Zap Flaps and Ailerons by TEMPLE N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MS – 204 Charles Lewis Aviation Collection
MS – 204 Charles Lewis Aviation Collection Wright State University Special Collections and Archives Container Listing Sub-collection A: Airplanes Series 1: Evolution of the Airplane Box File Description 1 1 Evolution of Aeroplane I 2 Evolution of Aeroplane II 3 Evolution of Aeroplane III 4 Evolution of Aeroplane IV 5 Evolution of Aeroplane V 6 Evolution of Aeroplane VI 7 Evolution of Aeroplane VII 8 Missing Series 2: Pre-1914 Airplanes Sub-series 1: Drawings 9 Aeroplanes 10 The Aerial Postman – Auckland, New Zealand 11 Aeroplane and Storm 12 Airliner of the Future Sub-series 2: Planes and Pilots 13 Wright Aeroplane at LeMans 14 Wright Aeroplane at Rheims 15 Wilbur Wright at the Controls 16 Wright Aeroplane in Flight 17 Missing 18 Farman Airplane 19 Farman Airplane 20 Antoinette Aeroplane 21 Bleriot and His Monoplane 22 Bleriot Crossing the Channel 23 Bleriot Airplane 24 Cody, Deperdussin, and Hanriot Planes 25 Valentine’s Aeroplane 26 Missing 27 Valentine and His Aeroplane 28 Valentine and His Aeroplane 29 Caudron Biplane 30 BE Biplane 31 Latham Monoplane at Sangette Series 3: World War I Sub-series 1: Aerial Combat (Drawings) Box File Description 1 31a Moraine-Saulnier 31b 94th Aero Squadron – Nieuport 28 – 2nd Lt. Alan F. Winslow 31c Fraser Pigeon 31d Nieuports – Various Models – Probably at Issoudoun, France – Training 31e 94th Aero Squadron – Nieuport – Lt. Douglas Campbell 31f Nieuport 27 - Servicing 31g Nieuport 17 After Hit by Anti-Aircraft 31h 95th Aero Squadron – Nieuport 28 – Raoul Lufbery 32 Duel in the Air 33 Allied Aircraft -
R/C Model for F3A Competition Biplane
5&PRGHO)RU)$FRPSHWLWLRQ%LSODQH (3)$PRWRU (3 1M23Z06706 Thank you for purchasing Futaba Sky Leaf R/C airplane. To maximize your enjoyment, and to ensure proper flying, please read through this assembly instruction manual. This product is for F3A competition. It can not be assembled or flighted by a beginner. It can be manufactured only for flyers with special skills. )XWDEDJXDUDQWHHVWKLVNLWWREHIUHHIURPGHIHFWVLQERWKPDWHULDODQG ZRUNPDQVKLS DW GDWH RI SXUFKDVH 7KLVZDUUDQW\GRHVQRWFRYHUDQ\ FRPSRQHQW SDUWVGDPDJHGE\XVHRUPRGLrFDWLRQ,QQRFDVHVKDOO)XWDEDOLDELOLW\H[FHHGWKH RULJLQDOFRVWRIWKHSXUFKDVHGNLW)XUWKHU)XWDEDUHVHUYHVWKHULJKWWRFKDQJHRU PRGLI\WKLVZDUUDQW\ZLWKRXWQRWLFH ,Q WKDW )XWDED KDV QR FRQWURO RYHU WKH ILQDO DVVHPEO\ RU PDWHULDO XVHG IRU ILQDO DVVHPEO\QROLDELOLW\VKDOOEHDVVXPHGQRUDFFHSWHGIRUDQ\GDPDJHUHVXOWLQJIURP WKH XVH E\ WKH XVHU RI WKH rQDO XVHUDVVHPEOHG SURGXFW %\ WKH DFW RI XVLQJ WKH XVHUDVVHPEOHGSURGXFWWKHXVHUDFFHSWVDOOUHVXOWLQJOLDELOLW\,IWKHEX\HULVQRW SUHSDUHGWRDFFHSWWKHOLDELOLW\DVVRFLDWHGZLWKWKHSURGXFWWKHEX\HULVDGYLVHGWR UHWXUQWKLVNLWLPPHGLDWHO\LQQHZDQGXQXVHGFRQGLWLRQWRWKHSODFHRISXUFKDVH Precautions ŤƓƓƏƌƆƄƗƌƒƑŃƄƑƇŃƐƒƇƌƲƆƄƗƌƒƑŃƓƕƈƆƄƘƗƌƒƑƖő 1. This product is only designed for use with radio control models. Use of the product described in this instruction manual is limited to radio control models. 2. Modification, adjustment, and parts replacement: Futaba is not responsible for unauthorized modification, adjustment, or replacement of parts on this product. 3. Your Sky Leaf should not be considered a toy, but rather a sophisticated, working model that functions very much like a full- size airplane. Because of its performance capabilities, this airplane, if not assembled and operated correctly, could possibly cause injury to yourself or spectators and damage to property. 4. You must assemble the model according to the instructions. Do not alter or modify the model, as doing so may result in an unsafe or unflyable model. In a few cases the instructions may differ slightly from the figures. -
5.2 Drag Reduction Through Higher Wing Loading David L. Kohlman
5.2 Drag Reduction Through Higher Wing Loading David L. Kohlman University of Kansas |ntroduction The wing typically accounts for almost half of the wetted area of today's production light airplanes and approximately one-third of the total zero-lift or parasite drag. Thus the wing should be a primary focal point of any attempts to reduce drag of light aircraft with the most obvious configuration change being a reduction in wing area. Other possibilities involve changes in thickness, planform, and airfoil section. This paper will briefly discuss the effects of reducing wing area of typical light airplanes, constraints involved, and related configuration changes which may be necessary. Constraints and Benefits The wing area of current light