner

December 5

09.30 The “Greek” approach, Ch. Papaioannou 09.50 About uncertainty, W. Bakun 10.10 On the influence of “anomalous” macroseismic assignments, A. Rovida 10.30 Open discussion 11.30 coffee break 12.00 What next for NA4 earthquake parameter determination? 13.00 lunch 14.00 Other NERIES NA4 issues (D4, Working File, DB software, next steps, etc.)

16.00 closing Ann. 3

Boxer 3.3 recalibration tutorial

Paolo Gasperini (November 13, 2008)

This text is intended to be a user guide to the calibration of the empirical relationships used by Boxer to estimate macroseismic magnitude. The magnitude formula, originally proposed by Sibol et al. (1987) and adopted by Gasperini et al. (1999), is 2 2 Mi = a + bLog ()Ai + cI0 where a, b and c are empirical parameters, I0 the epicentral intensity and Ai the isoseismal area for the i-th class of intensity observations, which is defined as 2 Ai = Ri where Ri (in Km) is the average epicentral distance of localities of the i-th intensity class. With “class” we intend a range of intensity values that are considered to behave similarly. In principle they should correspond to single intensity values (VII, VII-VIII etc.) but the scarceness of intensity observations within some of them may suggest to merge one or more adjacent classes into a single one (for example VII together with VII-VIII). The magnitude of the earthquake is computed as the trimmed mean of estimates made using the different classes available for the given earthquake.

To compute the coefficients a, b and c, on the basis of a set of intensity observations relative to earthquakes for which the instrumental magnitude is known, Boxer code must be run in COMPCOEF mode (by inserting a COMPCOEF card as first card of the deck in the inpparm.dat file). In COMPCOEF mode, Boxer reads all of the other cards from inpparm.dat and copies them, as they are, to the file outparm.dat, excepting for the M-I0COEF card, the MAGCOEF card as well as for the coefficient cards following the MAGCOEF card. At the end of the run, Boxer adds to outparm.dat new versions of such cards with empirical coefficients computed in the run, so that the outparm.dat file can be used as the inpparm.dat file for further computations using the new coefficients.

The user has to build an inpparm.dat file including COMPCOEF as first card. The optional parameter of such card allows to specify the minimum number of intensity observations Nmm required to define an average isoseismal radius Ri (in Km) used in computations (default:5). When, for a given earthquake, the i-th class contains less than Nmm intensity observations, the corresponding radius is not considered in regression computations. The user must also include in inpparm.dat file the required cards to assign the name of the data file (card FILE), to specify the formats of the event summary records (FORMATE) and of the intensity records (FORMATI) as well as a MAGCOEF card and the corresponding coefficient cards to specify the limits of the intensity classes to be computed. The first field Aiv(i) of each i-th coefficient card of the input deck is assumed as the lower limit, while the first field of the following coefficient card Aiv(i+1) as upper limit of the i-th intensity class. The upper limit for the last (n-th) class is assumed to be Aiv(n)+0.5. Each i-th class will include intensity estimates larger than or equal to the lower limit and lower than the upper limit.

Examples: if Aiv(i)=7.0 and Aiv(i+1)=8.0 the i-th class will include intensity VII and VII-VIII, if Aiv(i)=7.0 and Aiv(i+1)=7.5 the i-th class will include only intensity VII, if Aiv(i)=7.5 and Aiv(i+1)=8. 0 the i-th class will include only intensity VII-VIII, if Aiv(i)=7.5 and Aiv(i+1)=8. 1 the i-th class will include both intensity VII-VIII and VIII. The class limits on coefficient cards must be in increasing order. Non-standard intensity classes like “felt” can be defined and used by assigning them a non-standard intensity value (like for example 4.6) and adding a specific coefficient card, according to the increasing order. For example if we define the class “felt” as intensity 4.6 and the first field of three consecutive coefficient cards are Aiv(i)=4.0, Aiv(i+1)=4.6 and Aiv(i+2)=5.0, the i-th class will include intensities IV and IV-V and the i+1th class will include only “felt” . All other fields of coefficients cards are ignored in COMPCOEF mode.

Example INPARM.DAT file

%% INPUT TEST FILE % COMPCOEF FILE CATALOGUE.DAT % FORMATE (i5,5i3,1x,a20,f5.2,i5,f5.2,f5.1) FORMATI (2f8.4,f5.1,1x,a20) % MAGCOEF 9 2.00000 3.00000 4.00000 5.00000 6.00000 6.50000 7.00000 8.00000 9.00000 %

The user must also provide in a separate file (named in the FILE card) a set of intensity data. The format is the same of that used in normal determination of epicentral parameters with the only difference that the event summary records must also include as 10th and 11th fields respectively, the standard error of the instrumental magnitude and the epicentral intensity (see description of FORMATE card). If the magnitude standard deviation is not known for all earthquakes we suggest to assume a constant value (like as 1.0) for all. Earthquakes with no instrumental magnitude are simply ignored in COMPCOEF mode.

Example data file

1908 12 28 4 20 24 Calabria meridionale 7.32 800 0.37 11.0 38.2650 15.5830 11.0 Faro Superiore 38.2340 15.6600 11.0 Ferrito 38.2310 15.7580 11.0 Melia 38.0980 15.7240 11.0 Mosorrofa 38.1120 15.6960 11.0 Nasiti …

Using the inpparm.dat file above and the data file CATALOGUE.DAT included in the kit the resulting outparm.dat file is the following

FILE CATALOGUE.DAT % FORMATE (i5,5i3,1x,a20,f5.2,i5,f5.2,f5.1) FORMATI (2f8.4,f5.1,1x,a20) % % MAGCOEF 9 2.00000 2.72087 0.07619 0.01864 0.2404 17.6087 20 3.00000 2.94930 0.05368 0.02389 0.2554 47.2222 33 4.00000 2.97227 0.08629 0.01681 0.2542 77.5135 34 5.00000 3.68142 0.05178 0.01977 0.2784 63.3333 30 6.00000 3.89773 0.03547 0.02257 0.2258 47.9500 17 6.50000 4.09289 0.05895 0.01653 0.1613 36.7647 14 7.00000 4.14954 0.07644 0.01530 0.1891 80.9412 14 8.00000 4.31525 0.07538 0.01623 0.0767 82.3750 5 9.00000 5.41298 0.18338 0.00000 0.1894 28.2000 3 M-I0COEF 1.715 0.497

Boxer computes all the coefficients by the ordinary least square regression method. It also computes common statistics of the regression and performs a specific test of significance for the H0 hypothesis that parameter c (dependence on I0) is different from 0. When the test fails (p<0.05), parameter c is fixed to 0 and the regression is recomputed with respect to parameters a and b only. This usually happen for high intensity classes for which the magnitude becomes almost independent of I0 (for example the last class of test case above). Some reports of such computations can be found on OUTFULL.DAT file. In the example output reported below the fields reported in the first line (please note that it is wrapped onto two lines) are respectively: lower intensity limit, number of data, a coefficient, ±standard error, b coefficient, ±standard error, c coefficient, ±standard error, standard deviation of regression, R2 (% variance explained by model), number of degrees of freedom.

6.00 20 3.8977+/- 0.2241 0.0355+/- 0.0235 0.0226+/- 0.0043 0.2258 87.8546 17.0000

data used for magnitude range 6.0<=m< 6.5 20

m i0 r log area n wgt mcom res 7.32 11.0 133.6 4.749 118 2.4609 7.43 -0.11 5.61 8.0 34.9 3.582 12 0.2503 5.80 -0.19 6.25 10.0 31.0 3.479 37 0.7716 6.58 -0.33 6.48 10.0 59.4 4.045 70 1.4599 6.73 -0.25 5.57 7.0 14.4 2.813 9 0.1877 5.28 0.29 6.65 10.0 73.2 4.226 39 0.8133 6.79 -0.14 5.96 8.0 39.4 3.688 28 0.5839 5.82 0.14 5.79 8.5 34.8 3.580 26 0.5422 5.98 -0.19 5.24 8.0 30.5 3.465 13 0.2711 5.77 -0.53 5.38 8.0 28.0 3.391 20 0.4171 5.75 -0.37 4.86 7.5 33.4 3.545 33 0.6882 5.61 -0.75 6.46 9.5 45.3 3.809 95 1.9812 6.45 0.01 6.06 8.0 40.6 3.713 43 0.8968 5.83 0.23 5.86 8.5 40.3 3.708 54 1.1262 6.02 -0.16 6.89 10.0 78.1 4.283 188 3.9208 6.81 0.08 5.65 7.0 15.0 2.851 42 0.8759 5.29 0.36 5.89 8.0 51.4 3.919 102 2.1272 5.89 0.00 4.56 6.5 42.6 3.755 6 0.1251 5.35 -0.79 5.74 7.5 10.2 2.515 6 0.1251 5.39 0.35 5.06 7.5 6.6 2.141 18 0.3754 5.33 -0.27

The reliability of coefficient computations for each given intensity class can be evaluated on the basis of the standard deviation of the regression, of the R2 and of the number of degree of freedom. High standard deviation and low R2 and number of degrees of freedom might suggest to discard the class from further computation. Ann. 5

NEtwork of Research Infrastructures for European Seismology

Notes for the use of the code by W. Bakun for epicentral determination from macroseismic datapoints

(Note by C. Meletti & V. D’Amico, INGV Milano-Pavia) 30th October 2008

With reference to the document “Detailed implementation plan for the next 8 months (months 29-36), by M. Stucchi (30 sept. 2008)”, these notes are intended for accompanying the code which W. Bakun agrees to deliver to NA4 for the NA4 calibration initiative. it_neries.f: this is the source code released by W. Bakun with some light modifications made by us. These changes allow to apply several attenuation relationships and to modify the outputs. In the first rows there is the complete description of the changes we made. The dialog is the same, but you must now specify the number of the relation to be used. In this version 2 magnitudes are calculated: the first one is obtained by using only points with I<8, the second one is obtained by using all IDPs. The first option (introduced by W. Bakun) is due to the consideration that weaker structures in Italy before 1900 may affect the highest observed intensities. The location is determined by using all IDPs.

