Sizing of Actuators for Flight Control Systems and Flaps Integration in Rapid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Difference Between Higher and Lower Flap Setting Configurations May Seem Small, but at Today's Fuel Prices the Savings Can Be Substantial
THE DIFFERENCE BETWEEN HIGHER AND LOWER FLAP SETTING CONFIGURATIONS MAY SEEM SMALL, BUT AT TODAY'S FUEL PRICES THE SAVINGS CAN BE SUBSTANTIAL. 24 AERO QUARTERLY QTR_04 | 08 Fuel Conservation Strategies: Takeoff and Climb By William Roberson, Senior Safety Pilot, Flight Operations; and James A. Johns, Flight Operations Engineer, Flight Operations Engineering This article is the third in a series exploring fuel conservation strategies. Every takeoff is an opportunity to save fuel. If each takeoff and climb is performed efficiently, an airline can realize significant savings over time. But what constitutes an efficient takeoff? How should a climb be executed for maximum fuel savings? The most efficient flights actually begin long before the airplane is cleared for takeoff. This article discusses strategies for fuel savings But times have clearly changed. Jet fuel prices fuel burn from brake release to a pressure altitude during the takeoff and climb phases of flight. have increased over five times from 1990 to 2008. of 10,000 feet (3,048 meters), assuming an accel Subse quent articles in this series will deal with At this time, fuel is about 40 percent of a typical eration altitude of 3,000 feet (914 meters) above the descent, approach, and landing phases of airline’s total operating cost. As a result, airlines ground level (AGL). In all cases, however, the flap flight, as well as auxiliarypowerunit usage are reviewing all phases of flight to determine how setting must be appropriate for the situation to strategies. The first article in this series, “Cost fuel burn savings can be gained in each phase ensure airplane safety. -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
Self-Actuating Flaps on Bird and Aircraft Wings 437
Self-actuating flaps on bird and aircraft wings D.W. Bechert, W. Hage & R. Meyer Department of Turbulence Research, German Aerospace Center (DLR), Berlin, Germany. Abstract Separation control is also an important issue in biology. During the landing approach of birds and in flight through very turbulent air, one observes that the covering feathers on the upper side of bird wings tend to pop up. The raised feathers impede the spreading of the flow separation from the trailing edge to the leading edge of the wing. This mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (= artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils up to 20%. This is achieved without perceivable deleterious effects under cruise conditions. Several data of wind tunnel experiments as well as flight experiments with an aircraft with laminar wing and movable flaps are shown. 1 Movable flaps on wings: artificial bird feathers The issue of artificial feathers on wings, has an almost anecdotal origin. Wolfgang Liebe, the inventor of the boundary layer fence once observed mountain crows in the Alps in the 1930s. He noticed that the covering feathers on the upper side of the wings tend to pop up when the birds were on landing approach or in other situations with high angle of attack, like flight through gusts. Once the attention of the observer is drawn to it, it is comparatively easy to observe this behaviour in almost any bird (see, for example, the feathers on the left-hand wing of a Skua in Fig. -
Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform
International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 1, January 2016 Design of a Flight Stabilizer System and Automatic Control Using HIL Test Platform Şeyma Akyürek, Gizem Sezin Özden, Emre Atlas, and Coşku Kasnakoğlu Electrical & Electronics Engineering, TOBB University of Economics & Technology, Ankara, Turkey Email: {seymaakyurek , sezin.ozden, emreatlas90, kasnakoglu}@gmail.com Ünver Kaynak Mechanical Engineering, TOBB University of Economics & Technology, Ankara, Turkey Email: [email protected] Abstract—In this paper a Hardware-In-the-Loop (HIL) test Both manual calibration and MATLAB’s automated platform is used to design a flight stabilization system for design tools are used to determine the PID coefficients. Unmanned Aerial Vehicles (UAV). Controllers are first designed and tested separately for lateral and longitudinal II. DESIGN STAGES axes using numerical simulations, and later these controllers are merged on the HIL platform. It is observed that the A. Controller Design resulting controller successfully stabilizes the aircraft to A general treatment of the stability and control of achieve straight and level flight. airplanes requires a study of the dynamics of flight [4]. Much useful information can be obtained, however, from Index Terms—UAV, autopilot, PID controller, Hardware-In- a more limited view, in which we consider not the motion the-Loop, flight control, SISO, MIMO of the airplane, but only its equilibrium states. This is the approach in what is commonly known as static stability and control analysis [4]. I. INTRODUCTION Elevators and ailerons are flight control surfaces. Elevators are surfaces on the tailplane (the horizontal part Aeronautics has recently gained great importance in of the tail assembly). -
Ultrasonic Ice Protection Systems
Ultrasonic Ice Protection Systems: Analytical and Numerical Models for Architecture Tradeoff Marc Budinger, Valérie Pommier-Budinger, Gael Napias, Arthur Costa da Silva To cite this version: Marc Budinger, Valérie Pommier-Budinger, Gael Napias, Arthur Costa da Silva. Ultrasonic Ice Pro- tection Systems: Analytical and Numerical Models for Architecture Tradeoff. Journal of Aircraft, American Institute of Aeronautics and Astronautics, 2016, 53 (3), pp.680 - 690. 10.2514/1.C033625. hal-01861799 HAL Id: hal-01861799 https://hal.archives-ouvertes.fr/hal-01861799 Submitted on 25 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultrasonic ice protection systems: analytical and numerical models for architecture trade-off Marc Budinger(1), Valérie Pommier-Budinger(2), Gael Napias(2), Arthur Costa Da Silva(2) (1) INSA Toulouse, Institut Clément Ader, Toulouse, 31077, France (2) ISAE SUPAERO, Institut Supérieur de l'Aéronautique et de l'Espace, 31055, France ABSTRACT Protection systems against ice conventionally use thermal, pneumatic or electro-thermal solutions. However, they are characterized by high energy consumption. This article focuses on low-consumption electromechanical deicing solutions based on piezoelectric transducers. After a review of the state of the art to identify the main features of electromechanical de-icing devices, piezoelectric transducer-based architectures are studied. -
Trailing Vortex Attenuation Devices
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1985 Trailing vortex attenuation devices. Heffernan, Kenneth G. http://hdl.handle.net/10945/21590 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93^43 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS TRAILING VORTEX ATTENUATION DEVICES by Kenneth G. Heffernan June 1985 Thesis Advisor: T. Sarpkaya Approved for public release; distribution is unlimited, T223063 Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) REPORT READ INSTRUCTIONS DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED Dual Master's Thesis; Trailing Vortex Attenuation Devices June 1985 S. PERFORMING ORG. REPORT NUMBER 7. AUTHORC»> 8. CONTRACT OR GRANT NUMBERC*.) Kenneth G. Heffernan 9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Naval Postgraduate School Monterey, California 93943 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE June 1985 Naval Postgraduate Schodl 13. NUMBER OF PAGES Monterey, California 93943 109 U. MONITORING AGENCY NAME 4 ADDRESSf/f different from Controlling OHicm) 15. SECURITY CLASS, (ol (his report) Unclassified 15a. DECLASSIFICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION ST ATEMEN T (of this Report) Approved for public release; distribution is unlimited. 17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse aide It necessary and Identify by block number) Trailing Vortices 20. ABSTRACT fConl/nu» on reverse side It necessary and Identity by block number) Trailing vortices generated by large aircraft pose a serious hazard to other planes. -
Chapter 12 Design of Control Surfaces
Aileron Design Chapter 12 Design of Control Surfaces From: Aircraft Design: A Systems Engineering Approach Mohammad Sadraey 792 pages September 2012, Hardcover Wiley Publications 12.4.1. Introduction The primary function of an aileron is the lateral (i.e. roll) control of an aircraft; however, it also affects the directional control. Due to this reason, the aileron and the rudder are usually designed concurrently. Lateral control is governed primarily through a roll rate (P). Aileron is structurally part of the wing, and has two pieces; each located on the trailing edge of the outer portion of the wing left and right sections. Both ailerons are often used symmetrically, hence their geometries are identical. Aileron effectiveness is a measure of how good the deflected aileron is producing the desired rolling moment. The generated rolling moment is a function of aileron size, aileron deflection, and its distance from the aircraft fuselage centerline. Unlike rudder and elevator which are displacement control, the aileron is a rate control. Any change in the aileron geometry or deflection will change the roll rate; which subsequently varies constantly the roll angle. The deflection of any control surface including the aileron involves a hinge moment. The hinge moments are the aerodynamic moments that must be overcome to deflect the control surfaces. The hinge moment governs the magnitude of augmented pilot force required to move the corresponding actuator to deflect the control surface. To minimize the size and thus the cost of the actuation system, the ailerons should be designed so that the control forces are as low as possible. -
Zap Flaps and Ailerons by TEMPLE N
AER-56-5 Zap Flaps and Ailerons By TEMPLE N. JOYCE,1 DUNDALK, BALTIMORE, MD. The early history of the Zap development is covered, in been looked upon with more or less contempt. This was par cluding work done on the Flettner rotor plane in 1928. ticularly true during the boom days when everybody was using Because of phenomenal lift obtained by changes in flow a new engine and when landing speeds were thought of only in around a cylinder, investigations were begun on improving terms of getting into recognized airports. Three things have existing airfoils. This led to preliminary work on flapped occurred since then, however, that have again brought to the airfoils in the tunnel of New York University, and later its front the importance of low landing speed: First, a very distinct application to an Aristocrat cabin monoplane presented to realization that the public was afraid of aviation because of high the B/J Aircraft Corporation early in 1932. A chronological stalling speeds and the frequent crack-ups with serious conse record of the reactions of the personnel of the B/J organi quences. Second, the fact that increased high speeds could not zation to the Zap development is set forth, particularly be obtained without increasing still further high landing speeds the questions regarding lift and drag coefficients, effect unless some new aerodynamic development was brought into upon stability and balance, and the operating forces neces existence. Third, as speed ranges and wing loadings went up, sary to get the flaps down. The effectiveness of lateral takeoff run was increased and angle of climb decreased alarm control, particularly with regard to hinge moments and ingly. -
G5 Electronic Flight Instrument Pilot's Guide for Certified Aircraft Blank Page SYSTEM OVERVIEW
G5 Electronic Flight Instrument Pilot's Guide for Certified Aircraft Blank Page SYSTEM OVERVIEW FLIGHT INSTRUMENTS AFCS ADDITIONAL FEATURES INDEX Blank Page © 2017 Garmin Ltd. or its subsidiaries. All rights reserved. This manual reflects the operation of System Software version 5.00 or later. Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions. Garmin International, Inc., 1200 East 151st Street, Olathe, Kansas 66062, U.S.A. Garmin AT, Inc.,2345 Turner Road SE, Salem, OR 97302, U.S.A. Garmin (Europe) Ltd., Liberty House, Hounsdown Business Park, Southampton, Hampshire SO40 9LR U.K. Garmin Corporation, No. 68, Zhangshu 2nd Road, Xizhi District, New Taipei City, Taiwan Web Site Address: www.garmin.com Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed for personal use, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited. Garmin® is a registered trademark of Garmin Ltd. or its subsidiaries. This trademark may not be used without the express permission of Garmin. December, 2017 190-01112-12 Rev. A Printed in the U.S.A. -
Computational Evaluation of Control Surfaces Aerodynamics for a Mid-Range Commercial Aircraft
aerospace Article Computational Evaluation of Control Surfaces Aerodynamics for a Mid-Range Commercial Aircraft Nunzio Natale 1 , Teresa Salomone 1 , Giuliano De Stefano 1,* and Antonio Piccolo 2 1 Engineering Department, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; [email protected] (N.N.); [email protected] (T.S.) 2 Leonardo Aircraft Company, 80038 Pomigliano d’Arco, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5010-265 Received: 4 August 2020; Accepted: 23 September 2020; Published: 25 September 2020 Abstract: Computational fluid dynamics is employed to predict the aerodynamic properties of the prototypical trailing-edge control surfaces for a small, regional transport, commercial aircraft. The virtual experiments are performed at operational flight conditions, by resolving the mean turbulent flow field around a realistic model of the whole aircraft. The Reynolds-averaged Navier–Stokes approach is used, where the governing equations are solved with a finite volume-based numerical method. The effectiveness of the flight control system, during a hypothetical conceptual pre-design phase, is studied by conducting simulations at different angles of deflection, and examining the variation of the aerodynamic loading coefficients. The proposed computational modeling approach is verified to have good practical potential, also compared with reference industrial data provided by the Leonardo Aircraft Company. Keywords: computational fluid dynamics; flight control surfaces; industrial aerodynamics 1. Introduction Present trends in commercial aircraft design methodologies, which are mainly oriented toward cost reduction for product development, demand the accurate prediction of the control surfaces aerodynamics, to examine the aircraft flight control system early in the design process. -
3. Jet-Flap Interaction
Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons: 3. Jet-Flap Interaction Vinod G. Mengle*, Leon Brusniak†, Ronen Elkoby‡ The Boeing Company, Seattle, WA 98124-2207 and Russ H. Thomas§ NASA Langley Research Center, Hampton, VA, 23681-2199 Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jet- flap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. -
Chapter 10: Ailerons & Flaps
CHAPTER 10: AILERONS & FLAPS REVISIONS From time to time, revisions to this assembly manual may be deemed necessary. When such revisions are made, you should immediately replace all outdated pages with the revised pages. Discard the out dated . pages. Note that on the lower right corner of each page is a "revision date". Initial printings will have the number "O" printed and the printing date. All subsequent revisions will have the revision number followed by the date of that revision. When such revisions are made, a "table of revisions" page will also be issued. This page (or pages) should be inserted in front of the opening page (this page) of each affected chapter. A new "table of revisions" page will accompany any revision made to a chapter. Arrows Most drawings will have arrows to show which direction the parts are facing, unless the drawing itself makes that very obvious. "A/C UP'refers to the direction that would be up if the part were installed in a plane sitting in the upright position. In most cases the part shown will be oriented in the same position as the part itself will be placed during that particular assembly step. However, time goes on and changes are made, so careful attention should be paid to the orientation arrows. That old cartoon of the guy agonizing over the plans for hls canoe, built one end up, one end down, should not happen in real life. Especially to you. CONTENTS 1. INTRODUCTION 2. DRAWING LIST 3. SPECIAL PARTS, TOOLS & SUPPLIES LIST A. PARTS B.