airplanes is determined primarily by stall speed and/or climb performance requirements. Table I summarizes the resulting wing loading for a representative spectrum of single-engine airplanes. The maximum lift coefficient with full flaps, a constraint on wing size, is also listed. Note that wing loading (at maximum gross weight) ranges between about 10 and 20 psf, with most 4-place models averaging between 13 and 17. Maximum lift coefficient with full flaps ranges from 1.49 to 2.15. Clearly if CLmax can be increased, a corresponding decrease in wing area can be permitted with no change in stall speed. If total drag is not increased at climb speed, the change in wing area will not adversely affect climb performance either and cruise drag will be reduced. Though not related to drag, it is worthy of comment that the range of wing loading in Table I tends to produce a rather uncomfortable ride in turbulent air, as every light-plane pilot is well aware. -
The Difference Between Higher and Lower Flap Setting Configurations May Seem Small, but at Today's Fuel Prices the Savings Can Be Substantial
THE DIFFERENCE BETWEEN HIGHER AND LOWER FLAP SETTING CONFIGURATIONS MAY SEEM SMALL, BUT AT TODAY'S FUEL PRICES THE SAVINGS CAN BE SUBSTANTIAL. 24 AERO QUARTERLY QTR_04 | 08 Fuel Conservation Strategies: Takeoff and Climb By William Roberson, Senior Safety Pilot, Flight Operations; and James A. Johns, Flight Operations Engineer, Flight Operations Engineering This article is the third in a series exploring fuel conservation strategies. Every takeoff is an opportunity to save fuel. If each takeoff and climb is performed efficiently, an airline can realize significant savings over time. But what constitutes an efficient takeoff? How should a climb be executed for maximum fuel savings? The most efficient flights actually begin long before the airplane is cleared for takeoff. This article discusses strategies for fuel savings But times have clearly changed. Jet fuel prices fuel burn from brake release to a pressure altitude during the takeoff and climb phases of flight. have increased over five times from 1990 to 2008. of 10,000 feet (3,048 meters), assuming an accel Subse quent articles in this series will deal with At this time, fuel is about 40 percent of a typical eration altitude of 3,000 feet (914 meters) above the descent, approach, and landing phases of airline’s total operating cost. As a result, airlines ground level (AGL). In all cases, however, the flap flight, as well as auxiliarypowerunit usage are reviewing all phases of flight to determine how setting must be appropriate for the situation to strategies. The first article in this series, “Cost fuel burn savings can be gained in each phase ensure airplane safety. -
Aerodynamic Optimization of a Biplane Configuration Using Differential Evolution
Computer Aided Optimum Design in Engineering X 209 Aerodynamic optimization of a biplane configuration using differential evolution R. W. Derksen & A. G. Kraj Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, Canada Abstract This paper presents our work on designing a biplane configuration that has a minimum drag to lift ratio. This problem is a mixed optimization problem in that both discrete and continuous variables are used. Fourteen parameters were used to fully describe the biplane configuration and calculate performance. Performance calculations were based on Munk’s general biplane theory. Each wing required six parameters; airfoil profile type, span, tip and root chord lengths, angle of attack, and sweep angle. Two parameters were used to define the horizontal stagger and vertical gap between the two planes. The airfoil profile types were stored in an indexed database which allowed us to obtain the section’s aerodynamic characteristics. Our analysis showed that differential evolution found the optimum solution quickly. The characteristics of the resultant optimum solution will be discussed in detail, along with our observations of how the process needs to be adjusted for optimum performance. Keywords: aerodynamic design, optimization, biplanes, aerodynamic configuration. 1 Introduction The following sections will provide a brief review of the state-of-the-art of aerodynamic optimization. This will be followed by a discussion of the advantages and disadvantages of the biplane configuration. The introductory comments will conclude with the motivation for doing this work. 1.1 The practice of aerodynamic optimization A quest for performance has been a key component in the development of aviation from the start. -
