Author's Personal Copy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Earthquake of the 30 October 1930
1 The source of the 30 October 1930, Mw 5.8, Senigallia (central Italy) earthquake: a 2 convergent solution from instrumental, macroseismic and geological data 3 4 Paola Vannoli1*, Gianfranco Vannucci2, Fabrizio Bernardi1, Barbara Palombo1, Graziano Ferrari2 5 6 7 (1) Istituto Nazionale di Geofisica e Vulcanologia, sezione Roma 1, Via di Vigna Murata, 605, I- 8 00143, Rome, Italy 9 (2) Istituto Nazionale di Geofisica e Vulcanologia, sezione di Bologna, Via Donato Creti, 12, I- 10 40127, Bologna, Italy 11 12 * Corresponding author 13 14 15 Electronic Supplement collects methods, data and elaborations to make transparent the 16 seismotectonic characterization. In particular it provides a short description of the method used 17 for moment tensor computation, all the available focal mechanisms, the list of the available 18 stations, with specification of those used or not used for hypocenter and moment tensor 19 computation, maps of seismic flux showing areas of larger energy release, and detailed maps of 20 the uncertainties for each realization of the macroseismic epicenter. 21 22 1 23 Abstract 24 25 On 30 October 30 1930 a Mw 5.8 earthquake hit the northern Marche coastal area (central 26 Italy), causing significant damage (Io VIII-IX degree MCS) along a 40 km stretch of the Adriatic 27 coast between Pesaro and Ancona centered on the town of Senigallia. This area is characterized 28 by relatively infrequent and moderate-size earthquakes and by elusive active faults. In spite of 29 the presence of well-known NW-SE trending, NE verging fault-propagation folds forming the 30 outer thrusts of the Apennines, the current state of activity and the kinematics of these coastal 31 structures is still controversial. -
Bssa-D-09-00046R1
Editorial Manager(tm) for Bulletin of the Seismological Society of America Manuscript Draft Manuscript Number: BSSA-D-09-00046R1 Title: Do strike-slip faults of Molise, central-southern Italy, really release a high stress? Article Type: Article Section/Category: Regular Issue Corresponding Author: Mrs. giovanna calderoni, Corresponding Author's Institution: Istituto Nazionale di Geofisica e Vulcanologia First Author: giovanna calderoni Order of Authors: giovanna calderoni; Antonio Rovelli; Giuliano Milana; Gianluca Valensise Abstract: The 31 October and 1 November 2002, Molise earthquakes (both Mw 5.7) were caused by right-lateral slip between 12 and 20 km depth. These earthquakes are the result of large-scale reactivation of pre-existing, left-lateral, regionally extended E-W structures of Mesozoic age. Although recorded ground motions were generally smaller than expected for typical Italian earthquakes, a recent paper attributes a stress drop as high as 180 bars to the Molise earthquakes. We remark that a high stress drop is in contrast both with the relatively long source duration inferred in previous investigations and with geodetic evidence for a significantly smaller fault slip compared with other Apennines earthquakes having similarly large rupture area (e.g. 1997 Umbria-Marche earthquakes). We analyzed both ground acceleration spectra of the mainshocks and single-station spectral ratios of broad-band seismograms in an extended magnitude range (2.7 ≤ Mw ≤ 5.7). Our results show that neither the spectral amplitudes of recorded ground motions nor the spectral ratios can be fit by a high stress drop source. Instead we find that the observations are consistent with a low stress drop, our best estimates ranging between 6 and 25 bars, in agreement with the relatively long source duration and small coseismic slip. -
Graziano Ferrari