The detailed description of the changes is the following:

a) choosing among several relations to calculate magnitude from intensity data points. To be selected during the dialog: 1. California_log-lin relation (Bakun, 2006) 2. Italy_relation derived from attenuation law by Pasolini et al.(2008) 3. Germany_linear relation (Hinzen and Oemisch, 2001) (if one want adds a new relation, see below)

b) Format of output files: in the line with the input parameters, last field is the number of the selected attenuation relation; c) Format of first output files (i.e. Magnitude values): for each trial epicenter, lists both intensity magnitudes MI computed using IDPs<8 only and all IDPs; d) Print at screen on separate rows the coordinates of intensity center, MI(<8) and MI(all) and write them at the end of the first output file; e) Grid dimension increased (ndim=500,nnod=200000) to allow for denser grid (up to 200000 trial epicenters);

If any user want adds a different attenuation calibration to the collection, he can modify the source code after the following comment at line 138: c Choosing relation to convert intensity xmmi(im) to magnitude xmii3(im)

There is a block of if instructions and each relation begins with a line like this: else if(iop.eq.5) then where iop is the number of the relation. The user can add a new block with a new number (iop) for the relation and add the relation in the form: xmii3(im)=f(xmmi(im), dist)

The it_neries.exe file is the executable version of this code.

Pale2002.bak: this is an example of input file for the 2002 Palermo earthquake. The first line is an alphanumeric header. The second line gives parameters for the grid search. Longitude and latitude of center of grid, half length of grid (200 km), and grid point spacing (5km). The third and succeeding lines are longitude, latitude and intensity assignment for as many assignments as available.

Pale2002.mw: This is the example of the output that one can obtain with the enclosed input file and by choosing the relation no.1. In this file all the trial epicentres are reported with 2 magnitudes: first column is the magnitude evaluated with only IDPs with I<8, second column is the magnitude evaluated with all IDPs. In this example (no IDPs with I>=8) the 2 values are the same. At the end of the file the final location and relevant magnitudes are reported.

Pale2002.rms: This is the example of the output that one can obtain with the enclosed input file and by choosing the relation no.1. In this file all the trial epicentres are reported together with the correspondent RMS.

Ann. 4 Ann. 6 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

NERIES - NA4

Workshop on

EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS MILANO, INGV 4-5 DECEMBER 2008

AEGEAN AREA ITSAK ver 1.1

Christos Papaioannou Chrisa Ventouzi Senior Researcher Geophysist MSc ITSAK N.O.A. GREECE GREECE

THESSALONIKI MARCH 2009 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

LIST OF CONTENTS

1. General 1

2. BAKUN method 2

3. MEEP code 11

4. BOXER code 17

5. CONCLUSIONS 23

REFERENCES

WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

1. GENERAL For the NA4 initiative for the calibration and validation of various computer codes for the determination of the source parameters of earthquakes on the basis of elaboration of macroseismic data, ITSAK provided the Intensity Data Points (macroseismic observations) of 56 earthquakes for validation and calibration. Among them 20 were selected for calibration and 16 for validation. All these earthquakes are of the instrumental era that is after the installation and operation of a seismograph in Athens National Observatory in 1911. All these earthquakes are shallow events that are their instrumental focal depth is less than 50 km.

Fig 1. Geographical distribution of the epicenters of earthquakes used for the CALIBRATION procedure of the NA4 initiative, compiled by INGV-MI.

Fig 2. Geographical distribution of the epicenters of earthquakes used for the VALIDATION procedure of the NA4 initiative, compiled by INGV-MI.

The geographical distribution shows that most of the earthquakes are on land-earthquakes or almost on land. However there are near-coast offshore and far offshore earthquakes. The input data sets for the various codes were prepared also by the INGV-Milano and the authors are

1 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA obliged to them. The map in figure (1) shows the geographical distribution of the epicenters of the earthquakes for calibration and the map in figure (2) shows the epicenters of the earthquakes used for the validation of the codes. These maps were prepared by INGV-MI.

2. BAKUN METHOD BAKUN method (Bakun Wentworth, 1997) requests as input a data set of MDP and an empirical relation holding between magnitude as a function of distance and corresponding intensity. A calibration procedure could be performed by compiling a scaling relation based on the data selected and provided by the INGV-Milano group and apply them in the VALIDATION data set. However during the last 30 years for the Aegean area and surroundings several relations were published based on a much greater data set. Some of them were used for the quantification of historical of early instrumental era earthquakes. For this reason available relations were tested for the CALIBRATION and VALIDATION data sets. For the application of the BAKUN method for the Aegean area two empirical relations for the magnitude estimation based on macroseismic data were examined. They were proposed by Papazachos and Papaioannou (1997) for Greece (Aegean area) and they are: MI=−1.580 + 0.699 + 2.510 log( ∆+ 6) (1a) MI=+0.62 2.035 log R + 0.002 R − 0.78 (1b) where M is the magnitude, I the intensity value, ∆ the epicentral distance in km and R is the hypocentral distance.

A comparison for the above equations for Intensity levels IMM = V, VI, VII, VIII and IX is shown in the graph of figure (3).

9

8

7

6 Macroseismic Magnitude (M)

5

4 0 5 10 15 20 25 30 35 40 45 50 Epicentral Distance (Ä)

Fig 3. Dependence of the macroseismic magnitude on distance using equation 1a (continuous line) and

2 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

1b for focal depth 10km (small dashed line) and 15 km (large dashed line). The comparison shows that the difference is of the order of the error in the value of the macroseismic intensity (ie. ±0.5 intensity unit). Table I summarizes the results of the BAKUN code using equation (1a), that is the date and origin time of the earthquake, the instrumental coordinates and magnitude, the coordinates of the macroseismic epicenter, the distance between the instrumental and macroseismic epicenter (in Km) and macroseismic magnitudes using the IDP with I<8 and all the data.

Table I. Instrumental parameters of the earthquakes used for calibration and output results using equation (1a) and the BAKUN code.

Instr. Epicenter Instr. Macroseismic Epic. Epic. MI MI DATE Or.Time Diff lon lat M lon lat <8 all (km)

1915 08 07 15 04 20.500 38.370 6.7 20.5595 38.4438 10 7.3 7.4 1952 06 27 13 09 23.500 40.700 5.0 24.4929 39.4338 164 7.1 7.1 1952 10 13 16 42 23.400 39.000 5.3 23.3582 38.9349 8 6.1 6.2 1952 12 17 23 03 24.500 34.400 7.0 23.8075 36.5202 244 7.3 7.3 1955 01 03 01 07 22.100 39.200 5.6 22.2071 39.3013 15 6.4 6.4 1956 07 09 03 11 25.960 36.640 7.5 25.6531 36.5678 29 7.5 7.5 1961 10 02 07 21 22.000 37.000 5.7 21.8737 37.1619 21 6.4 6.4 1964 04 29 04 21 23.700 39.200 5.6 23.7389 39.2725 9 6.5 6.5 1967 03 04 17 58 24.600 39.200 6.6 24.3079 39.3758 32 6.7 6.7 1968 02 19 22 45 25.000 39.500 7.1 25.0214 39.5330 4 7.0 7.0 1973 11 29 10 57 23.750 35.180 6.0 23.5728 35.1387 17 6.6 6.6 1974 11 14 14 26 23.090 38.500 5.2 23.1291 38.4431 7 5.8 5.8 1978 06 20 20 03 23.270 40.610 6.5 23.2233 40.7474 16 6.7 6.7 1981 02 24 20 53 23.000 38.070 6.7 23.0865 38.1260 10 7.3 7.3 1981 12 19 14 10 25.260 39.000 7.2 25.1955 39.0089 6 7.4 7.4 1992 07 23 20 12 24.400 39.810 5.4 24.8415 40.2593 63 6.1 6.1 1992 11 18 21 10 22.440 38.340 5.9 22.5482 38.3059 10 6.1 6.1 1995 06 15 00 15 22.150 38.270 6.4 22.1939 38.3091 6 6.2 6.2 1999 09 07 11 56 23.537 38.062 6.0 23.6482 38.0660 10 6.5 6.6 2003 08 14 05 14 20.539 38.744 6.3 20.7100 38.6889 16 6.5 6.4

Max Stucchi suggested to the partners after a discussion with Bill that “MDPs with I<3 should preferably not be used. Therefore, events where such MDPs are playing a major role should be substituted”. Following this suggestion the code was executed after the removal of IDP with values IMM<3. As the number of these IDP is small compared to the total number of IDP for the particular earthquakes the results were not influenced. Equation (1b) takes into account the depth, h, of the earthquake. In order to apply this equation we consider that the earthquakes in the Aegean have a depth of the order of 10 km excluding the epicenters in the Southern Aegean area where the seismogenic layer of the shallow

3 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA earthquakes can reach up to 50 km (Papazachos, 1990; Papazachos et al., 2000). Furthermore, the term that is related to the depth of the earthquakes in empirical predictive equations for strong motion parameters in the Aegean area found to have value around 10 (Papazachos and Papaioannou, 1997; Theodulidis and Papazachos, 1992; Skarlatoudis et al, 2003). Therefore the code was executed using equation (1b) with depth of 10 and 15 km. The results were almost the same. Table (II) shows the results of the BAKUN code using equation (1b). The format is the same as in table (I).

