Cloning of the Chicken Progesterone Receptor (Xgt11 Expression Screening/DNA Binding Domain/V-Erba/Progesterone Receptor Forms a and B) J

Total Page:16

File Type:pdf, Size:1020Kb

Cloning of the Chicken Progesterone Receptor (Xgt11 Expression Screening/DNA Binding Domain/V-Erba/Progesterone Receptor Forms a and B) J Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5424-5428, August 1986 Biochemistry Cloning of the chicken progesterone receptor (Xgt11 expression screening/DNA binding domain/v-erbA/progesterone receptor forms A and B) J. M. JELTSCH*, Z. KROZOWSKI*t, C. QUIRIN-STRICKER*, H. GRONEMEYERt, R. J. SIMPSON§, J. M. GARNIER*, A. KRUST*, F. JACOB*, AND P. CHAMBON* *Laboratoire de Gdndtique Moleculaire des Eucaryotes du Centre National de la Recherche Scientifique et Unit6 184 de Biologie Molcularie et de Genie G6ndtique de l'Institut National de la Santd et de la Recherche Mddicale, Institut de Chimie Biologique, Facult6 de M6decine, 67085 Strasbourg Cddex, France; MLudwig Institute for Cancer Research, Bern, Switzerland; and §Joint Protein Structure Laboratory, Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch/The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia Contributed by P. Chambon, April 10, 1986 ABSTRACT Monospecific antibodies directed against the ogous to these two domains are present in the product of the chicken progesterone receptor (PR) form B were used to screen v-erbA gene of the avian erythroblastosis virus (2, 7, 9). a randomly primed phage Xgtll cDNA expression library The chicken (ref. 10 and references therein) and the human prepared from size-fractionated chicken oviduct mRNA. Two (ref. 11 and references therein) progesterone receptors (PR) independent immunoreactive clones, AcPR1 and AcPR2, were exist in two forms, A and B, both of which bind progestins isolated. Antibodies selected from anti-PR form B antiserum on and DNA. In addition, a chicken PR form B antigen that does matrices of AcPR1 and AcPR2 fusion proteins detected two not bind the hormone has been described (12), and its cDNA proteins on electrophoretic immunoblots of crude and purified has been partially cloned (13). Since there are contradictory PR preparations. These proteins had the same apparent reports concerning the relationship between these multiple molecular weights as did PR forms A and B crosslinked with the forms ofthe PR (refs. 10 and 11 and references therein), there tritiated progestin R 5020. Thus, XcPR1 and XcPR2 fusion is an obvious need to determine the primary structure ofeach proteins contain epitopes present in both PR forms A and B. A of them and, therefore, to clone the cDNAs of the hormone- cDNA done, AcPR3, containing the inserts of both AcPRl and binding forms A and B. XcPR2, was isolated from a randomly primed XgtlO oviduct With the help of affinity-labeling techniques, we have cDNA library, indicating that both cDNA inserts were derived isolated (14) the two hormone binding forms A and B of the from the same oviduct mRNA. Additional evidence that these chicken oviduct PR to apparent homogeneity and have raised cDNAs correspond to PR mRNA was provided by sequencing antibodies against both of them. Using a chicken oviduct the XcPR3 cDNA insert, since it was found to encode the Xgtll cDNA expression library and anti-PR form B antibod- ies, we now have isolated cDNA clones that contain se- sequence of three tryptic peptides prepared from purified PR quences encoding several peptides that were isolated after form B. A fourth and a fifth cDNA clone, XcPR4 and XcPR5, tryptic digestion of homogenous PR form B. Moreover, they were sequentially isolated from the same XgtlO cDNA library also encode the putative DNA-binding domain that is highly beginning with a probe derived from the 3' end of the XcPR3 conserved in the other steroid hormone receptors and in the insert. Partial DNA sequencing of XcPR4 and XcPR5 revealed product of v-erbA. However, we did not find any significant the presence of a sequence coding for a cysteine-rich domain homology between amino acid sequences deduced from the that is strikingly homologous to the amino acid sequences present cDNA clones and those deduced from the cDNA present in the putative DNA-binding domain of the human and corresponding to the nonhormone-binding receptor antigen. chicken estrogen receptors, human glucocorticoid receptor, The present study paves the way toward the elucidation of and v-erbA gene product of the avian erythroblastosis virus. the relationship between the different PR forms and structure-function studies of their various domains. In addi- Steroid hormone receptors are target cell-specific mediators tion, the present clones may be useful for cloning PR genes of the control of transcription by their respective hormones from various species, including the human species where it is during development. It is assumed that the binding of the of obvious medical interest (15, 16). steroid to the receptor induces an allosteric transition of the structure of the receptor so that it becomes capable of MATERIALS AND METHODS controlling