CURRICULUM VITAE G RAZIANO F ERRARI INFORMAZIONI PERSONALI Nome FERRARI GRAZIANO Data di nascita 13 GIUGNO 1952 Qualifica Dirigente di Ricerca Amministrazione Istituto Nazionale di Geofisica e Vulcanologia, via D. Creti 12, 40128 Bologna Incarico attuale Responsabile Unità Funzionale Sismos del Centro Nazionale Terremoti - Roma Numero telefonico dell’ufficio +39 051 4151442 – +39 06 51860629 Fax dell’ufficio +39 051 4151498 E-mail istituzionale [email protected] TITOLI DI STUDIO E PROFESSIONALI ED ESPERIENZE LAVORATIVE Titolo di studio Laurea in Fisica presso l’Università di Bologna con 110/110 e lode Esperienze professionali 2010 – 2012 Responsabile di una unità del progetto Global Instrumental (incarichi Seismic Catalog in seno al Global Earthquake Model (GEM). Ricoperti) 2008 – 2010 Coordinatore del Transnational access TA3 del progetto NERIES della Commissione Europea; 2008 – Responsabile della strumentazione storica sismologica e meteorologica dell’INGV 2008 – Responsabile dell’Unità Funzionale SISMOS; 2007 – Dirigente di Ricerca dell’INGV; 2006 – 2008 Responsabile dell coordinamento delle attività relative alla definizione della pericolosità sismica locale e territoriale del progetto Carta del Rischio del Patrimonio Culturale – Dati sulla vulnerabilità e pericolosità sismica del patrimonio culturale della Regione Siciliana e della Regione Calabria Ministero per i Beni e le Attività Culturali, Dipartimento per la Ricerca l’Innovazione e l’Organizzazione – Istituto Superiore per la Conservazione e il Restauro. 2003 – 2009 Promotore -
Tectonic Evidence for the Ongoing Africa-Eurasia Convergence in the Central Mediterranean
JGR – revised 3 Di Bucci et al. Tectonic evidence for the ongoing Africa-Eurasia convergence in Central Mediterranean foreland areas: a journey among long-lived shear zones, large earthquakes, and elusive fault motions Daniela Di Bucci (1), Pierfrancesco Burrato (2), Paola Vannoli (2), Gianluca Valensise (2) 1) Dipartimento della Protezione Civile, Via Vitorchiano, 4 - 00189 Roma, Italy 2) Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605 - 00143 Roma, Italy Corresponding Author: Daniela Di Bucci Dipartimento della Protezione Civile Via Vitorchiano, 4 00189 - Roma, Italy Phone.: ++39-06-68204761 Fax: ++39-06-68202877 e-mail: [email protected] 1 JGR – revised 3 Di Bucci et al. Running title: Africa-Eurasia motion: tectonic evidence from Central Mediterranean Index terms: 8123 Dynamics: seismotectonics 8107 Continental neotectonics (8002) 8111 Continental tectonics: strike-slip and transform 8158 Plate motions: present and recent (3040) 8175 Tectonics and landscape evolution Keywords: Molise-Gondola shear zone, Vizzini-Scicli shear zone, Gargano Promontory, Hyblean Plateau, slip reversal, Italy. 2 JGR – revised 3 Di Bucci et al. Abstract We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the Central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g. subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W, Molise-Gondola (MGsz) in Central Adriatic, and the N-S, Vizzini-Scicli (VSsz) in Southern Sicily. -
Evaluation and Considerations About Fundamental Periods of Damaged
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Nat. Hazards Earth Syst. Sci., 13, 1903–1912, 2013 Natural Hazards Natural Hazards www.nat-hazards-earth-syst-sci.net/13/1903/2013/ doi:10.5194/nhess-13-1903-2013 and Earth System and Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Evaluation and considerations about fundamentalAtmospheric periods of Atmospheric damaged reinforced concrete buildings Measurement Measurement Techniques Techniques R. Ditommaso1, M. Vona1, M. R. Gallipoli2, and M. Mucciarelli1 Discussions 1 Open Access School of Engineering, University of Basilicata, Potenza, Italy Open Access 2National Research Council of Italy – IMAA, Tito Scalo – PZ, Italy Biogeosciences Biogeosciences Correspondence to: M. Vona ([email protected]) Discussions Received: 4 July 2012 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: – Revised: 2 June 2013 – Accepted: 17 June 2013 – Published: 31 July 2013 Open Access Open Access Climate Climate Abstract. The aim of this paper is an empirical estimation 1 Introduction of the Past of the Past of the fundamental period of reinforced concrete buildings Discussions and its variation due to structural and non-structural dam- age. The 2009 L’Aquila earthquake has highlighted the mis- The estimation of the fundamental period is a crucial aspect Open Access Open Access match between experimental data and code provisions value in response analysis for existing buildings and for their as- Earth System not only for undamaged buildings but also for the damaged sessment and retrofitting.Earth A reliable System estimation of the funda- mental period T is an important aspect both in classic (force- ones. -
