Network Operating System Features and Functions UNIX / Linux
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
OES 2 SP3: Novell CIFS for Linux Administration Guide 9.2.1 Mapping Drives from a Windows 2000 Or XP Client
www.novell.com/documentation Novell CIFS Administration Guide Open Enterprise Server 2 SP3 May 03, 2013 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Service Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. -
Shared Resource Matrix Methodology: an Approach to Identifying Storage and Timing Channels
Shared Resource Matrix Methodology: An Approach to Identifying Storage and Timing Channels RICHARD A. KEMMERER University of California, Santa Barbara Recognizing and dealing with storage and timing channels when performing the security analysis of a computer system is an elusive task. Methods for discovering and dealing with these channels have mostly been informal, and formal methods have been restricted to a particular specification language. A methodology for discovering storage and timing channels that can be used through all phases of the software life cycle to increase confidence that all channels have been identified is presented. The methodology is presented and applied to an example system having three different descriptions: English, formal specification, and high-order language implementation. Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General--se- curity and protection; D.4.6 ]Operating Systems]: Security and Protection--information flow controls General Terms: Security Additional Key Words and Phrases: Protection, confinement, flow analysis, covert channels, storage channels, timing channels, validation 1. INTRODUCTION When performing a security analysis of a system, both overt and covert channels of the system must be considered. Overt channels use the system's protected data objects to transfer information. That is, one subject writes into a data object and another subject reads from the object. Subjects in this context are not only active users, but are also processes and procedures acting on behalf of the user. The channels, such as buffers, files, and I/O devices, are overt because the entity used to hold the information is a data object; that is, it is an object that is normally viewed as a data container. -
Shared Resource
Shared resource In computing, a shared resource, or network share, is a computer resource made available from one host to other hosts on a computer network.[1][2] It is a device or piece of information on a computer that can be remotely accessed from another computer transparently as if it were a resource in the local machine. Network sharing is made possible by inter-process communication over the network.[2][3] Some examples of shareable resources are computer programs, data, storage devices, and printers. E.g. shared file access (also known as disk sharing and folder sharing), shared printer access, shared scanner access, etc. The shared resource is called a shared disk, shared folder or shared document The term file sharing traditionally means shared file access, especially in the context of operating systems and LAN and Intranet services, for example in Microsoft Windows documentation.[4] Though, as BitTorrent and similar applications became available in the early 2000s, the term file sharing increasingly has become associated with peer-to-peer file sharing over the Internet. Contents Common file systems and protocols Naming convention and mapping Security issues Workgroup topology or centralized server Comparison to file transfer Comparison to file synchronization See also References Common file systems and protocols Shared file and printer access require an operating system on the client that supports access to resources on a server, an operating system on the server that supports access to its resources from a client, and an application layer (in the four or five layer TCP/IP reference model) file sharing protocol and transport layer protocol to provide that shared access. -
Resource Management in Multimedia Networked Systems
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science May 1994 Resource Management in Multimedia Networked Systems Klara Nahrstedt University of Pennsylvania Ralf Steinmetz University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Klara Nahrstedt and Ralf Steinmetz, "Resource Management in Multimedia Networked Systems ", . May 1994. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-29. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/331 For more information, please contact [email protected]. Resource Management in Multimedia Networked Systems Abstract Error-free multimedia data processing and communication includes providing guaranteed services such as the colloquial telephone. A set of problems have to be solved and handled in the control-management level of the host and underlying network architectures. We discuss in this paper 'resource management' at the host and network level, and their cooperation to achieve global guaranteed transmission and presentation services, which means end-to-end guarantees. The emphasize is on 'network resources' (e.g., bandwidth, buffer space) and 'host resources' (e.g., CPU processing time) which need to be controlled in order to satisfy the Quality of Service (QoS) requirements set by the users of the multimedia networked system. The control of the specified esourr ces involves three actions: (1) properly allocate resources (end-to-end) during the multimedia call establishment, so that traffic can flow according to the QoS specification; (2) control resource allocation during the multimedia transmission; (3) adapt to changes when degradation of system components occurs. -