initiation of transcription of specific genes. It is The purification of chicken oviduct PR forms A and B, their also believed that hormone-receptor complexes act as tran- photoaffinity labeling with tritiated R 5020, and the genera- scription factors by directly binding to promoter elements of tion of polyclonal anti-PR antibodies have been described hormone-responsive genes (ref. 1 and references therein). (14). Tryptic digests from apparently homogenous PR form B Thus, a detailed knowledge of the structure-function rela- were separated by using HPLC techniques, and peptides tionship of steroid hormone receptor domains is a prerequi- were sequenced at the sub-40-pmol level by using a gas-phase site to understanding hormone action at the molecular level. sequenator as will be described in detail elsewhere. Random- cDNAs corresponding to chicken (2) and human (3) estrogen ly primed phage XgtlO and Xgtll cDNA libraries were and to rat (4) and human (5, 6) glucocorticoid receptors have prepared from size-fractionated (above 4 kilobases) laying- been cloned recently. A comparison of the cDNA-deduced hen oviduct poly(A)+ mRNA as described (2, 3). Monospe- amino acid sequences of chicken (2) and human (7) estrogen cific anti-PR form B antibodies were isolated by affinity and human glucocorticoid (8) receptors has revealed a high chromatography of the crude anti-PR form B antiserum on degree of conservation in the putative DNA-binding and matrices containing covalently bound homogenous PR form hormone-binding domains (2). Moreover, sequences homol- B as described for the glucocorticoid receptor (6). For The publication costs ofthis article were defrayed in part by page charge Abbreviations: PR, progesterone receptor; bp, base pair(s). payment. This article must therefore be hereby marked "advertisement" tPresent address: Medical Research Centre, Prince Henry's Hospi- in accordance with 18 U.S.C. §1734 solely to indicate this fact. tal, Melbourne, Australia. 5424 Biochemistry: Jeltsch et al. Proc. Natl. Acad. Sci. USA 83 (1986) 5425 screening purposes and immunoblot analysis, crude as well A B C D E as monospecific anti-PR form B antisera were subtracted kDa kDa from antibody populations that crossreacted with Escherich- _ 2OO-A ia coli successive h._*. proteins by filtration through two affinity - -114- resins containing covalently bound total E. coli proteins and -a's 9- -amf* purified E. coli (3-galactosidase, respectively. The purifica- Ihe-997* W*i ..- b..... tion of fusion proteins from induced recombinant Xgtll 68 -u lysogens and the selection of antibodies on fusion protein ~~~~68-sb affinity adsorbents was performed as described (6). Screen- ing of the libraries and immunoblot analyses were done by 43433 standard procedures (3, 17, 18). Sequencing of the cDNA _ 26 clones was performed in phage M13 mp18 and mp19 by the M 12 3 4 M5 6 M 7 8 M9 10 M 1 2 1 2 3 1 2 1 2 Sanger dideoxy technique. FIG. 2. r1XcPR1~~~~~~~~~4and XcPR2 cDNA clones contain epitopes present in both PR forms A and B. (A) Coomassie blue-stained NaDodSO4/7.5% polyacrylamide gel from a crude NaDodSO4 lysate RESULTS of non-induced (lanes 1 and 3) and induced (1 mM isopropyl-P-D- Cloning of cDNA Fragments Encoding PR Form A and B thiogalactopyranoside, lanes 2 and 4), recombinant phage lysogens the Xgtll Vector. Antiserum di- specific for XcPR2 (lanes 1 and 2), and XcPR1 (lanes 3 and 4) in E. coli Epitopes Using Expression Y1089. Three immunoblots of crude lysates from isopropyl-f-D- rected against the PR form B was made monospecific by thiogalactopyranoside-induced XcPR1 (lanes 5, 7, and 9) and XcPR2 affinity chromatography on PR form B covalently coupled to (lanes 6, 8, and 10) were either stained with Coomassie blue (lanes Sepharose 4-B. A Xgtll cDNA expression library, prepared 5 and 6) or probed with monospecific anti-PR form B (lanes 7 and 8) from size-fractionated laying-hen oviduct poly(A)+ RNA (2), or preimmune serum (lanes 9 and 10). All sera were stripped ofE. coli was screened (106 clones) with these antibodies; two clones, and 3-galactosidase antibodies by filtration through corresponding XcPR1 and XcPR2 (Fig. 1), were found to express epitopes affinity resins. Each immunoblot contained purified E. coli (- recognized by monospecific anti-PR form B. The isopropyl- galactosidase in the marker lane (M) to control for crossreaction with ,B-D-thiogalactopyranoside inducible t3-galactosidase fusion /3-galactosidase. (B) Fluorograph of NaDodSO4/7.5% polyacrylam- for these two clones are shown in 2A ide gel of photoaffinity-labeled partially purified PR form A (DNA- proteins specific Fig. cellulose II fraction; see ref. 14) (lane 1) and partially purified mixture (compare lanes 1 and 2 for XcPR2 and lanes 3 and 4 for of PR forms A and B (phosphocellulose II fraction, see ref. 14) (lane XcPR1). The apparent molecular masses were approximately 2). (C) Immunoblot of a crude PR preparation (DEAE-Sepharose 125 and 130 kDa for the XcPR1- and XcPR2-speciflc fusion fraction; see ref. 14) (lane 1) and of the same partially purified PR proteins, respectively.