Elelnco Pubblicazioni 1987-2020
Elenco completo pubblicazioni di FRANCESCO SILVESTRI 1987-2020 ARTICOLI SU RIVISTE INTERNAZIONALI J1. Santucci de Magistris F., Silvestri F., Vinale F. (1998). The influence of compaction on the mechanical behaviour of a silty sand. Soils and Foundations, 38(4):41-56. J2. Santucci de Magistris F., Silvestri F., Vinale F. (1998). Physical and mechanical properties of a compacted silty sand with low bentonite fraction. Canadian Geotechnical Journal, 35(6):909-925. J3. d’Onofrio A., Silvestri F., Vinale F. (1999). Strain rate dependent behaviour of a natural stiff clay. Soils and Foundations, 39(2):69-82. J4. d’Onofrio A., Silvestri F., Vinale F. (1999). A new torsional shear device. ASTM Geotechnical Testing Journal, 22(2):101-111. J5. Pagano L., Silvestri F., Vinale F. (2001). A back-analysis of Beliche Dam. Discussion to the paper by Naylor D.J., Maranha J.R., Maranha das Neves E., Veiga Pinto A.A. (1997). Géotechnique, 51(4):377-381. J6. Aiello V., Boiero D., D’Apuzzo M., Socco L. V., Silvestri F. (2008). Experimental and numerical analysis of vibrations induced by underground trains in urban environment. Structural Control and Health Monitoring, 15(3):315-348, doi:10.1002/stc.247. J7. Lanzo G., Di Capua G., Kayen R.E., Kieffer D.S., Button E., Biscontin G., Scasserra G., Tommasi P., Pagliaroli A., Silvestri F., d’Onofrio A., Violante C., Simonelli A.L., Puglia R., Mylonakis G., Athanasopoulos G., Vlahakis V., Stewart J.P. (2009). Seismological and geotechnical aspects of the Mw=6.3 l’Aquila earthquake in central Italy on 6 April 2009. -
Relazione Geologica, Geomorfologica, Idrogeologica E
COMMITTENTE: PROGETTAZIONE: DIREZIONE TECNICA U.O. GEOLOGIA, GESTIONE TERRE E BONIFICHE PROGETTO DEFINITIVO ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° LOTTO FUNZIONALE TELESE – SAN LORENZO RELAZIONE GEOLOGICA, GEOMORFOLOGICA ED IDROGEOLOGICA SCALA: - COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. I F 0 H 2 2 D 6 9 R G G E 0 0 0 1 0 0 1 B X Rev. Descrizione Redatto Data Verificato Data Approvato Data Autorizzato Data A Emissione esecutiva S. Romano giu. 2017 A. Salvagnini giu. 2017 F. Cerrone giu. 2017 F. Marchese ott. 2017 S. Romano B Emissione esecutiva ott. 2017 A. Salvagnini ott. 2017 F. Cerrone ott. 2017 File: IF0H 22 D69 RG GE0001 001 B.docx n. Elab 2L 008 ITINERARIO NAPOLI-BARI RADDOPPIO TRATTA CANCELLO – BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° LOTTO FUNZIONALE TELESE – SAN LORENZO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RELAZIONE GEOLOGICA, GEOMORFOLOGICA ED IDROGEOLOGICA IF0H 22 D 69 RG GE 00 01 001 B 2 di 164 INDICE 1 PREMESSA .......................................................................................................................................................................... 6 2 SCOPO DEL DOCUMENTO ............................................................................................................................................... 6 3 DOCUMENTI DI RIFERIMENTO ..................................................................................................................................... -
Strollo, A., Richwalski, SM, Parolai, S., Gallipoli, MR