Hangar 9 Ultimate Manual
TM® WE GET PEOPLE FLYING 46% TOC Ultimate 10-300 ASSEMBLY MANUAL Specifications Wingspan ..........................................................................................100 in (2540 mm) Length ................................................................................................110 in (2794 mm) Wing Area.........................................................................................3310 sq in (213.5 sq dm) Weight ...............................................................................................40–44 lb (18–20 kg) Engine.................................................................................................150–200cc gas engine Radio ..................................................................................................6-channel w/15 servos Introduction Thank you for purchasing the Hangar 9® 46% TOC Ultimate. Because size and weight of this model creates a higher degree for potential danger, an added measure of care and responsibility is needed for both building and flying this or any giant-scale model. It’s important that you carefully follow these instructions, especially those regarding hinging and the section on flying. Like all giant-scale aerobatic aircraft, the Hangar 9® TOC Ultimate requires powerful, heavy-duty servos. Servos greatly affect the flight performance, feel and response of the model. To get the most out of your Ultimate, it’s important to use accurate, powerful servos on all control surfaces. In the prototype models, we used JR 8411 digital servos with excellent -
Using an Autothrottle to Compare Techniques for Saving Fuel on A
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr. -
Self-Actuating Flaps on Bird and Aircraft Wings 437
Self-actuating flaps on bird and aircraft wings D.W. Bechert, W. Hage & R. Meyer Department of Turbulence Research, German Aerospace Center (DLR), Berlin, Germany. Abstract Separation control is also an important issue in biology. During the landing approach of birds and in flight through very turbulent air, one observes that the covering feathers on the upper side of bird wings tend to pop up. The raised feathers impede the spreading of the flow separation from the trailing edge to the leading edge of the wing. This mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (= artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils up to 20%. This is achieved without perceivable deleterious effects under cruise conditions. Several data of wind tunnel experiments as well as flight experiments with an aircraft with laminar wing and movable flaps are shown. 1 Movable flaps on wings: artificial bird feathers The issue of artificial feathers on wings, has an almost anecdotal origin. Wolfgang Liebe, the inventor of the boundary layer fence once observed mountain crows in the Alps in the 1930s. He noticed that the covering feathers on the upper side of the wings tend to pop up when the birds were on landing approach or in other situations with high angle of attack, like flight through gusts. Once the attention of the observer is drawn to it, it is comparatively easy to observe this behaviour in almost any bird (see, for example, the feathers on the left-hand wing of a Skua in Fig. -
1/5 5 Nieuport 28
11//55 NNIIEEUUPPOORRTT 2288 V4 FLAT-FINISHED ARF RADIO CONTROL WWI MODEL AIRPLANE I N S T R U C T I O N M A N U A L Shown with optional scale machine guns, motor and propeller. Congratulations on your acquisition of Maxford USA’s Nieuport 28 ARF! The Nieuport 28 was a French biplane fighter flown during World War I, designed by Gustave Delage and built by Nieuport, also known as Nieuport-Delage – a French airplane company famous for racers before World War I and fighter aircraft during World War I and between the wars. Retaining many of the Nieuport 17’s best features, the Nieuport 28 was a lightly built, highly maneuverable fighter: It had a more powerful engine; carried twin synchronized machine guns; its ailerons were fitted only to the lower wing; and it had two- spar wings – top and bottom – in place of the earlier Nieuport types’ sesquiplane (a biplane with one long wing and one short one above or below it). The Nieuport 28 was the first aircraft to see service in any American fighter squadron. By the time the Nieuport 28 became available in early 1918, it was already considered “surplus” from the French point of view. Their SPAD XIII was a superior aircraft in most respects and had already become firmly established as the standard French fighter. (A 1/5-scale ARF SPAD XIII is also available from Maxford USA at www.maxfordusa.com.) When the Nieuport 28 was offered to the United States, it was immediately accepted by the American Expeditionary Force, and 297 Nieuport 28s were put into service in the 27th, 94th, 95th and 103rd Aero Pursuit Squadrons. -
Nieuport Ni-17 1/72 Scale Plastic Model Kit 7404
Nieuport Ni-17 1/72 Scale Plastic Model Kit 7404 item No. Nieuport 17 was one of the most famous French fighters of WWI. Agile aircraft was continua- tion of successful line Gustav Délage´s designs and was very popular with pilots. Some kept Ni-17 as their personal mount even after more advanced fighters became available. The Fokker Scourge period of the Geat War was very hard time was also strengthened, especially the lower wing, as it had ten- for the Allies. The Fokker „Eindeckers“ devastated the opponents dency to distort during harsh manoeuvres. The engine cowl was with their synchronised forward firing machine gun. The most redesigned, and the interface to the fuselage was streamlined. effective way of aerial combat had been found with this concept. The resulting aircraft was bigger, stronger, and more powerful French and British designers had to counteract to get their air than its predecessors, but retained their manoeuvrability. The forces back into the game. One of the answers to the needs had new Ni-17 was originally powered by the Le Rhône 9J of 110 hp (81 its roots in pre-war design of Gustav Délage, the designer who kW), but also more powerful Clerget 9B developing 130 hp (96 kW) started working for Société Anonyme des Établissement Nieuport or Le Rhône 9JB were used. in January 1914. His design of two-seater Nieuport X was intended Standard armament consisted of one synchronised Vickers 7,7 to take a part in Gordon Bennett race, but it served as the base of mm machine gun installed on fuselage in front of the cockpit, fi- long line of military aircraft instead. -
Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GSSRR.ORG: International Journals: Publishing Research Papers in all Fields International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied --------------------------------------------------------------------------------------------------------------------------- Subsonic Aircraft Wing Conceptual Design Synthesis and Analysis Abderrahmane BADIS Electrical and Electronic Communication Engineer from UMBB (Ex.INELEC) Independent Electronics, Aeronautics, Propulsion, Well Logging and Software Design Research Engineer Takerboust, Aghbalou, Bouira 10007, Algeria [email protected] Abstract This paper exposes a simplified preliminary conceptual integrated method to design an aircraft wing in subsonic speeds up to Mach 0.85. The proposed approach is integrated, as it allows an early estimation of main aircraft aerodynamic features, namely the maximum lift-to-drag ratio and the total parasitic drag. First, the influence of the Lift and Load scatterings on the overall performance characteristics of the wing are discussed. It is established that the optimization is achieved by designing a wing geometry that yields elliptical lift and load distributions. Second, the reference trapezoidal wing is considered the base line geometry used to outline the wing shape layout. As such, the main geometrical parameters and governing relations for a trapezoidal wing are -
F—18 Navy Air Combat Fighter
74 /2 >Af ^y - Senate H e a r tn ^ f^ n 12]$ Before the Committee on Appro priations (,() \ ER WIIA Storage ime nts F EB 1 2 « T H e -,M<rUN‘U«sni KAN S A S S F—18 Na vy Air Com bat Fighter Fiscal Year 1976 th CONGRESS, FIRS T SES SION H .R . 986 1 SPECIAL HEARING F - 1 8 NA VY AIR CO MBA T FIG H TER HEARING BEFORE A SUBC OMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE NIN ETY-FOURTH CONGRESS FIR ST SE SS IO N ON H .R . 9 8 6 1 AN ACT MAKIN G APP ROPR IA TIO NS FO R THE DEP ARTM EN T OF D EFEN SE FO R T H E FI SC AL YEA R EN DI NG JU N E 30, 1976, AND TH E PE RIO D BE GIN NIN G JU LY 1, 1976, AN D EN DI NG SEPT EM BER 30, 1976, AND FO R OTH ER PU RP OSE S P ri nte d fo r th e use of th e Com mittee on App ro pr ia tio ns SPECIAL HEARING U.S. GOVERNM ENT PRINT ING OFF ICE 60-913 O WASHINGTON : 1976 SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS JOHN L. MCCLELLAN, Ark ans as, Chairman JOH N C. ST ENN IS, Mississippi MILTON R. YOUNG, No rth D ako ta JOH N O. P ASTORE, Rhode Island ROMAN L. HRUSKA, N ebraska WARREN G. MAGNUSON, Washin gton CLIFFORD I’. CASE, New Je rse y MIK E MANSFIEL D, Montana HIRAM L.