Recommended publications
  • Breast Cancer Res 7
    Available online http://breast-cancer-research.com/content/7/5/R753 ResearchVol 7 No 5 article Open Access Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer Hiroko Yamashita1, Mariko Nishio2, Shunzo Kobayashi3, Yoshiaki Ando1, Hiroshi Sugiura1, Zhenhuan Zhang2, Maho Hamaguchi1, Keiko Mita1, Yoshitaka Fujii1 and Hirotaka Iwase2 1Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan 2Oncology and Endocrinology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan 3Josai Municipal Hospital of Nagoya, Nagoya, Japan Corresponding author: Hiroko Yamashita, [email protected] Received: 29 Jan 2005 Revisions requested: 15 Apr 2005 Revisions received: 12 Jun 2005 Accepted: 28 Jun 2005 Published: 27 Jul 2005 Breast Cancer Research 2005, 7:R753-R764 (DOI 10.1186/bcr1285) This article is online at: http://breast-cancer-research.com/content/7/5/R753 © 2005 Yamashita et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Introduction Endocrine therapy is the most important treatment Results Phosphorylation of ER-α Ser118, but not Ser167, was option for women with hormone-receptor-positive breast positively associated with overexpression of HER2, and HER2- cancer. The potential mechanisms for endocrine resistance positive tumors showed resistance to endocrine therapy. The involve estrogen receptor (ER)-coregulatory proteins and present study has shown for the first time that phosphorylation crosstalk between ER and other growth factor signaling of ER-α Ser167, but not Ser118, and expression of PRA and networks.
    [Show full text]
  • Progestins Inhibit the Growth of MDA-MB-231 Cells Transfected with Progesterone Receptor Complementary DNA1
    Vol. 5, 395–403, February 1999 Clinical Cancer Research 395 Progestins Inhibit the Growth of MDA-MB-231 Cells Transfected with Progesterone Receptor Complementary DNA1 Valerie C-L. Lin,2 Eng Hen Ng, Swee Eng Aw, INTRODUCTION Michelle G-K. Tan, Esther H-L. Ng, The involvement of progesterone in the growth and devel- Vivian S-W. Chan, and Gay Hui Ho opment of breast cancer has been increasingly recognized in recent years. However, the roles of progesterone in the growth Departments of Clinical Research, Ministry of Health (V. C-L. L., regulation of breast cancer are still controversial. Progestins are S. E. A., M. G-K. T., V. S-W. C.), and General Surgery, Singapore General Hospital (E. H. N., E. H-L. N., G. H. H.), Republic of found to stimulate growth, have no effect, or inhibit growth in Singapore 169608 breast cancer cells (1–13). The conflicting findings affect clin- ical decision as to whether progestins or antiprogestins would be more appropriate endocrine therapies for PgR3-positive breast ABSTRACT cancer. Although progestins such as MPA and megestrol acetate Because progesterone exerts its effects mainly via estro- are often effectively used in the treatment of breast cancer gen-dependent progesterone receptor (PgR), the expression (14–16), a number of reports advocate that antiprogestins may of progesterone’s effects may be overshadowed by the prim- be new powerful tools for treating hormone-dependent breast ing effect of estrogen. PgR expression vectors were trans- cancer (17–19). fected into estrogen receptor (ER)-a and PgR-negative The reasons for the inconsistency in reported effects of breast cancer cells MDA-MB-231; thus the functions of progestins are not clear, but the involvement of estrogen and ER progesterone could be studied independent of estrogens and in the demonstrated effects of progestins is an important factor ERs.
    [Show full text]
  • Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
    Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41).
    [Show full text]
  • The Novel Progesterone Receptor
    0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist.