Originally published as: Strollo, A., Richwalski, S. M., Parolai, S., Gallipoli, M. R., Mucciarelli, M., Caputo, R. (2007): Site effects of the 2002 Molise earthquake, Italy: analysis of strong motion, ambient noise, and synthetic data from 2D modelling in San Giulano di Puglia. - Bulletin of Earthquake Engineering, 5, 3, 347-362 DOI: 10.1007/s10518-007-9033-6. Running head: Site effects of the 2002 Molise earthquake Article type: Original research Title: Site effects of the 2002 Molise earthquake, Italy: Analysis of strong motion, ambient noise, and synthetic data from 2D modelling in San Giuliano di Puglia Authors: A. Strollo1,2,3, S.M. Richwalski1,4, S. Parolai1, M. R. Gallipoli3,5, M. Mucciarelli3, and R. Caputo3 Affiliation: 1GeoForschungsZentrum Potsdam, Potsdam, Germany 2University of Potsdam, Potsdam, Germany 3DiSGG University of Basilicata, Potenza, Italy 4Center for Disaster Management and Risk Reduction Technology (CEDIM), Karlsruhe, Germany 5IMAA-CNR Tito Scalo, Potenza, Italy Full address: A. Strollo, Telegrafenberg, 1477 Potsdam, Germany Tel: ++49 311 288 1285 Fax: ++49 311 288 1204 [email protected] 1 Abstract. On October 31st and November 1st 2002, the Basso Molise area (Southern Italy) was struck by two earthquakes of moderate magnitude (ML = 5.4 and 5.3). The epicentral area showed a high level of damage, attributable both to the high vulnerability of existing buildings and to site effects caused by the geological and geomorphological settings. Specifically, the intensity inside the town of San Giuliano di Puglia was two degrees higher than in neighbouring towns. Also, within San Giuliano di Puglia, the damage varied notably. The site response in the city was initially evaluated from horizontal-to-vertical spectral ratios (HVSR) from a limited number of strong motion recordings of the most severe aftershocks. -
The September 27, 2012, ML 4.1, Benevento Earthquake: a Case of Strike-Slip Faulting in Southern Apennines (Italy)
TECTO-126682; No of Pages 12 Tectonophysics xxx (2015) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto The September 27, 2012, ML 4.1, Benevento earthquake: A case of strike-slip faulting in Southern Apennines (Italy) Guido Maria Adinolfi a,⁎, Raffaella De Matteis b, Antonella Orefice c, Gaetano Festa c,AldoZolloc, Rita de Nardis a,d, Giusy Lavecchia a a GeosisLab, DiSPUTer, Università “G. d'Annunzio”, Campus Universitario, Chieti Scalo, CH, Italy b Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy c RISSC-Lab, Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy d Dipartimento della Protezione Civile, Via Vitorchiano, 4, 00189 Rome, Italy article info abstract Article history: On September 27, 2012 at 01:08 (UTC) a ML 4.1 earthquake started a seismic sequence approximately 10 km east Received 15 September 2014 of the city of Benevento, in Southern Apennines (Italy). During the following four days, about 40 events with ML Received in revised form 2 June 2015 ranging between 1.3 and 4.1 were detected in the same area, where the seismic hazard is one of the largest of the Accepted 25 June 2015 Italian Peninsula and where several historical and destructive events took place. In order to investigate the seis- Available online xxxx micity spatio-temporal pattern and to identify the seismogenic source geometry, a detailed analysis was per- formed integrating data recorded at three different seismic networks. The earthquakes were relocated using Keywords: Study of background seismicity the double-difference technique and focal mechanism solutions were obtained by the moment tensor inversion. -
Deliverable 5
NEtwork of Research Infrastructures for European Seismology Deliverable D5 The European Earthquake Catalogue (1000-1600), demo version Part 1 – The NA4 Calibration Initiative (april 2009) Activity: Distributed Archive of Historical Earthquake Data Activity number: NA4 Deliverable: The Europena Earthquake Catalogue (1000- 1600), demo version. Part 1, The NA4 Calibration Initiative Deliverable number: D5 Responsible activity leader: Massimiliano Stucchi Responsible participant: INGV Author: A.A. Gomez Capera, C. Meletti, R. Musson and M. Stucchi with the collaboration of S. Alvarez Rubio, J. Batllo, A. Cassera, V. D’Amico, D. Faeh, M. Locati, C. Mirto, C. Papaioannou, A. Rovida, C. Ventouzi, P. Gasperini, O. Scotti and D. Giardini reviewed by W. Bakun, june 2009 Sixth Framework Programme EC project number: 026130 NA4 Distributed Archive of Historical Earthquake Data Index 0. Introduction 1. Methods and software 2. Calibration: input data 3. Calibration: procedures and results 4. Validation: data 