Table II. Instrumental parameters of the earthquakes used for calibration and output results using equation (1b) and the BAKUN code.

Instr. Epicenter Instr. Macroseismic Epic. Epic. MI MI DATE Or.Time Diff M <8 all lon. lat. lon. lat (km)

1915 08 07 15 04 20.500 38.370 6.7 20.5595 38.4438 10 6.8 6.8 1952 06 27 13 09 23.500 40.700 5.0 24.4479 39.4338 162 6.7 6.7 1952 10 13 16 42 23.400 39.000 5.3 23.3582 38.9349 8 5.7 5.7 1952 12 17 23 03 24.500 34.400 7.0 23.8976 36.6103 252 7.2 7.2 1955 01 03 01 07 22.100 39.200 5.6 22.2071 39.3013 15 6.0 6.0 1956 07 09 03 11 25.960 36.640 7.5 25.7432 36.5678 21 7.1 7.1 1961 10 02 07 21 22.000 37.000 5.7 21.8737 37.1619 21 6.0 6.0 1964 04 29 04 21 23.700 39.200 5.6 23.8289 39.2725 14 6.2 6.2 1967 03 04 17 58 24.600 39.200 6.6 24.2178 39.4659 44 6.5 6.5 1968 02 19 22 45 25.000 39.500 7.1 24.9313 39.5330 7 6.8 6.8 1973 11 29 10 57 23.750 35.180 6.0 23.4377 35.0035 35 6.5 6.5 1974 11 14 14 26 23.090 38.500 5.2 23.1291 38.4431 7 5.5 5.5 1978 06 20 20 03 23.270 40.610 6.5 23.2233 40.7474 16 6.3 6.3 1981 02 24 20 53 23.000 38.070 6.7 23.0865 38.1260 10 6.9 6.9 1981 12 19 14 10 25.260 39.000 7.2 25.1054 39.0540 15 7.2 7.2 1992 07 23 20 12 24.400 39.810 5.4 24.7064 40.2142 52 5.8 5.8 1992 11 18 21 10 22.440 38.340 5.9 22.5482 38.3059 10 5.8 5.8 1995 06 15 00 15 22.150 38.270 6.4 22.1939 38.3091 6 5.9 5.9 1999 09 07 11 56 23.537 38.062 6.0 23.6031 38.0660 6 6.0 6.0 2003 08 14 05 14 20.539 38.744 6.3 20.8001 38.6438 25 6.1 6.1

Comparing tables (I) and (II) we can conclude: 1. There is no difference using either equation (1a) or (1b). 2. For most earthquakes the macroseismically determined epicenter is in good agreement with the instrumental. The greatest difference was found for the earthquake of 1952.12.17 with the epicenter far offshore the southern coasts of Crete. Bakun (2000) suggests that the Bakun and Wentworth’s (1997, 1999) methodology is appropriate for the analysis of seismic intensity observations for earthquakes located within a network of intensity observations. The analysis for sources located outside the network of MMI

4 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

observations, e.g., earthquakes located offshore, is more complicated and the source locations cannot be reliably estimated from intensity data for sources outside the network of intensity assignment sites. If only a small number of intensity observations are available, it is difficult to discriminate moderate earthquakes located near the California north coast from large earthquakes located far offshore. In order to examine these problems the calculation were repeated with modified input that is larger and denser. Table (III) summarizes the results of this attempt using equation (1b) with depth = 10 km.

Table III. Instrumental parameters of selected earthquakes used for calibration and revised output results using equation (1b) and the BAKUN code with a denser grid. Macroseismic Instr. Epicenter Instr. Epic. MI MI DATE Or. Time lon. lat. M lon. lat. <8 All

1952 06 27 13 09 23.500 40.700 5.0 23.5019 40.5779 5.5 5.5 1952 12 17 23 03 24.500 34.400 7.0 23.9156 36.6193 7.2 7.2 1992 07 23 20 12 24.400 39.810 5.4 24.7154 40.2052 5.8 5.8

Comparing the results appeared in Table (III) and (II) one can see that only the earthquake of 1952.06.27 (on land earthquake) was significantly improved. The difference between the instrumental and macroseismic epicenter is 14 km and the macroseismic magnitude is much smaller. For the rest of them (off shore earthquakes) no improvement is found. The closest locality for the earthquake of 1952.12.17 is at a distance of 99 km and for the earthquake of 1992.07.23 the closest site to the epicenter is 45 km. In order to examine any dependence between the differences in magnitude versus the distance differences the corresponding data were plotted in the graph of figure (4).

1

CALIBRATION DATA

0.5 mac

- M 0 instr M

-0.5

-1 0 25 50 75 100 125 150 175 200 225 250 275 Instr. Ep - Macroseismic Ep (km) Fig 4. Plot of the differences in magnitude versus the distance differences for the calibration data set. The plot in figure (4) shows no dependence of the magnitude differences as function of

5 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA distance differences. The average difference in magnitude for the CALIBRATION data set was found equal to 0.16±0.49. The results for the earthquake of 1952.12.17 (∆Dist=252 km ∆Μ=0.2) were excluded. Even though equations (1a) and (1b) are considered reliable as they were based on the elaboration of a large volume of macroseismic data of about 500 earthquakes, it was decided to use the NERIES calibration data for the compilation of a new one having the type of equation (1b). This was in agreement to the comment of the NA4 coordinator. The data (magnitude, epicentral distance, site macroseismic intensity) were elaborated with the code MINUIT ver94.1 (James, 1998) which is based on the simplex method of Nelder and Maed (1965) and the variable metric method of Fletcher (1970). A fixed focal depth of 10 km was considered in the calculations. The data sample consists of 4768 data points and the derived equation is: =+ + −σ = MI0.538 2.056 log R 0.001 R 0.32, M 0.49 (2) The results of the application of equation (2) are shown in Table (IV).

Table IV. Instrumental parameters of the earthquakes used for calibration and output results using the NERIES calibration equation (2) and the BAKUN code.

Instr. Epicenter Instr. Macroseismic Epic. Epic. MI MI DATE Or.Time Diff M <8 all lon. lat. lon. lat (km)

1915 08 07 15 04 20.500 38.370 6.7 20.5595 38.4889 14 6.7 6.7

1952 06 27 13 09 23.500 40.700 5.0 23.5019 40.5779 14 5.5 5.5

1952 10 13 16 42 23.400 39.000 5.3 23.3582 38.9349 8 5.8 5.8 1952 12 17 23 03 24.500 34.400 7.0 23.9337 36.6216 2 7.1 7.1

1955 01 03 01 07 22.100 39.200 5.6 22.2071 39.3013 15 6.1 6.1

1956 07 09 03 11 25.960 36.640 7.5 25.7883 36.5678 17 7.0 7.0

1961 10 02 07 21 22.000 37.000 5.7 21.8827 37.1709 22 6.0 6.0

1964 04 29 04 21 23.700 39.200 5.6 23.8740 39.3175 20 6.3 6.3

1967 03 04 17 58 24.600 39.200 6.6 24.2178 39.5110 48 6.5 6.5 1968 02 19 22 45 25.000 39.500 7.1 24.9313 39.4879 6 6.6 6.8

1973 11 29 10 57 23.750 35.180 6.0 23.3926 35.0035 38 6.5 6.5 1974 11 14 14 26 23.090 38.500 5.2 23.1742 38.4431 10 5.6 5.6

1978 06 20 20 03 23.270 40.610 6.5 23.2233 40.7474 16 6.3 6.3 1981 02 24 20 53 23.000 38.070 6.7 23.0865 38.1260 10 6.8 6.8

1981 12 19 14 10 25.260 39.000 7.2 25.1054 39.0540 15 7.1 7.1 1992 07 23 20 12 24.400 39.810 5.4 24.6974 40.2052 51 5.9 5.9

1992 11 18 21 10 22.440 38.340 5.9 22.5482 38.3059 10 5.9 5.9

6 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

1995 06 15 00 15 22.150 38.270 6.4 22.2390 38.3091 9 5.9 5.9

1999 09 07 11 56 23.537 38.062 6.0 23.6031 38.1110 8 6.0 6.1 2003 08 14 05 14 20.539 38.744 6.3 20.8181 38.6438 27 6.1 6.1

Based on the results of the calibration procedures it was decided to use equation (1b) with a denser grid of points (dellat=2) for the validation input files. The results are shown in Table (V).

Table V. Instrumental parameters of the earthquakes used for validation and output results using equation (1b) and the BAKUN code with dellat=2 and h=10km.

Macroseismic Epic. Instr Instr. Epicenter Epic. MI MI M SN DATE Or. Time Diff. Diff. lon. lat. M lon. lat. <8 all (km)

1. 1941 03 01 03 52 22.540 39.670 6.3 22.4984 39.6481 6.4 6.4 4 -0.07

2. 1947 10 06 19 55 21.680 36.960 7.0 21.6531 36.8145 7.0 7.0 16 -0.04

3. 1948 04 22 10 42 20.570 38.710 6.5 20.4708 38.6970 6.5 6.7 9 0.00

4. 1953 03 18 19 06 27.530 40.020 7.4 25.4301 39.3098 7.0 7.2 196 0.40

5. 1953 08 09 07 41 20.500 38.430 6.4 20.5956 38.4289 6.5 6.6 8 -0.13

6. 1953 09 05 14 18 23.100 37.900 5.8 23.0291 37.9220 5.7 5.7 7 0.09

7. 1953 08 11 03 32 20.450 37.850 6.8 20.5213 38.1658 6.9 7.0 36 -0.13

8. 1965 03 09 17 57 23.890 39.160 6.1 23.8756 39.1828 6.3 6.3 3 -0.21

9. 1967 01 04 05 58 22.000 38.400 5.5 21.9721 38.1961 5.5 5.5 23 0.02

10. 1969 06 12 15 13 24.800 34.400 6.1 25.3301 36.3841 6.2 6.2 226 -0.09

11. 1974 11 14 14 26 23.090 38.500 5.2 23.1381 38.4341 5.5 5.5 8 -0.30

12. 1975 01 08 19 32 22.790 38.160 5.5 22.7511 38.2619 5.6 5.6 12 -0.10

13. 1975 02 02 21 12 21.370 40.460 4.6 19.8583 40.0827 6.3 6.3 135 -1.73

14. 1975 02 28 19 51 22.440 40.630 4.5 22.6579 39.0314 6.2 6.2 179 -1.68

15. 1995 05 04 00 34 23.634 40.541 5.3 23.7915 40.5709 5.4 5.4 14 -0.15

16. 1997 11 18 13 07 20.570 37.580 6.6 19.9282 37.0524 7.5 7.5 82 -0.94

The distribution of the IDP of the earthquake of 1953.03.18 shows a unilateral distribution, with almost all the data being located west of the epicenter. The earthquake of 1969.06.12 and 1997.11.18 is a case similar to the event of 1952.12.17 of the calibration data set (far offshore events). Furthermore, the macroseismic field of the 1997.11.18 earthquake shows a strong directivity pattern (Margaris et al., 1998), which was observed also by Papazachos et al (1997). No obvious explanation can be found for the events of 1975.02.02 and 1975.02.28. An attempt was made to examine any “bad” distribution of the IDP and also to see the distribution of the RMS values for the data of the event 1975.02.02. The plot in figure (5) shows the distribution of the

7 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

RMS values, the instrumental location and the epicenter based on the elaboration of macroseismic data. The IDP are also shown. Grey squares stand for intensity values 5, the pink symbols stand for intensities 4, 4.5 and the purple circles for intensity values 3 and 3.5.

42

41.5 0. 65

0. 6

0. 55 41 0. 5

0. 45 Instrumental epicenter 0. 4 40.5 0. 35 Output of the code Epicenter 0. 3 0. 25 40 0. 2

0. 15

0. 1 39.5 0. 05

39

20 20.5 21 21.5 22 22.5 23 Fig 5. Output results for the earthquake of 1975.02.02 Contours stand for the RMS values of the BAKUN program (see text for details).

The plot in figure (6) is similar to the plot in figure (4). It is obvious that for distance differences less than 50 km the average difference in the magnitude estimation is 0.1 magnitude units.

2

VALIDATION DATA 1.5

1

0.5 mac

- M - 0 instr

M -0.5

-1

-1.5

-2 0 25 50 75 100 125 150 175 200 225 250 Instr. Ep - Macroseismic Ep (km) Fig 6. Plot of the differences in magnitude versus the distance differences for the validation data set.

8 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

However in order to investigate the source of the large difference for the earthquakes with S/N 4, 13 and 14 of Table (IV) the opinion of W. Bakun presented during the workshop in Milano was considered together with the geographical distribution of the RMS values as shown in figure (5). Bakun (2008) suggested that the least squares’ algorithm with distance weighting in his routine pushes the intensity center location away from discordant data, which, in the case of earthquake 13, are the nearby intensity III and V observations near the epicenter. It then finds physically-unreasonable global minima far from all the observations. Bakun (2009) proposed as solution to scale the grid search region parameter with the dimension of the area of intensity observations. This is supported by the plot in figure (5) where a local RMS minimum is located close to the instrumental epicenter. Based on these assumptions the code was executed and a significant improvement was found for the earthquakes 13 and 14. For the earthquake 4 a considerable improvement was found if we consider as initial input epicenter the average location with intensities having values I≥VIII. The final results are shown in Table (V). The relations: MI=+∗−0.847 3.813 log R5.58 (3) and MI=+0.46 1.56 log R + 0.0018 R + 0.79 (4) proposed by Papaioannou (1984) and Papazachos (1992) respectively, which were used for the quantification of earthquakes based on macroseismic data were also applied to the earthquakes of the validation data set excluding the earthquakes with SN 10 and 16 which are far offshore events. The results are shown in Table (VI).

Table VI. Instrumental parameters of the earthquakes used for validation and output results using equations (1b: Papazachos and Papaioannou, 1997), (3: Papaioannou, 1984) and (4: Papazachos, 1992) in the BAKUN code with dellat=2 and h=10 km.

INSTRUMENTAL Results based on Results based on Results based on DATA equation (1b) Papaioannou (1984) Papazachos (1992) S/N DATE lon. lat. M lon. lat. M lon. lat. M lon. lat. M

1. 1941 03 01 22.540 39.670 6.3 22.4984 39.6481 6.4 22.498 39.648 6.3 22.426 39.594 6.2

2. 1947 10 06 21.680 36.960 7.0 21.6531 36.8145 7.0 21.707 36.869 7.0 21.581 36.760 6.8

3. 1948 04 22 20.570 38.710 6.5 20.4708 38.6970 6.7 20.489 38.697 6.7 20.453 38.697 6.4

4. 1953 03 18 27.530 40.020 7.4 27.3518 40.0440 7.5 27.658 40.026 7.8 27.262 40.116 7.1

5. 1953 08 09 20.500 38.430 6.4 20.5956 38.4289 6.6 20.596 38.429 6.5 20.614 38.429 6.4

6. 1953 09 05 23.100 37.900 5.8 23.0291 37.9220 5.7 23.011 37.922 5.4 23.083 37.922 5.7

7. 1953 08 11 20.450 37.850 6.8 20.5213 38.1658 7.0 20.521 38.166 7.2 20.539 38.094 6.7

8. 1965 03 09 23.890 39.160 6.1 23.8756 39.1828 6.3 23.858 39.129 6.1 23.930 39.201 6.2

9. 1967 01 04 22.000 38.400 5.5 21.9721 38.1961 5.5 21.972 38.214 5.1 21.936 38.178 5.5

11. 1974 11 14 23.090 38.500 5.2 23.1381 38.4341 5.5 23.138 38.434 5.1 23.174 38.434 5.6

9 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

12. 1975 01 08 22.790 38.160 5.5 22.7511 38.2619 5.6 22.751 38.262 5.2 22.733 38.226 5.6

13. 1975 02 02 21.370 40.460 4.6 21.4439 40.4971 4.7 21.426 40.497 4.1 22.733 38.226 5.6

14. 1975 02 28 22.440 40.630 4.5 22.5138 40.2025 4.9 22.532 40.149 4.4 22.550 40.076 5.3

15. 1995 05 04 23.634 40.541 5.3 23.7915 40.5709 5.4 23.756 40.571 5.0 25.053 38.967 6.8

The results of the application of the equation (2) derived on the basis of the calibration data set are given in Table (VII).

Table VII. Instrumental parameters of the earthquakes used for validation and output results using equations (2: NERIES), in the BAKUN code with dellat=2 and h=10 km.

Results based on INSTRUMENTAL DATA NERIES equation (2) S/N DATE

lon. lat. M lon. lat. M

1. 1941 03 01 22.540 39.670 6.3 22.462 39.648 6.5

2. 1947 10 06 21.680 36.960 7.0 21.545 36.724 7.3

3. 1948 04 22 20.570 38.710 6.5 20.434 38.697 6.5

4. 1953 03 18 27.530 40.020 7.4 27.221 40.162 7.6

5. 1953 08 09 20.500 38.430 6.4 20.631 38.428 6.6

6. 1953 08 11 20.450 37.850 6.8 20.539 38.111 7.0

7. 1953 09 05 23.100 37.900 5.8 23.065 37.940 5.9

8. 1965 03 09 23.890 39.160 6.1 23.947 39.218 6.5

9. 1967 01 04 22.000 38.400 5.5 21.954 38.178 5.6

11. 1974 11 14 23.090 38.500 5.2 23.156 38.434 5.7

12. 1975 01 08 22.790 38.160 5.5 22.733 38.243 5.8

13. 1975 02 02 21.370 40.460 4.6 21.444 40.497 4.9

14. 1975 02 28 22.440 40.630 4.5 22.532 40.253 5.2

15. 1995 05 04 23.634 40.541 5.3 23.701 40.570 5.6

Table (VIII) gives the differences in the epicentral coordinates (∆dis) and magnitude (∆Μ), estimations for the final CALIBRATION data set of earthquakes compared to the instrumental data.

10 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Table VIII. Comparison of the differences in epicentral coordinates and magnitude estimations among the various empirical relations used for the earthquakes of the validation data set.