Novell Cluster Services,. for Linux. and Netware
Novell Cluster Services,. for Linux. and NetWare. ROB BASTIAANSEN SANDER VAN VUGT Novell PRESS. Novell. Published by Pearson Education, Inc. 800 East 96th Street, Indianapolis, Indiana 46240 USA Table of Contents Introduction 1 CHAPTER 1: Introduction to Clustering and High Availability 5 Novell Cluster Services Defined 5 Shared Disk Access 6 Secondary IP Addresses 7 Clustering Terminology 8 High-Availability Solutions Overview 12 Novell Cluster Services 12 Business Continuity Clustering 13 PolyServe Matrix Server 15 Heartbeat Subsystem for High-Availability Linux 16 When Not to Cluster Applications 16 Availability Defined 18 High Availability Defined 18 Calculating Average Downtime 21 Avoiding Downtime 22 Hardware 22 Environment 23 Software 23 Procedures 24 Novell Cluster Services Requirements 24 Hardware Requirements 24 Software Requirements 26 CHAPTER 2: Examining Novell Cluster Services Architecture 27 Novell Cluster Services Objects and Modules 27 Cluster eDirectory Objects 28 Cluster Modules 31 IH Novell Cluster Services for Linux and NetWare Heartbeats, Epoch Numbers, and the Split Brain Detector 35 Removing a Failing Slave Node 36 Removing a Failed Master Node 37 Summary 37 CHAPTER 3: Clustering Design 39 Cluster Design Guidelines 39 How Many Nodes to Choose 39 Using a Heartbeat LAN or Not 40 Use NIC Teaming 41 Choosing Storage Methods 42 Mirror the Split Brain Detector Partition 48 Selecting Applications to Run in a Cluster 48 eDirectory Cluster Guidelines 50 Creating a Failover Matrix 52 Application-Specific Design Guidelines -
KUNCI JAWABAN CHAPTER 2 CCNA-RS-ITN-SIM-1 Configuring a Network Operating System Chapter 2 Exam
KUNCI JAWABAN CHAPTER 2 CCNA-RS-ITN-SIM-1 Configuring a Network Operating System Chapter 2 Exam Mandar 3 Oktober 2016 CCNA-RS-ITN-SIM-Ganjil-2016 MANDAR 3 OKTOBER 2016 KUNCI JAWABAN CHAPTER 2 1. Which two features are characteristics of flash memory? (Choose two.) Flash provides nonvolatile storage. The contents of flash may be overwritten. 2. A network administrator is planning an IOS upgrade on several of the head office routers and switches. Which three questions must be answered before continuing with the IOS selection and upgrade? (Choose three.) What models of routers and switches require upgrades? Do the routers and switches have enough RAM and flash memory for the proposed IOS versions? What features are required for the devices? 3. Which procedure is used to access a Cisco 2960 switch when performing an initial configuration in a secure environment? Use the console port to locally access the switch from a serial or USB interface of the PC. 4. A network administrator needs to keep the user ID, password, and session contents private when establishing remote CLI connectivity with a switch to manage it. Which access method should be chosen? SSH 5. A router has a valid operating system and a configuration stored in NVRAM. When the router boots up, which mode will display? user EXEC mode 6. Which two functions are provided to users by the context-sensitive help feature of the Cisco IOS CLI? (Choose two.) displaying a list of all available commands within the current mode determining which option, keyword, or argument is available for the entered command 7. -
Novell® Platespin® Recon 3.7.4 User Guide 5.6.4 Printing and Exporting Reports
www.novell.com/documentation User Guide Novell® PlateSpin® Recon 3.7.4 September 2012 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
The Arcos Network Operating System
AT-A-GLANCE The ArcOS TM Network Operating System History has repeatedly proven that large industries transition from The ArcOS Advantage vertical integration to best-in-class horizontal segmentation as the urgent business need for innovation outstrips the ability/intent of the incumbents to deliver. The networking industry is in exactly such Agile situation, but it lags the compute and, to a large extent, the storage tiers in terms of this transition. Network operations teams are hampered by inflexible, proprietary systems that are expensive to build, operate, Automated processes accelerate and manage. This model does not fit well into today’s digital business and streamline network expectations of a more agile and innovation-friendly smart infrastructure. provisioning, operations, and deployment. Built-in YANG/ Recently, there has been an explosion of networking merchant silicon OpenConfig support simplifies options in the market that continue to redefine what is possible. integration into existing Additionally, the networking hardware ecosystem continues to evolve frameworks. with a proliferation of readily available leading-edge network platforms from multiple ODMs. But the fundamental problem has been the lack of a modern, scalable, and viable software network operating system that enables the transition from a proprietary, closed approach to an open integration approach. Elastic Arrcus addresses this problem by delivering ArcOS, an independent, open, Linux-based network operating system, as a high-quality alternative Modular software on white box/ to vertically integrated OEMs, to meet and exceed the modern smart brite box network hardware network infrastructure requirements. maximizes flexibility in building a scale-out architecture for a variety of network environments A Modern Network Operating System for the Data Center, (physical, virtual, cloud). -
Characterizing Peer-Level Performance of Bittorrent
Characterizing Peer-level Performance of BitTorrent DRP Report Amir H. Rasti ABSTRACT 1. INTRODUCTION BitTorrent is one of the most popular Peer-to-Peer During the past few years, peer-to-peer appli- (P2P) content distribution applications over the cations have become very popular on the In- Internet that significantly contributes in network ternet. BitTorrent in one of the most popu- traffic. lar peer-to-peer applications providing scalable peer-to-peer content distribution over the In- In BitTorrent, a file is divided into segments ternet. Some recent studies [8] have shown that and participating peers contribute their outgoing BitTorrent is accountable for approximately bandwidth by providing their available segments 35% of the Internet traffic. BitTorrent is a to other peers while obtaining their missing peers scalable peer-to-peer content distribution sys- from others. Characterization of BitTorrent is use- tem that enables one-to-many distribution of ful in determining its performance bottlenecks as large files without requiring a large access link well as its impact on the network. bandwidth at the source. Similar to other peer- In this study, we try to address the following two to-peer systems, it uses resources of participat- key questions through measurement: (i) What are ing peers to increase the capacity of the system. the main factors that affect observed performance The main shared resource in BitTorrent is the by individual peers in BitTorrent?, and (ii) What up-link bandwidth of individual peers. The file are the contributions of these factors on the per- being distributed is divided into a large number formance of individual peers? To address these of segments. -
Server I/O Networks Past, Present, and Future Renato John Recio Chief Architect, IBM Eserver I/O IBM Systems Group, Austin, Texas [email protected]
Server I/O Networks Past, Present, and Future Renato John Recio Chief Architect, IBM eServer I/O IBM Systems Group, Austin, Texas [email protected] Abstract • Low latency - the total time required to transfer the first bit of a message from the local application to the remote appli- Enterprise and technical customers place a diverse set of cation, including the transit times spent in intermediate requirements on server I/O networks. In the past, no single switches and I/O adapters. network type has been able to satisfy all of these requirements. As • High throughput - the number of small block transactions a result several fabric types evolved and several interconnects performed per second. The size and rate of small block I/O emerged to satisfy a subset of the requirements. Recently several depends on the workload and fabric type. A first level technologies have emerged that enable a single interconnect to be approximation of the I/O block size and I/O throughput rates required for various I/O workloads can be found in used as more than one fabric type. This paper will describe the “I/O Workload Characteristics of Modern Servers” [4]. requirements customers place on server I/O networks; the various • High bandwidth - the number of bytes per second sup- fabric types and interconnects that have been used to satisfy those ported by the network. Typically, used to gauge perfor- requirements; the technologies that are enabling network mance for large block data transfers. Peek bandwidth convergence; and how these new technologies are being deployed describes the bandwidth provided by a given link; whereas on various network families. -
1. Introduction
Network Operating Systems Partha Dasgupta Department of Computer Science and Engineering Arizona State University Tempe AZ 85287-5406 USA [email protected] [Note: Written in 1997, Appeared in Encyclopedia of Electrical Engineering] 1. Introduction Network Operating Systems extend the facilities and services provided by computer operating systems to support a set of computers, connected by a network. The environment managed by a network operating system consists of an interconnected group of machines that are loosely connected. By loosely connected, we mean that such computers possess no hardware connections at the CPU – memory bus level, but are connected by external interfaces that run under the control of software. Each computer in this group run an autonomous operating system, yet cooperate with each other to allow a variety of facilities including file sharing, data sharing, peripheral sharing, remote execution and cooperative computation. Network operating systems are autonomous operating systems that support such cooperation. The group of machines comprising the management domain of the network operating system is called a distributed system. A close cousin of the network operating system is the distributed operating system. A distributed operating system is an extension of the network operating system that supports even higher levels of cooperation and integration of the machines on the network (features include task migration, dynamic resource location, and so on) (1,2). An operating system is low-level software controlling the inner workings of a machine. Typical functions performed by an operating system include managing the CPU among many concurrently executing tasks, managing memory allocation to the tasks, handling of input and output and controlling all the peripherals.