5. Validation: procedures and results 6. Conclusion References Review by W. Bakun Tables A to F Annexes 1 to 6 Abstract The aim of this initiative was to calibrate, in a homogeneous way, three methods for determining earthquake parameters from macroseismic data, Boxer, Meep, Bakun & Wentworth, in five European areas: Aegean, Iberian, Italian, Great Britain and Switzerland. For each area a dataset of about fifteen earthquakes of the 20th century, selected to cover the largest magnitude range, was compiled according to homogeneous procedures. The Boxer and Meep methods are accompanied by codes which provide calibrated coefficients from the input dataset. The Bakun & Wentworth method requires an intensity attenuation relation as function of the moment magnitude and hypocentral distance. -
Correlation Between Local Amplification Effects and Damage Mechanisms for Monumental Buildings
4th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1409 CORRELATION BETWEEN LOCAL AMPLIFICATION EFFECTS AND DAMAGE MECHANISMS FOR MONUMENTAL BUILDINGS Giuseppe DI CAPUA1, Massimo COMPAGNONI2, Emanuela CURTI3, Alberto LEMME4, Silvia PEPPOLONI1, Floriana PERGALANI2, Stefano PODESTÀ3 ABSTRACT The damage and vulnerability survey of the monumental buildings, damaged by the 2002 earthquake in the Molise Region, has allowed singling out of a correlation between the observed damage of the churches and their morphological site conditions. The vulnerability model connected to the survey methodology provides an evaluation of the expected mean damage. Comparison with the observed damage determined the introduction of a local morphological behaviour modifier, able to take into account the vulnerability increase due to the site effects. In order to validate the previous results, a numerical 2-D analysis of the seismic local response has been performed. In particular, a numerical code, working with boundary elements, has been applied to the analyzed situations. The results, in terms of pseudo-acceleration response spectra and amplification factors, allow one to compare the numerical and the observed analyses. This comparison shows good agreement and allows one to find some correlations between the geometric characteristics of the sites, the values of the amplification coefficients and the damage mechanism activated. Keywords: site-morphological amplification, monumental buildings, collapse mechanisms INTRODUCTION Vulnerability analysis for monumental buildings may be carried out at different levels of knowledge, that show a greater level of in-depth knowledge, as a function not so much of the method used (macroseismic or mechanical approach), but of the accuracy and the typology of the available information. -
Middle Pleistocene to Holocene Activity of the Gondola Fault Zone (Southern Adriatic Foreland): Deformation of a Regional Shear Zone and Seismotectonic Implications
Tectonophysics, Special Issue: Ridente et al. “Earthquake Geology: methods and applications” Accepted, 20.11.2007 Middle Pleistocene to Holocene activity of the Gondola Fault Zone (Southern Adriatic Foreland): deformation of a regional shear zone and seismotectonic implications Domenico Ridente a, Umberto Fracassi b, Daniela Di Bucci c, Fabio Trincardi a, Gianluca Valensise b a Istituto di Scienze Marine (ISMAR – Geologia Marina), CNR. Via Gobetti, 101 - 40129 Bologna, Italy b Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata, 605 - 00143 Roma, Italy c Dipartimento della Protezione Civile. Via Vitorchiano, 4 - 00189 Roma, Italy Corresponding author: Domenico Ridente Istituto di Scienze Marine (ISMAR – Geologia Marina), CNR Via Gobetti, 101 - 40129 Bologna, Italy [email protected] phone number: +39-051-6398872 Key words: Quaternary; Foreland deformation; Active fault; Adriatic Sea. Abstract Recent seismicity in and around the Gargano Promontory, an uplifted portion of the southern Adriatic Foreland domain, indicates active E-W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E-W–trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene-Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene.