The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent

Total Page:16

File Type:pdf, Size:1020Kb

The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent New Research Integrative Systems The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent Kalpana D. Acharya,1 Sabin A. Nettles,1 Katherine J. Sellers,2 Dana D. Im,1 Moriah Harling,1 Cassandra Pattanayak,3 Didem Vardar-Ulu,4 Cheryl F. Lichti,5 Shixia Huang,6 Dean P. Edwards,6 Deepak P. Srivastava,2 Larry Denner,7 and Marc J. Tetel1 DOI:http://dx.doi.org/10.1523/ENEURO.0272-17.2017 1Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, 2Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK, 3Quantitative Analysis Institute, Departments of Mathematics and Quantitative Reasoning, Wellesley College, Wellesley, MA 02481, USA, 4Chemistry Department, Boston University, Boston, MA 02215, USA, 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, 6Department of Molecular and Cellular Biology, Department of Pathology and Immunology, and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA, and 7Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA Abstract Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist- bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin- III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified Significance Statement Progesterone binds to the progestin receptor (PR) isoforms, PR-A and PR-B, in the brain to profoundly influence female reproduction, brain development, neuroprotection, and stress. We combined mass spectrometry and reverse phase protein arrays to identify mouse hypothalamic proteins that function in synaptic plasticity, transcription, translation, and energy metabolism and interacted with PR in a ligand- dependent and isoform-specific manner. In addition, progesterone increased synaptic density in primary cortical neurons, suggesting a function for progesterone in synapse formation in cortical neurons. Taken together, these findings provide evidence for novel functions of PR in synaptic modulation and energy homeostasis to affect health and disease. September/October 2017, 4(5) e0272-17.2017 1–19 New Research 2 of 19 proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease. Key words: Cortex; estrogen; progesterone; proteomics; synapse; synapsin Introduction though PR-A in the mouse hypothalamus is the primary Progestins, a class of steroid hormones, act in the brain mediator of female sexual behavior, both isoforms are to profoundly influence development (Beyer et al., 2002; required for the full behavioral response (Mani et al., Wagner, 2006); neuroprotection (Stein and Hoffman, 2003; 2006). In support, PR-A and PR-B are differentially Singh, 2006; Irwin et al., 2008; Su et al., 2012); reproductive expressed in the female mouse hypothalamus (Acharya behavior (Sinchak and Micevych, 2001; Blaustein, 2008); et al., 2015). learning, memory, and cognition (Hull et al., 1980; Sand- PR associate with multiple proteins, including nuclear strom and Williams, 2001; Wagner, 2006); and anxiety and receptor coactivators, which stabilize the receptor com- stress (Mora et al., 1996; Blaustein and Ismail, 2013; Keyes plex and enhance transcription (Hill et al., 2012; Goswami et al., 2013; Uphouse et al., 2013). In addition, progestins et al., 2014; Simons et al., 2014). In the female mouse have been implicated in a variety of human diseases, includ- hypothalamus, the PR isoforms are differentially ex- ing neurodegeneration and breast cancer (Richer et al., pressed with steroid receptor coactivator-1 (SRC-1, also 2002; Brinton et al., 2008; Obr and Edwards, 2012; Diep named NCOA1) and SRC-2 (NCOA2; Acharya et al., et al., 2015). 2015). In addition, SRC-1 and SRC-2 from hypothalamus Progestins elicit many of their effects by binding to associate with the PR isoforms in a ligand-dependent and progestin receptors (PR), which exist as two isoforms in isoform-specific manner (Molenda-Figueira et al., 2008; mammals, an N-terminally truncated PR-A and a full- Yore et al., 2010) and modulate hormone-dependent gene length PR-B (Tetel and Lange, 2009). Both isoforms share expression and female sexual behavior (Apostolakis et al., a C-terminal ligand binding domain, a DNA binding do- 2002; Molenda et al., 2002; Molenda-Figueira et al., 2006). main, and two transactivation domains (Horwitz et al., Taken together, these studies indicate that nuclear recep- 1990; Kastner et al., 1990). Interestingly, a third transac- tor coactivators are important in PR function in the brain. tivation domain exclusive to PR-B, and a PR-A specific PR act through both classic and nonclassic pathways in inhibitory region, have been identified, allowing differ- the brain and other progestin-responsive tissues. For ex- ential functions by the isoforms (Hovland et al., 1998). ample, in the hypothalamus, PR activation induces lordo- Isoform-specific transcriptional activation by PR has sis in female rodents through transcriptional regulation been observed in vitro and in vivo (Sartorius et al., 1994; (Leonhardt et al., 2003; Molenda-Figueira et al., 2006)as Giangrande et al., 1997; Conneely et al., 2000; Cheng well as nonclassic kinase activation (González-Flores et al., 2001; Richer et al., 2002; Mulac-Jericevic et al., et al., 2004; Mani et al., 2006). PRs are present in syn- 2003). Isoform-specific knockout mice reveal that al- apses (Waters et al., 2008; Mitterling et al., 2010) and rapidly alter dendritic spine densities in rat hippocampus (Woolley and McEwen, 1993; McEwen and Woolley, Received August 2, 2017; accepted September 1, 2017; First published 1994), cortical neurons (Chen et al., 2009; Sanchez et al., September 11, 2017. 2013), and hypothalamus (Griffin et al., 2010). Authors report no conflict of interest. Author contributions: K.D.A., D.V.-U., D.P.S., L.D., and M.J.T. designed Although we are gaining a better understanding of dis- research; K.D.A., S.A.N., K.J.S., D.D.I., C.F.L., S.H., D.P.E., D.P.S., L.D., and tinct functions of the PR isoforms in brain, little is known M.J.T. performed research; K.D.A., S.A.N., K.J.S., M.H., C.P., C.F.L., S.H., about the mechanisms involved. Therefore, to investigate D.P.E., D.P.S., L.D., and M.J.T. analyzed data; and K.D.A., D.P.E., D.P.S., L.D., the factors that could contribute to the differential function and M.J.T. wrote the paper. of the PR isoforms in brain, we have combined mass This work was funded by NIH R01 DK61935 (MJT), MRC MR/L021064/1 (DPS), Cancer Prevention & Research Institute of Texas (CPRIT) Core Facility spectrometry (MS) and reverse phase protein array Support Award (RP170005), and NCI Cancer Center Support Grant to (RPPA) in a functional proteomic analysis to identify pro- Antibody-based Proteomics Core/Shared Resource (P30CA125123; DPE and teins from adult female mouse hypothalamus that interact SH). with mouse PR-A and PR-B. In addition, given the iden- Acknowledgments: We thank Fuli Jia, Kimberley Holloway, and Davis So of the Antibody-based Proteomics Core/Shared Resource at Baylor College of tification of many synaptic proteins that interact with PR in Medicine for their excellent technical assistance with RPPA assays and Dr. the present study, we tested the hypothesis that proges- William Russell of the Proteomics Core of the University of Texas Medical tins influence synaptic plasticity by increasing synapse Branch for helpful discussions. formation in cortical neurons. Correspondence should be addressed to Kalpana D. Acharya, Neuroscience Program, Wellesley College, 106 Central St, Wellesley, MA 02481. E-mail: [email protected]. Materials and Methods DOI:http://dx.doi.org/10.1523/ENEURO.0272-17.2017 Copyright © 2017 Acharya et al.
Recommended publications
  • Breast Cancer Res 7
    Available online http://breast-cancer-research.com/content/7/5/R753 ResearchVol 7 No 5 article Open Access Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer Hiroko Yamashita1, Mariko Nishio2, Shunzo Kobayashi3, Yoshiaki Ando1, Hiroshi Sugiura1, Zhenhuan Zhang2, Maho Hamaguchi1, Keiko Mita1, Yoshitaka Fujii1 and Hirotaka Iwase2 1Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan 2Oncology and Endocrinology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan 3Josai Municipal Hospital of Nagoya, Nagoya, Japan Corresponding author: Hiroko Yamashita, [email protected] Received: 29 Jan 2005 Revisions requested: 15 Apr 2005 Revisions received: 12 Jun 2005 Accepted: 28 Jun 2005 Published: 27 Jul 2005 Breast Cancer Research 2005, 7:R753-R764 (DOI 10.1186/bcr1285) This article is online at: http://breast-cancer-research.com/content/7/5/R753 © 2005 Yamashita et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Introduction Endocrine therapy is the most important treatment Results Phosphorylation of ER-α Ser118, but not Ser167, was option for women with hormone-receptor-positive breast positively associated with overexpression of HER2, and HER2- cancer. The potential mechanisms for endocrine resistance positive tumors showed resistance to endocrine therapy. The involve estrogen receptor (ER)-coregulatory proteins and present study has shown for the first time that phosphorylation crosstalk between ER and other growth factor signaling of ER-α Ser167, but not Ser118, and expression of PRA and networks.
    [Show full text]
  • Progestins Inhibit the Growth of MDA-MB-231 Cells Transfected with Progesterone Receptor Complementary DNA1
    Vol. 5, 395–403, February 1999 Clinical Cancer Research 395 Progestins Inhibit the Growth of MDA-MB-231 Cells Transfected with Progesterone Receptor Complementary DNA1 Valerie C-L. Lin,2 Eng Hen Ng, Swee Eng Aw, INTRODUCTION Michelle G-K. Tan, Esther H-L. Ng, The involvement of progesterone in the growth and devel- Vivian S-W. Chan, and Gay Hui Ho opment of breast cancer has been increasingly recognized in recent years. However, the roles of progesterone in the growth Departments of Clinical Research, Ministry of Health (V. C-L. L., regulation of breast cancer are still controversial. Progestins are S. E. A., M. G-K. T., V. S-W. C.), and General Surgery, Singapore General Hospital (E. H. N., E. H-L. N., G. H. H.), Republic of found to stimulate growth, have no effect, or inhibit growth in Singapore 169608 breast cancer cells (1–13). The conflicting findings affect clin- ical decision as to whether progestins or antiprogestins would be more appropriate endocrine therapies for PgR3-positive breast ABSTRACT cancer. Although progestins such as MPA and megestrol acetate Because progesterone exerts its effects mainly via estro- are often effectively used in the treatment of breast cancer gen-dependent progesterone receptor (PgR), the expression (14–16), a number of reports advocate that antiprogestins may of progesterone’s effects may be overshadowed by the prim- be new powerful tools for treating hormone-dependent breast ing effect of estrogen. PgR expression vectors were trans- cancer (17–19). fected into estrogen receptor (ER)-a and PgR-negative The reasons for the inconsistency in reported effects of breast cancer cells MDA-MB-231; thus the functions of progestins are not clear, but the involvement of estrogen and ER progesterone could be studied independent of estrogens and in the demonstrated effects of progestins is an important factor ERs.
    [Show full text]
  • Transcriptional and Progesterone Receptor Binding Profiles of the Human
    bioRxiv preprint doi: https://doi.org/10.1101/680181; this version posted June 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptional and Progesterone Receptor Binding Profiles of the Human 2 Endometrium Reveal Important Pathways and Regulators in the Epithelium During 3 the Window of Implantation 4 5 Ru-pin Alicia Chi1, Tianyuan Wang2, Nyssa Adams3, San-pin Wu1, Steven L. Young4, 6 Thomas E. Spencer5,6, and Francesco DeMayo1 7 8 1 Reproductive and Developmental Biology Laboratory, National Institute of 9 Environmental Health Sciences, Research Triangle Park, North Carolina, USA 10 2 Integrative Bioinformatics Support Group, National Institute of Environmental Health 11 Sciences, Research Triangle Park, North Carolina, USA 12 3 Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor 13 College of Medicine, Houston, Texas, USA 14 4 Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, 15 Chapel Hill, North Carolina, USA 16 5 Division of Animal Sciences and 6Department of Obstetrics, Gynecology and Women’s 17 Health, University of Missouri, Columbia, Missouri, USA 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/680181; this version posted June 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
    Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41).
    [Show full text]
  • The Novel Progesterone Receptor
    0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist.
    [Show full text]
  • Culture Characters, Genetic Background, Estrogen/Progesterone Receptor Expression, and Tumorigenic Activities of Frequently Used
    Clinica Chimica Acta 489 (2019) 225–232 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Culture characters, genetic background, estrogen/progesterone receptor expression, and tumorigenic activities of frequently used sixteen T endometrial cancer cell lines Wanglei Qua,1, Yinling Zhaob,1, Xuan Wangc,1, Yaozhi Qid, Clare Zhoue, Ying Huaa, ⁎⁎ ⁎ Jianqing Houc, , Shi-Wen Jianga,f, a Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospitable of Wenzhou Medical University, Wenzhou 325027, China b Department of Gynecology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China c Department of Gynecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, Shandong Province, China. d Department of Clinical Laboratory, Lianyungang Maternal and Child Health Hospital, Jiangsu 222005, China e Department of Obstetrics and Gynecology, Mayo Medical College, Rochester 55901, MN, USA f Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA ARTICLE INFO ABSTRACT Keywords: Background: This study aimed to determine the in vitro and in vivo properties of sixteen frequently used en- Endometrial cancer dometrial cancer (EC) cell lines, including the cell proliferation rate, morphology, hormone receptor expression Hormone receptor patterns, PTEN, hMLH1 expression, p53 mutation, karyotype, and tumorigenicity in mouse xenograt model. PTEN Methods: Twelve type I (AN3, ECC-1, EN, EN-1, EN-11, HEC-1A, HECe1B, Ishikawa, KLE, MFE-280, MFE-296, hMLH1 MFE-319) and four type II (ARK1, ARK2, HEC-155/180, SPEC-2) endometrial cancer cell lines were studied. Cell p53 mutation proliferation and morphology were determined using cell growth curves and light microscopy, respectively.
    [Show full text]
  • Molecular Identification and Characterization of a and B Forms of the Glucocorticoid Receptor
    Molecular Identification and Characterization of A and B Forms of the Glucocorticoid Receptor Matthew R. Yudt and John A. Cidlowski Laboratory of Signal Transduction National Institute of Environmental Health Sciences Downloaded from https://academic.oup.com/mend/article/15/7/1093/2748001 by guest on 27 September 2021 National Institutes of Health Research Triangle Park, North Carolina 27709 The human glucocorticoid receptor (hGR␣)isa responsive promoters reveal the shorter hGR-B to ligand-activated transcription factor that mediates be nearly twice as effective as the longer hGR-A the physiological effects of corticosteroid hor- species in gene transactivation, but not in transre- mones and is essential for life. Originally cloned in pression. (Molecular Endocrinology 15: 1093–1103, 1986, the transcriptionally active hGR␣ was re- 2001) ported to be a single protein species of 777 amino kDa). Biochemical 94 ؍ acids (molecular mass data, obtained using various mammalian tissues INTRODUCTION and cell lines, however, have consistently revealed an additional, slightly smaller, second hGR protein The glucocorticoid receptor (GR) mediates the physi- kDa) that is not recognized ological effects of corticosteroid hormones in species 91 ؍ molecular mass) by antibodies specific for the transcriptionally in- from fish to mammals. GR is a member of the nuclear active and dominant negative, non-hormone-bind- hormone receptor superfamily of ligand-activated ing hGR␤ isoform. We report here that when a transcription factors (1) and is essential for life (2). The single GR cDNA is transfected in COS-1 cells, or activity of the GR, as well as the progesterone (PR), transcribed and translated in vitro, two forms of androgen (AR), and mineralocorticoid receptors (MR) the receptor are observed, similar to those seen in is partially mediated through a palindromic response cells that contain endogenous GR.
    [Show full text]
  • Cloning of the Chicken Progesterone Receptor (Xgt11 Expression Screening/DNA Binding Domain/V-Erba/Progesterone Receptor Forms a and B) J
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5424-5428, August 1986 Biochemistry Cloning of the chicken progesterone receptor (Xgt11 expression screening/DNA binding domain/v-erbA/progesterone receptor forms A and B) J. M. JELTSCH*, Z. KROZOWSKI*t, C. QUIRIN-STRICKER*, H. GRONEMEYERt, R. J. SIMPSON§, J. M. GARNIER*, A. KRUST*, F. JACOB*, AND P. CHAMBON* *Laboratoire de Gdndtique Moleculaire des Eucaryotes du Centre National de la Recherche Scientifique et Unit6 184 de Biologie Molcularie et de Genie G6ndtique de l'Institut National de la Santd et de la Recherche Mddicale, Institut de Chimie Biologique, Facult6 de M6decine, 67085 Strasbourg Cddex, France; MLudwig Institute for Cancer Research, Bern, Switzerland; and §Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch/The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Contributed by P. Chambon, April 10, 1986 ABSTRACT Monospecific antibodies directed against the ogous to these two domains are present in the product of the chicken progesterone receptor (PR) form B were used to screen v-erbA gene of the avian erythroblastosis virus (2, 7, 9). a randomly primed phage Xgtll cDNA expression library The chicken (ref. 10 and references therein) and the human prepared from size-fractionated chicken oviduct mRNA. Two (ref. 11 and references therein) progesterone receptors (PR) independent immunoreactive clones, AcPR1 and AcPR2, were exist in two forms, A and B, both of which bind progestins isolated. Antibodies selected from anti-PR form B antiserum on and DNA. In addition, a chicken PR form B antigen that does matrices of AcPR1 and AcPR2 fusion proteins detected two not bind the hormone has been described (12), and its cDNA proteins on electrophoretic immunoblots of crude and purified has been partially cloned (13).
    [Show full text]
  • Genome-Wide Crosstalk Between Steroid Receptors in Breast and Prostate Cancers
    28 9 Endocrine-Related V Paakinaho and J J Palvimo Steroid receptor crosstalk in 28:9 R231–R250 Cancer cancers REVIEW Genome-wide crosstalk between steroid receptors in breast and prostate cancers Ville Paakinaho and Jorma J Palvimo Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland Correspondence should be addressed to J J Palvimo: [email protected] Abstract Steroid receptors (SRs) constitute an important class of signal-dependent transcription Key Words factors (TFs). They regulate a variety of key biological processes and are crucial drug f androgen receptor targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) f estrogen receptor drive the development and progression of breast and prostate cancer, respectively. f glucocorticoid receptor Thus, they represent the main specific drug targets in these diseases. Recent evidence f progesterone receptor has suggested that the crosstalk between signal-dependent TFs is an important step f breast cancer in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict f prostate cancer the chromatin binding of another TF. This crosstalk can rewire gene programs and thus f chromatin alter biological processes and influence the progression of disease. Lately, it has been f crosstalk postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers.