EQUATION EQUATION EQUATION EQUATION INSTRUMENTAL DATA Eq. 1b 2 3 4 DATE S/N lon. lat. M ∆dis ∆Μ ∆dis ∆Μ ∆dis ∆Μ ∆dis ∆Μ

1. 1941 03 01 22.540 39.670 6.3 4 -0.1 7 -0.2 4 0.0 4 0.1

2. 1947 10 06 21.680 36.960 7.0 16 0 29 -0.3 10 0.0 24 0.2

3. 1948 04 22 20.570 38.710 6.5 9 -0.2 12 0 7 -0.2 10 0.1

4. 1953 03 18 27.530 40.020 7.4 15 -0.1 31 -0.2 11 -0.4 25 0.3

5. 1953 08 09 20.500 38.430 6.4 8 -0.2 11 -0.2 8 -0.1 10 0.0

6. 1953 09 05 23.100 37.900 5.8 7 0.1 5 -0.1 8 0.4 3 0.1

7. 1953 08 11 20.450 37.850 6.8 36 -0.2 30 -0.2 36 -0.4 28 0.1

8. 1965 03 09 23.890 39.160 6.1 3 -0.2 8 -0.4 4 0.0 6 -0.1

9. 1967 01 04 22.000 38.400 5.5 23 0 25 -0.1 21 0.4 25 0.0

11. 1974 11 14 23.090 38.500 5.2 8 -0.3 9 -0.5 8 0.1 10 -0.4

12. 1975 01 08 22.790 38.160 5.5 12 -0.1 11 -0.3 12 0.3 9 -0.1

13. 1975 02 02 21.370 40.460 4.6 7 -0.1 7 -0.3 6 0.5 275 -1.0

14. 1975 02 28 22.440 40.630 4.5 48 -0.4 43 -0.7 54 0.1 62 -0.8

15. 1995 05 04 23.634 40.541 5.3 14 -0.1 7 -0.3 11 0.3 213 -1.5

Average Value 15 -0.14 17 -0.27 14 0.07 50 -0.21

Standard Deviation 12 0.13 12 0.18 14 0.29 84 0.53

Based on the comparison of the results for the VALIDATION data set presented in Tables (VI), (VII) and (VIII) it is concluded that equation (2 determined within NA4 NERIES module gives similar results to the other equations developed on the basis of larger data sets.

3.0 MEEP CODE R. Musson developed the code MEEP for the estimation of the source parameters of earthquakes based on macroseismic data. This code applied using the CALIBRATION data for the estimation of suitable vales for the input parameters. The file CONSTS.DAT includes the values for the constants used by the program, which are:

11 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Margin for Io above observed value RIMARG Regional Q value: Q Scaling factor: C Default depth value: STARTH Regional alpha: ALPHA Isoseismal K factor: CK Intensity file quality factor threshold: IQUAL Frequency of human perception (Hz): F Geometric spreading (N) RN Several trials were performed using various values for the above parameters. It was observed that the parameter that mostly affects the results in the Geometric spreading, RN. The values applied in the executions are the following: Margin for Io above observed value 0.7 – 2.2 Regional Q value: 200 - 350 Scaling factor: 2.1 – 2.5 Default depth value: 5-15 Regional alpha: 0.001 – 0.005 Isoseismal K factor: 3 - 4 Intensity file quality factor threshold: 1 Frequency of human perception (Hz): 3 Geometric spreading (N) 0.3 – 1.5

1.0 0.8 0.6 0.4 0.2 macro 0.0 - M -0.2 instr

M -0.4 -0.6 -0.8 MEEP 1.6 - ATTENUATION -1.0 34 35 36 37 38 39 Distance EPICENTERInstr - EPICENTERMacro (km)

Fig 7 Plot of the differences in magnitude versus the distance differences for the calibration data set for the attenuation solution of the MEEP code

Sixteen set of the values for the parameters of the CONSTS.DAT file resulted in acceptable solutions, which is locations relative close to the instrumental epicenters and magnitude estimations with average magnitude differences less than 1.0 magnitude units. Table (IX) summarizes the average differences in the epicenters and the magnitude estimation with the errors. The results in graphical form are shown in figure (7).

12 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Table IX. Average values for the epicenter determinations and magnitude estimations using the results of the attenuation solution of the MEEP code.

ATTENUATION ATTENUATION CENTROID

Average Average Average difference in S.D. difference in S.D. difference in S.D. epicenter magnitude magnitude

34.393 45.190 -0.765 0.578 0.820 0.551

35.012 46.061 0.085 0.680 0.820 0.551

35.012 46.061 -0.300 0.663 0.820 0.551

35.764 48.611 -0.495 0.626 -0.130 0.651

35.764 48.611 -0.625 0.646 -0.760 0.562

35.764 48.611 0.030 0.743 -0.480 0.626

35.764 48.611 0.030 0.743 -0.605 0.657

36.756 53.688 -0.160 0.672 0.035 0.744

36.909 55.412 -0.115 0.674 0.035 0.744

36.909 55.412 -0.325 0.631 -0.260 0.661

37.061 53.325 -0.360 0.612 0.140 0.649

37.061 53.325 -0.565 0.571 0.235 0.646

37.068 53.216 0.195 0.693 -0.105 0.631

37.431 55.624 0.815 0.629 -0.320 0.597

37.560 55.576 0.815 0.629 -0.535 0.571

38.467 55.270 0.805 0.610 -0.320 0.597

The results for the magnitude estimations for the centroid solutions are also shown in the last two columns of Table (IX). Based both on the average values and the S.D. of the results in Table (IX) and considering the number of exaggerated (M~8.5) macroseismic magnitudes estimations the values of the parameters related to the highlighted row were adopted as the best for the Aegean area. The values are the following: Margin for Io above observed value 0.75 Regional Q value: 320 Scaling factor: 2.5 Default depth value: 10 Regional alpha: 0.004 Isoseismal K factor: 3 Intensity file quality factor threshold: 1 Frequency of human perception (Hz): 3 Geometric spreading (N) 0.35 The value for regional Q is in good agreement with the value Q=350 calculated by

13 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Papazachos (1992) using macroseismic data. The value of the scaling factor C (Frankel, 1994) is in good agreement with the value C=2.53 determined for California, as there are observations based on macroseismic data (Papazachos and Papaioannou, 1997) and instrumental data (Kiratzi and Papazachos 1984; Margaris and Papazachos, 1999) showing that the attenuation in California and Aegean area is almost the same. Table (X) gives the results for the calibration data set for the attenuation and centroid solutions.

Table X. Instrumental parameters of the earthquakes used for calibration and output results using the MEEP code for the attenuation and centroid solution using the above values for the input parameters.

MACROSEISMIC MACROSEISMIC Origin INSTRUMENTAL DATE Attenuation Centroid Time lat lon M lat lon M lat lon M

1915 08 07 15 04 38.370 20.500 6.7 38.479 20.536 6.8 38.463 20.623 6.8

1952 06 27 13 09 40.700 23.500 5.0 40.607 23.473 4.9 40.660 23.320 5.0

1952 10 13 16 42 39.000 23.400 5.3 38.967 23.436 5.1 38.970 23.320 5.0

1952 12 17 23 03 34.400 24.500 7.0 35.376 24.821 8.5 35.601 24.473 8.5

1955 01 03 01 07 39.200 22.100 5.6 39.224 22.107 5.3 39.278 21.973 5.3

1956 07 09 03 11 36.640 25.960 7.5 36.610 25.751 7.0 36.412 25.420 7.3

1961 10 02 07 21 37.000 22.000 5.7 37.152 21.882 5.4 37.234 21.865 5.4

1964 04 29 04 21 39.200 23.700 5.6 39.066 23.460 5.6 39.190 23.364 5.6

1967 03 04 17 58 39.200 24.600 6.6 40.942 23.595 7.5 40.982 23.589 7.5

1968 02 19 22 45 39.500 25.000 7.1 39.404 25.041 7.4 39.793 25.140 7.5

1973 11 29 10 57 35.180 23.750 6.0 35.109 23.675 6.5 35.415 23.723 6.2

1974 11 14 14 26 38.500 23.090 5.2 38.420 23.165 5.0 38.422 23.064 5.0

1978 06 20 20 03 40.610 23.270 6.5 40.707 23.227 6.4 40.690 23.198 6.4

1981 02 24 20 53 38.070 23.000 6.7 38.178 22.932 7.0 38.096 22.839 7.0

1981 12 19 14 10 39.000 25.260 7.2 39.238 26.453 8.5 39.173 26.201 8.5

1992 07 23 20 12 39.810 24.400 5.4 40.870 24.557 6.7 40.570 24.385 6.4

1992 11 18 21 10 38.340 22.440 5.9 38.333 22.544 5.5 38.390 22.643 5.5

1995 06 15 00 15 38.270 22.150 6.4 38.335 22.093 5.6 38.304 22.184 5.6

1999 09 07 11 56 38.062 23.537 6.0 38.168 23.627 5.8 38.067 23.714 5.7

2003 08 14 05 14 38.744 20.539 6.3 38.785 20.530 5.5 38.685 20.650 5.6

Another procedure for the estimation of the parameters C (:scaling factor) and K (: isoseismal factor) is to apply the code CALIMEEP.FOR. It allows the computation for the best K and

14 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

C parameters from the calibration dataset with the Q and regional alpha values being submitted to the code as input parameters. The final aim is to find the minimum misfit. During the various trials the following problems were raised. 1. The minimum misfits were resulted for low Q values (260-290) compared to previously determined for the area of Greece. 2. The code uses a constant value for the geometric spreading factor. 3. Even though the code gives as output the value of the scaling factor, C, starting with a value C=2.0, this initial value influences the results. 4. The output includes also the value of the parameter K even though Musson et al (2008) reported “The fifth line relates to the scaling of isoseismals, and will normally be left at 3.0. 5. The parameter RIMARG (:Margin for Io above observed value) has a default value of 0.5 However, this is not the case for countries having many of-shore earthquakes and this influence the results. For these reasons for the VALIDATION procedure the final input parameters adopted in the CALIBRATION procedure were also used (file: CONSTS.DAT). The results for the attenuation solution are shown in Table (XI) and for centroid solution in Table (XII).

Table XI. Instrumental parameters of the earthquakes used for validation and output results using the MEEP code for the attenuation solution.

Macroseismic Epic. Instrumental Data Or. Epicenter M DATE M Diff. Time mac Diff. lat Lon M lat lon (km)

19410301 0352 39.670 22.540 6.3 39.636 22.497 5.8 5 0.5

19471006 1955 36.960 21.680 7.0 36.837 21.634 7.1 14 -0.1

19480422 1042 38.710 20.570 6.5 38.631 20.506 6.3 10 0.2

19530318 1906 40.020 27.530 7.4 39.990 27.632 8.3 9 -0.9

19530809 0741 38.430 20.500 6.4 38.419 20.477 5.9 2 0.5

19530905 1418 37.900 23.100 5.8 37.913 23.109 5.5 2 0.3

19530811 0332 37.850 20.450 6.8 38.058 20.564 6.6 25 0.2

19650309 1757 39.160 23.890 6.1 39.119 24.055 6.5 15 -0.4

19670104 0558 38.400 22.000 5.5 38.256 21.961 4.9 16 0.6

19690612 1513 34.400 24.800 6.1 35.172 24.799 4.8 86 1.3

19741114 1426 38.500 23.090 5.2 38.420 23.165 5.0 11 0.2

19750108 1932 38.160 22.790 5.5 38.336 22.849 5.3 20 0.2

19750202 2112 40.460 21.370 4.6 40.656 21.537 4.4 26 0.2

19750228 1951 40.630 22.440 4.5 40.467 22.526 4.4 20 0.1

15 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

19950504 0034 40.541 23.634 5.3 40.579 23.674 5.0 5 0.3

19971118 1307 37.580 20.570 6.6 37.409 21.534 6.0 87 0.6

Table XII. Instrumental parameters of the earthquakes used for validation and output results using the MEEP code for the centroid solution.

Instrumental Macroseismic Epic. Instr Or. Epicenter Epicenter M DATE M Diff. Time mac Diff. lat lon M lat lon (km)

19410301 0352 39.670 22.540 6.3 39.640 22.535 5.8 3 0.5

19471006 1955 36.960 21.680 7.0 36.942 21.766 7.0 8 0.0

19480422 1042 38.710 20.570 6.5 38.731 20.642 6.3 7 0.2

19530318 1906 40.020 27.530 7.4 40.007 27.520 8.3 2 -0.9

19530809 0741 38.430 20.500 6.4 38.300 20.642 5.9 19 0.5

19530905 1418 37.900 23.100 5.8 37.900 22.963 5.6 12 0.2

19530811 0332 37.850 20.450 6.8 38.202 20.483 6.6 39 0.2

19650309 1757 39.160 23.890 6.1 39.160 23.684 6.5 18 -0.4

19670104 0558 38.400 22.000 5.5 38.270 22.006 5.1 14 0.4

19690612 1513 34.400 24.800 6.1 35.191 25.186 4.9 95 1.2

19741114 1426 38.500 23.090 5.2 38.422 23.064 5.0 9 0.2

19750108 1932 38.160 22.790 5.5 38.310 23.126 5.5 34 0.0

19750202 2112 40.460 21.370 4.6 40.596 21.434 4.4 16 0.2

19750228 1951 40.630 22.440 4.5 40.521 22.572 4.3 16 0.2

19950504 0034 40.541 23.634 5.3 40.545 23.600 5.0 3 0.3

19971118 1307 37.580 20.570 6.6 37.235 21.819 6.3 117 0.3

An attempt was also made to search in details the influence of the various parameters on the results. For this reason a test was performed for selected (1955.01.03, 1956.07.09, 1968.02.19 and 1992.07.23) earthquakes considering the following values of the parameters in the CONSTS.DAT Margin for Io above observed value 0.6-2.0 step: 0.1 Regional Q value: 250-400 step: 10

16 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Scaling factor: 2.0-2.8 step: 0.1 Default depth value: 5-25 step: 5 Regional alpha: 0.001-0.006 step: 0.001 Isoseismal K factor: 2.0-5.0 step: 0.5 Geometric spreading (N) 0.20-1.00 step 0.1 The calculations were performed by modifying the source code MEEP ver. 1.6 resulted in almost 4.9E06 calculations for every earthquake data set. The data elaboration of the best estimates (∆Μ=±0.1, ∆dist<30 km) shows that the value of the GEOMETRIC SPREADING factor plays the most important role in the results. Comparing Tables (XI) and (XII) we can see that there is no clear evidence that one of the solutions dominates over the other. The largest differences in the epicenter (worst cases) are related to the earthquakes of 1969.06.12 and 1997.11.18 which are far offshore earthquakes. The code resulted in good macroseismic epicenters for the two earthquakes of February 1975 which resulted in “peculiar” results using Bakun’s code.

4. BOXER CODE The Boxer method is an extension of the highest intensity technique (Gasperini et al., 1999). According to this method, one takes first the IDPs equal to Imax; if these are less than four, one adds the data from successively lower intensity levels until at least four data points are available. These are then trimmed by removing the most outlying 25% of the data, and the mean is taken of the remaining points. The idea of macroseismic epicenter as the center of the area of highest intensity has been used by many authors since 70s. Boxer is intended to determine the surface projection of the seismogenic fault which is of high importance especially for strong events. The program reads optional parameters from the file INPPARM.DAT. The earthquake data are read instead from a separate file whose name and format can be specified by the user (see below). Both summary data for each earthquake (date, magnitude etc.) and the list of intensity observations are read from this file. The program creates two kind of output: a shorter one on the file OUTSUMMARY.DAT, which contains a record for each earthquake including source parameters, and a longer one on the file OUTFULL.DAT also including details of computations. The procedure for the estimation of new regression coefficients also creates a file named OUTPARM.DAT which is a copy of file INPPARM.DAT with the new computed coefficients added. Each option card includes a “verb” field (from columns 1 to 10) and in most cases even a “parameters” field (from columns 11 to 80). Some option cards are followed by one or more additional data cards with a “parameters” field from columns 1 to 80. The verb identifies the scope of the card and must be written from column 1 with either upper or lower case characters. Papazachos (1989) used information on the fault length, L, for 21 shallow earthquakes with magnitude 5.5≤M≤7.2 in Greece and surrounding area to determine the relation (5) between L(in Km) and the magnitude, M. For 10 of these earthquakes the information is based on field observations of surface fault traces and for 11 earthquakes on the spatial distribution of aftershocks: =− logLM0.51w 1.85 (5)

Papazachos (1989) determined the following relation between the fault area, S (in Km2), and the magnitude on the basis of the spatial distribution of the aftershock foci of 10 shallow main shocks:

17 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

=− logSM0.70W 1.98 (6)

Considering a rectangular shape for the fault and the relations (5), (6) Papazachos (1989) proposed the following relation between the fault width, w (in Km), and the moment magnitude: =− logwM0.19W 0.13 (7) For the scaling relation holding between the magnitude, M and the maximum intensity, IO the following relation =− IMOW1.43 0.9 (8) proposed by Papazachos and Papaioannou (1997) was used. The initial INPPARM.DAT input file that was used for the elaboration of the CALIBRATION data set taking into account the previous relations was the following:

%% INPUT CALIBRATION DATA FILE % COMPCOEF 2 FILE boxer_C_Ic2_TH.dat OUTPUT 5 LENGCOEF -1.85 0.510 M-I0COEF 0.629 0.699 WIDCOEF -0.13 0.190 % FORMATE (i4,5i4,2x,a30,f4.2,1x,i5,1x,f5.2,1x,f5.1) FORMATI (1x,f6.3,1x,f6.3,2x,f5.1,1x,a20) % MAGCOEF 9 2.00000 3.00000 4.00000 5.00000 6.00000 6.50000 7.00000 8.00000 9.00000 %

The comparison between the instrumental parameters and those appeared in the output of the BOXER code is shown in Table (XI)

Table XIII. Instrumental parameters of the earthquakes used for calibration and output results using the BOXER code.

Origin INSTRUMENTAL MACROSEISMIC ∆dist DATE ∆Μ Time (km) lat lon lon M

1915 08 07 15 04 38.370 20.500 6.7 38.463 20.623 6.94 15 -0.24

1952 06 27 13 09 40.700 23.500 5.0 40.656 23.393 4.84 10 -0.54

18 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

1952 10 13 16 42 39.000 23.400 5.3 38.985 23.320 5.54 7 0.46

1952 12 17 23 03 34.400 24.500 7.0 36.022 23.907 4.84 188 2.16

1955 01 03 01 07 39.200 22.100 5.6 39.267 22.021 5.19 10 0.41

1956 07 09 03 11 36.640 25.960 7.5 36.493 25.429 6.59 50 0.91

1961 10 02 07 21 37.000 22.000 5.7 37.180 21.913 5.54 21 0.16

1964 04 29 04 21 39.200 23.700 5.6 39.155 23.605 5.19 10 0.41

1967 03 04 17 58 39.200 24.600 6.6 40.972 23.675 4.49 212 2.11

1968 02 19 22 45 39.500 25.000 7.1 39.517 25.000 6.24 2 0.86

1973 11 29 10 57 35.180 23.750 6.0 35.389 23.735 5.19 23 0.81

1974 11 14 14 26 38.500 23.090 5.2 38.403 23.097 4.84 11 0.36

1978 06 20 20 03 40.610 23.270 6.5 40.663 23.247 6.59 6 -0.09

1981 02 24 20 53 38.070 23.000 6.7 38.113 22.909 6.59 9 0.46

1981 12 19 14 10 39.000 25.260 7.2 39.161 26.254 6.24 88 0.61

1992 07 23 20 12 39.810 24.400 5.4 40.375 24.374 3.45 63 0.56

1992 11 18 21 10 38.340 22.440 5.9 38.422 22.597 4.84 16 2.45

1995 06 15 00 15 38.270 22.150 6.4 38.286 22.159 5.54 2 0.86

1999 09 07 11 56 38.062 23.537 6.0 38.094 23.728 6.94 17 -0.94

2003 08 14 05 14 38.744 20.539 6.3 38.684 20.649 5.54 12 0.76

2.5 2.0 1.5 1.0 0.5 macro 0.0 - M -0.5 instr

M -1.0

-1.5 BOXER Calibration -2.0 -2.5 0 50 100 150 200 250 Distance EPICENTERInstr - EPICENTERMacro (km)

Fig 8. Plot of the differences in magnitude versus the distance differences for the calibration data set for the code BOXER.

19 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Figure (8) depicts the differences in magnitude versus the distance differences for the calibration data set. It can be observed that there are cases where even for relative small differences in epicenters the difference in magnitude is significant. Large difference in epicenter location resulted in large magnitude difference as could be expected. BOXER code assigns the values of the coefficients of the formula: =+ MIw ab0 (9) to compute macroseismic magnitude from epicentral intensity alone when the data are not sufficient to apply the areal method (Gasperini et al. [1999]). The resulted values for the Aegean area are a= 4.517 and b=0.242.

The output OUTPARM.DAT file containing the above INPPARM.DAT which was used for the validation data set was the following: FILE boxer_V_Ic2_TH.dat OUTPUT 5 LENGCOEF -1.85 0.510 WIDCOEF -0.13 0.190 M-I0COEF 0.629 0.699 % FORMATE (i4,5i4,2x,a30,f4.2,1x,i5,1x,f5.2,1x,f5.1) FORMATI (1x,f6.3,1x,f6.3,2x,f5.1,1x,a20) % % MAGCOEF 9 2.00000 1.37392 0.18275 0.00000 0.2195 16.2000 3 3.00000 3.16855 0.08826 0.01938 0.2584 51.1250 13 4.00000 4.02939 0.06906 0.01615 0.2939 105.4706 14 5.00000 5.08576 0.07371 0.00000 0.2345 53.3158 17 6.00000 5.71546 0.05270 0.00000 0.2114 16.9231 11 6.50000 6.26646 0.02152 0.00000 0.2513 12.3333 7 7.00000 6.10379 0.04030 0.00000 0.3406 19.1429 5 8.00000 6.57308 0.00791 0.00000 0.4240 7.8000 3 9.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0

I The results for the validation and the comparison between the instrumental parameters and those appeared in the output of the BOXER code is shown in Table (XIV).

Table XIV. Instrumental parameters of the earthquakes used for validation and output results using the BOXER code.

Or. Instrumental Data Macroseismic Data ∆dist DATE ∆Μ Time (km) lat lon M lat lon M

19410301 0352 39.670 22.540 6.3 39.648 22.542 6.54 2 -0.24

19471006 1955 36.960 21.680 7.0 36.942 21.766 6.82 8 0.18

19480422 1042 38.710 20.570 6.5 38.747 20.617 6.50 6 0

19530318 1906 40.020 27.530 7.4 40.000 27.495 7.10 4 0.3

19530809 0741 38.430 20.500 6.4 38.496 20.582 6.58 10 -0.18

20 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

19530905 1418 37.900 23.100 5.8 37.917 23.000 6.11 9 -0.31

19530811 0332 37.850 20.450 6.8 38.164 20.563 6.78 36 0.02

19650309 1757 39.160 23.890 6.1 39.135 23.841 6.69 5 -0.59

19670104 0558 38.400 22.000 5.5 38.272 22.000 5.97 14 -0.47

19690612 1513 34.400 24.800 6.1 35.181 25.097 4.75 91 1.35

19741114 1426 38.500 23.090 5.2 38.403 23.097 5.85 11 -0.65

19750108 1932 38.160 22.790 5.5 38.374 22.708 5.73 25 -0.23

19750202 2112 40.460 21.370 4.6 40.690 21.497 5.37 28 -0.77

19750228 1951 40.630 22.440 4.5 40.528 22.555 4.63 15 -0.13

19950504 0034 40.541 23.634 5.3 40.545 23.605 5.74 2 -0.44

19971118 1307 37.580 20.570 6.6 37.335 21.648 6.53 99 0.07

The two graphs in figure (9) are histograms for the distance difference, ∆dist, between the instrumental determined epicenter and the output of the code BOXER for the calibrations (solid bars) and the validation (diagonal lines) data sets. The few cases with ∆dist > 80 km are related to off shore earthquakes.

6

BOXER Solutions

4 CALIBRATION VALIDATION

2 Number of obs.

0

0 20 40 60 80 100 120 140 160 180 200 220 240 Difference in horizontal dimensions (km)

Fig 9. Frequency histograms of the distance differences for the calibration and validation data sets used in the code BOXER.

According to the manual of BOXER kindly distributed by P. Gasperini to the NA4 partners, the code uses as default values for the constants of the relation holding between the macroseismic magnitude Mmac of the earthquake as a function of felt area and the maximum intensity, IO.

21 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

A second procedure based on Greek Data was also applied to the validation data based on the formulation of Sibol et al. (1987). In order to accomplish this, empirical relations holding between were compiled using the data of the calibration data set. The relation used is similar to the one proposed by Sibol et al (1987) for various intensity levels and has the form: 2 MIAmac=+ββ01() O + β 2 log () i (10) where, Ai is the isoseismal area for the i-th intensity class and IO is the maximum intensity. The area, Ai, is computed as: = π 2 ARi i (11) where Ri (in Km) is the average epicentral distance of localities belonging to the i-th intensity class. The results for the regression are shown in Table (XV). The calculations were performed using the code MINUIT ver94.1 (James, 1998) which is based on the simplex method of Nelder and Maed (1965) and the variable metric method of Fletcher (1970)

Table XV. Values of the constants of equation (10) and standard deviation for various intensity levels for the Aegean area based on the Calibration data.

Intensity Regression β value β value β value class Ο 1 2 S.D.

2.0 2.46030 0.12229 0.01076 0.0433 3.0 2.00000 0.14727 0.00972 0.0750 4.0 2.59530 0.12533 0.01486 0.0783 5.0 3.91626 0.10291 0.00794 0.1488 6.0 4.60100 0.05599 0.01616 0.1809 7.0 5.50000 0.04998 0.00772 0.1862 8.0 5.8964 0.10017 0.02511 0.2041 9.0 1.7043 0.02448 0.05779 0.0908

Using the above values in the INPARM.DAT input data file the code BOXER was executed for the VALIDATION data set and the results are shown in Table (XVI).

Table XVI. Instrumental parameters of the earthquakes used for validation and output results using the BOXER code and the constant values of equation (10) as shown in Table (XV).

Or. Instrumental Data Macroseismic Data ∆dist DATE ∆Μ Time (km) lat lon M lat lon M

19410301 0352 39.670 22.540 6.3 39.648 22.542 6.52 2 -0.22

22 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

19471006 1955 36.960 21.680 7.0 36.942 21.766 6.73 8 0.27

19480422 1042 38.710 20.570 6.5 38.747 20.617 6.50 6 0

19530318 1906 40.020 27.530 7.4 40.000 27.495 7.03 4 0.37

19530809 0741 38.430 20.500 6.4 38.496 20.582 6.54 10 -0.14

19530905 1418 37.900 23.100 5.8 37.917 23.000 6.08 9 -0.28

19530811 0332 37.850 20.450 6.8 38.164 20.563 6.75 36 0.05

19650309 1757 39.160 23.890 6.1 39.135 23.841 6.67 5 -0.57

19670104 0558 38.400 22.000 5.5 38.272 22.000 5.96 14 -0.46

19690612 1513 34.400 24.800 6.1 35.181 25.097 4.75 91 1.35

19741114 1426 38.500 23.090 5.2 38.403 23.097 5.88 11 -0.68

19750108 1932 38.160 22.790 5.5 38.374 22.708 5.73 25 -0.23

19750202 2112 40.460 21.370 4.6 40.690 21.497 5.37 28 -0.77

19750228 1951 40.630 22.440 4.5 40.528 22.555 4.63 15 -0.13

19950504 0034 40.541 23.634 5.3 40.545 23.605 5.74 2 -0.44

19971118 1307 37.580 20.570 6.6 37.335 21.648 6.53 99 0.07

The comparison of the results in Tables (XII) and (XIV) shows that the locations are the same and the magnitudes are practically the same.

5. CONCLUSIONS Two well known methods, (Bakun Wentworth, 1997 and Gasperini et al., 1999) which were broadly applied and a new one (Musson et al 2008) developed within the NA4 activity of NERIES were applied for CALIBRATION and VALIDATION on selected data by the activity coordinator group. In this report the application of the codes for earthquakes in the broader Aegean area was presented. The main concept for the codes of BW97 (:Bakun and Wentworth 1997) and MEEP (:Musson et al 2008) is the location of the epicenter and the magnitude, BOXER (Gasperini et al., 1999) attempts to locate the surface projection of the fault. BW97 may generate global minimum residual for solutions far away from the true epicenter if the grid search region parameter is not properly scaled with the dimension of the area of intensity observations (Bakun, 2009). In order to overpass this problem with historical earthquakes the seismological knowledge on the distribution of earthquakes and their effects must also be considered. As BOXER uses as unique input a relation holding between magnitude as a function of distance and intensity the relation: MI=+0.62 2.035 log R +0.002 R − 0.78 (12) (Papazachos and Papaioannou, 1997) found to give the best results. The constants for the file CONSTS.DAT for the centroid solution which give the minimum errors are the following:

23 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Margin for Io above observed value 0.75 Regional Q value: 320 Scaling factor: 2.5 Default depth value: 10 Regional alpha: 0.004 Isoseismal K factor: 3 Intensity file quality factor threshold: 1 Frequency of human perception (Hz): 3 Geometric spreading (N) 0.35 The application of the BOXER code with two different input files shows that the values shown in Table (XV) give better results.

Table XVII. Instrumental parameters of the earthquakes used for validation and differences in epicenter and macroseismic magnitude for the three methods used for VALIDATION.

Or. Instrumental Data BAKUN MEEP BOXER DATE Time lat lon M ∆DIST ∆Μ ∆DIST ∆Μ ∆DIST ∆Μ

19410301 0352 39.670 22.540 6.3 4 -0.1 3 0.5 2 -0.22

19471006 1955 36.960 21.680 7.0 16 0 8 0.0 8 0.27

19480422 1042 38.710 20.570 6.5 9 -0.2 7 0.2 6 0

19530318 1906 40.020 27.530 7.4 15 -0.1 2 -0.9 4 0.37

19530809 0741 38.430 20.500 6.4 8 -0.2 19 0.5 10 -0.14

19530905 1418 37.900 23.100 5.8 7 0.1 12 0.2 9 -0.28

19530811 0332 37.850 20.450 6.8 36 -0.2 39 0.2 36 0.05

19650309 1757 39.160 23.890 6.1 3 -0.2 18 -0.4 5 -0.57

19670104 0558 38.400 22.000 5.5 23 0 14 0.4 14 -0.46

19690612 1513 34.400 24.800 6.1 228 0.3 95 1.2 91 1.35

19741114 1426 38.500 23.090 5.2 12 -0.1 9 0.2 11 -0.68

19750108 1932 38.160 22.790 5.5 7 -0.1 34 0.0 25 -0.23

19750202 2112 40.460 21.370 4.6 48 -0.4 16 0.2 28 -0.77

19750228 1951 40.630 22.440 4.5 14 -0.1 16 0.2 15 -0.13

19950504 0034 40.541 23.634 5.3 4 -0.1 3 0.3 2 -0.44

19971118 1307 37.580 20.570 6.6 99 1.0 117 0.3 99 0.07

24 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

The application in the Aegean area and surrounding, were many strong earthquakes are off shore events, shows that none of the above methods can determine all the epicenters as “acceptable” compared to the instrumental locations. This resulted also in great discrepancies in magnitude estimations. The graph in figure (10) shows a comparison between the macroseismic magnitude and the instrumental one. Even though there are points with good agreement however great differences can also be noticed.

8.5

8.0 )

mac 7.5

7.0 ude (M t 6.5

6.0

5.5 BAKUN 5.0 MEEP

Macroseismic Magni BOXER 4.5

4.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 Instrumental Magnitude (MW)

Fig 10. Plot of the macroseismic magnitude determined by the three methods versus the instrumental magnitude

25 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

ACKNOWLEDGMENTS

The authors would like to stress on the importance of the Milano workshop, which was a very important and useful meeting, they derived great benefit from this participation and the constructive presentations and discussions. Special thanks are due to M. Stucchi, coordinator of the activity NA4 for his idea and organization. They would like to express their sincere thanks to W. Bakun and P. Gasperini for the provision and the modifications for the NA4 purposes of their codes, their presentations and the discussions with them during and after the Milano workshop. Thanks are also due to RMW Musson, partner of NA4, for the same reasons. and application of the BOXER code with two different input files shows that the values shown in Table (XIII) give better results. Thanks are also due to the people of INGV-Milano and specially to P. Albinni for their warm hospitality. C. Melleti (INGV-Pisa) offer great help through emails and telephone discussions for the proper compilation of this report. The principle author of this report is greatly obliged.

26 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

REFERENCES

Bakun, W. H. and C. M. Wentworth (1997): Estimating earthquake location and magnitude from seismic intensity data. Bull. Seism. Soc. Am. 87, 1502–1521. Bakun, W. H. and C. M. Wentworth (1999): Erratum to estimating earthquake location and magnitude from seismic intensity data. Bull. Seism. Soc. Am. 89, 557. Bakun, W. H. (2000): Seismicity of California’s North Coast. Bull. Seism. Soc. Am. 90, 797-812. Bakun, W. H. (2008): Presentation on the session: “The current approaches for earthquake parameter determination, basic principles”. NA4 Workshop, Milano, December 2008. Bakun, W. H. (2009): Personal communication. Fletcher, R. (1970): A new approach to variable metric algorithms. Comput. J., 13, 317-322. Frankel, A. (1994): Implications of felt area-magnitude relations for earthquake scaling and the average frequency of perceptible ground motion. Bull. Seism. Soc. Am. 84, 462-465. Gasperini, P, F. Bernardini, G. Valensise and E. Boschi (1999): Defining seismogenic sources from historical earthquakes felt reports. Bull. Seism. Soc. Am. 89, 94-110. James, F. (1998): MINUIT: Function minimization and error analysis. Reference Manual Ver. 94.1. CERN Geneva, Switzerland, 54 pp. Kiratzi, A. and B. Papazachos (1984): Magnitude scales for earthquakes in Greece. Bull. Seism. Soc. Am., 74, 969- 985. Margaris, V. and Papazachos, C. B. (1999): Moment-magnitude relations based on strong motion records in Greece and surrounding area. Bull. Seism. Soc. Am., 89, 442-455. Margaris, B., C. Papazachos, Ch. Papaioannou, P. Koliopoulos and V. Lekidis (1998): Strong ground motion and response of structures during the strong (MW=6.6) Zakynthos earthquake on November 18, 1997. Bull. Techn. Chamber of Greece, 1995, 72-77. Margaris, B., C. Papazachos, Ch. Papaioannou, N. Theodulidis, I. Kalogeras and Α.Skarlatoudis (2002): Ground motion attenuation relations for shallow earthquakes in Greece, CD Proc. 12th ECEE Paper 385, London September 2002, 10pp. Musson, RMW, MJ Jiménez and AA Gomez Capera (2008): Macroseismic estimation of earthquake parameters. BGS open report OR/08/004, 35 pp. Appendix I Nelder J.A. and R. Mead (1965): A simplex method for function minimization. Comput. J., 7, 308-313. Papaioannou, Ch.A. (1986): Seismic hazard assessment and long-term earthquake prediction in southern Balkan region. In: A. Vogel & K. Brandes [:editors], Proc.2nd. Int. Sem. on: EARTHQUAKE PROGNOSTICS, Berlin-FGR, June 24-27, 1986, 223 - 241. Papazachos, B.C. (1989): Measures of earthquake size in Greece and surrounding areas. Proc. of the 1st Scient. Conf. of Geophysics, Geophys. Soc. of Greece, April 19-21, 1989, Athens, 438-447. Papazachos, B.C. (1990): Seismicity of the Aegean and surrounding area. Tectonophysics, 178, 287-308. Papazachos, B. C., Ch. Papaioannou, C.B. Papazachos and A.S. Savvaidis (1997): Atlas of isoseismal maps for strong shallow earthquakes in Greece and surrounding area (426 BC - 1995). Univ. of Thessaloniki, Geophys. Laboratory, 4, 176 pp. Papazachos, B. C., B. Karakostas, C.B. Papazachos and E.M. Scordilis (2000): The geometry of the Wadati- Benioff zone and lithospheric kinematics of the Hellenic Arc. Tectonophysics, 319, 275-300. Papazachos, C.B. (1992): Anisotropic radiation modelling of macroseismic intensities for estimation of the attenuation structure of the upper crust in Greece. Pageoph, 138, 445-469. Papazachos, C. and Ch. Papaioannou (1997): The macroseismic field of the Balkan area. J. of Seismology, 1, 181-201.

27 WORKSHOP “EARTHQUAKE PARAMETERS DETERMINATION FROM MACROSEISMIC DATA POINTS” AEGEAN AREA

Theodulidis N. and B. Papazachos (1992): Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement. Soil Dyn. Earth. Eng., 11, 387-402. Sibol, M. S., G. A. Bollinger and J. B. Birch (1987): Estimations of magnitudes in central and eastern North America using Intensity and Felt Area, Bull. Seism. Soc. Am., 77, 1635-1654. Skarlatoudis, Α.Α., C.B. Papazachos, B.N. Margaris, N. Theodulidis, Ch. Papaioannou, I. Kalogeras, E.M. Scordilis and V. Karakostas (2003): Empirical peak ground motion predictive relations for shallow earthquakes in Greece. Bull. Seism. Soc. Am., 93, 2591-2603.

28