    [Show full text]
  • Wednesday Scienti Ic Session Listings 639–830 Information at a Glance
    Chicago | October 17-21 Wednesday Scienti ic Session Listings 639–830 Information at a Glance Important Phone Numbers Annual Meeting Headquarters Office Mercy Hospital Key to Poster Floor by Themes Logistics and Programming 2525 S Michigan Avenue The poster floor begins with Theme A and ends Logistics Chicago, IL 60616 with Theme H. Refer to the poster floor map at McCormick Place: Hall A, (312) 791‑6700 (312) 567‑2000 the end of this booklet. Programming Physicians Immediate Care Theme McCormick Place: Hall A, (312) 791‑6705 811 S. State Street A Development Chicago, IL 60605 B Neural Excitability, Synapses, and Glia: Volunteer Leadership Lounge (312) 566‑9510 Cellular Mechanisms McCormick Place: S505A, (312) 791‑6735 Walgreens Pharmacy C Disorders of the Nervous System General Information Booths (closest to McCormick Place) D Sensory and Motor Systems McCormick Place: 3405 S. Martin Luther King Drive E Integrative Systems: Neuroendocrinology, Gate 3 Lobby, (312) 791‑6724 Chicago, IL 60616 Neuroimmunology and Homeostatic Challenge Hall A (312) 791‑6725 (312) 326‑4064 F Cognition and Behavior Press Offices Venues G Novel Methods and Technology Development Press Room McCormick Place H History, Teaching, Public Awareness, and McCormick Place: Room S501ABC 2301 S. Martin Luther King Drive Societal Impacts in Neuroscience (312) 791‑6730 Chicago, IL 60616 Exhibit Management Fairmont Chicago, Millennium Park Hotel Note: Theme H Posters will be located in Hall A McCormick Place: Hall A, (312) 791‑6740 200 N. Columbus Drive beginning at 1 p.m. on Saturday, Oct. 17, and will Chicago, IL 60601 remain posted until 5 p.m., Sunday, Oct.
    [Show full text]
  • Nuclear Progesterone Receptor Isoforms and Their Functions in the Female Reproductive Tract
    Polish Journal of Veterinary Sciences Vol. 14, No. 1 (2011), 149-158 DOI 10.2478/v10181-011-0024-9 Review Nuclear progesterone receptor isoforms and their functions in the female reproductive tract R. Rękawiecki, M.K. Kowalik, J. Kotwica Institute of Animal Reproduction and Food Research of Polish Academy of Science, Tuwima 10, 10-747 Olsztyn, Poland Abstract Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of preg- nancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells’ nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the repro- ductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity.
    [Show full text]
  • Progesterone Receptor B As Prognostic Marker for Patient Survival
    Lenhard et al. BMC Cancer 2012, 12:553 http://www.biomedcentral.com/1471-2407/12/553 RESEARCH ARTICLE Open Access Steroid hormone receptor expression in ovarian cancer: progesterone receptor B as prognostic marker for patient survival Miriam Lenhard1*, Lennerová Tereza2, Sabine Heublein2, Nina Ditsch1, Isabelle Himsl1, Doris Mayr3, Klaus Friese1,2 and Udo Jeschke2 Abstract Background: There is partially conflicting evidence on the influence of the steroid hormones estrogen (E) and progesterone (P) on the development of ovarian cancer (OC). The aim of this study was to assess the expression of the receptor isoforms ER-α/-β and PR-A/-B in OC tissue and to analyze its impact on clinical and pathological features and patient outcome. Methods: 155 OC patients were included who had been diagnosed and treated between 1990 and 2002. Patient characteristics, histology and follow-up data were available. ER-α/-β and PR-A/-B expression were determined by immunohistochemistry. Results: OC tissue was positive for ER-α/-β in 31.4% and 60.1% and PR-A/-B in 36.2% and 33.8%, respectively. We identified significant differences in ER-β expression related to the histological subtype (p=0.041), stage (p=0.002) and grade (p=0.011) as well as PR-A and tumor stage (p=0.03). Interestingly, median receptor expression for ER-α and PR-A/-B was significantly higher in G1 vs. G2 OC. Kaplan Meier analysis revealed a good prognosis for ER-α positive (p=0.039) and PR-B positive (p<0.001) OC. In contrast, ER-β negative OC had a favorable outcome (p=0.049).
    [Show full text]