    [Show full text]
  • Culture Characters, Genetic Background, Estrogen/Progesterone Receptor Expression, and Tumorigenic Activities of Frequently Used
    Clinica Chimica Acta 489 (2019) 225–232 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Culture characters, genetic background, estrogen/progesterone receptor expression, and tumorigenic activities of frequently used sixteen T endometrial cancer cell lines Wanglei Qua,1, Yinling Zhaob,1, Xuan Wangc,1, Yaozhi Qid, Clare Zhoue, Ying Huaa, ⁎⁎ ⁎ Jianqing Houc, , Shi-Wen Jianga,f, a Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospitable of Wenzhou Medical University, Wenzhou 325027, China b Department of Gynecology, Taizhou People's Hospital, Taizhou 225300, Jiangsu, China c Department of Gynecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai 264000, Shandong Province, China. d Department of Clinical Laboratory, Lianyungang Maternal and Child Health Hospital, Jiangsu 222005, China e Department of Obstetrics and Gynecology, Mayo Medical College, Rochester 55901, MN, USA f Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA ARTICLE INFO ABSTRACT Keywords: Background: This study aimed to determine the in vitro and in vivo properties of sixteen frequently used en- Endometrial cancer dometrial cancer (EC) cell lines, including the cell proliferation rate, morphology, hormone receptor expression Hormone receptor patterns, PTEN, hMLH1 expression, p53 mutation, karyotype, and tumorigenicity in mouse xenograt model. PTEN Methods: Twelve type I (AN3, ECC-1, EN, EN-1, EN-11, HEC-1A, HECe1B, Ishikawa, KLE, MFE-280, MFE-296, hMLH1 MFE-319) and four type II (ARK1, ARK2, HEC-155/180, SPEC-2) endometrial cancer cell lines were studied. Cell p53 mutation proliferation and morphology were determined using cell growth curves and light microscopy, respectively.
    [Show full text]
  • Molecular Identification and Characterization of a and B Forms of the Glucocorticoid Receptor
    Molecular Identification and Characterization of A and B Forms of the Glucocorticoid Receptor Matthew R. Yudt and John A. Cidlowski Laboratory of Signal Transduction National Institute of Environmental Health Sciences Downloaded from https://academic.oup.com/mend/article/15/7/1093/2748001 by guest on 27 September 2021 National Institutes of Health Research Triangle Park, North Carolina 27709 The human glucocorticoid receptor (hGR␣)isa responsive promoters reveal the shorter hGR-B to ligand-activated transcription factor that mediates be nearly twice as effective as the longer hGR-A the physiological effects of corticosteroid hor- species in gene transactivation, but not in transre- mones and is essential for life. Originally cloned in pression. (Molecular Endocrinology 15: 1093–1103, 1986, the transcriptionally active hGR␣ was re- 2001) ported to be a single protein species of 777 amino kDa). Biochemical 94 ؍ acids (molecular mass data, obtained using various mammalian tissues INTRODUCTION and cell lines, however, have consistently revealed an additional, slightly smaller, second hGR protein The glucocorticoid receptor (GR) mediates the physi- kDa) that is not recognized ological effects of corticosteroid hormones in species 91 ؍ molecular mass) by antibodies specific for the transcriptionally in- from fish to mammals. GR is a member of the nuclear active and dominant negative, non-hormone-bind- hormone receptor superfamily of ligand-activated ing hGR␤ isoform. We report here that when a transcription factors (1) and is essential for life (2). The single GR cDNA is transfected in COS-1 cells, or activity of the GR, as well as the progesterone (PR), transcribed and translated in vitro, two forms of androgen (AR), and mineralocorticoid receptors (MR) the receptor are observed, similar to those seen in is partially mediated through a palindromic response cells that contain endogenous GR.
    [Show full text]
  • Genome-Wide Crosstalk Between Steroid Receptors in Breast and Prostate Cancers
    28 9 Endocrine-Related V Paakinaho and J J Palvimo Steroid receptor crosstalk in 28:9 R231–R250 Cancer cancers REVIEW Genome-wide crosstalk between steroid receptors in breast and prostate cancers Ville Paakinaho and Jorma J Palvimo Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland Correspondence should be addressed to J J Palvimo: [email protected] Abstract Steroid receptors (SRs) constitute an important class of signal-dependent transcription Key Words factors (TFs). They regulate a variety of key biological processes and are crucial drug f androgen receptor targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) f estrogen receptor drive the development and progression of breast and prostate cancer, respectively. f glucocorticoid receptor Thus, they represent the main specific drug targets in these diseases. Recent evidence f progesterone receptor has suggested that the crosstalk between signal-dependent TFs is an important step f breast cancer in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict f prostate cancer the chromatin binding of another TF. This crosstalk can rewire gene programs and thus f chromatin alter biological processes and influence the progression of disease. Lately, it has been f crosstalk postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers.
    [Show full text]
  • Wednesday Scienti Ic Session Listings 639–830 Information at a Glance
    Chicago | October 17-21 Wednesday Scienti ic Session Listings 639–830 Information at a Glance Important Phone Numbers Annual Meeting Headquarters Office Mercy Hospital Key to Poster Floor by Themes Logistics and Programming 2525 S Michigan Avenue The poster floor begins with Theme A and ends Logistics Chicago, IL 60616 with Theme H. Refer to the poster floor map at McCormick Place: Hall A, (312) 791‑6700 (312) 567‑2000 the end of this booklet. Programming Physicians Immediate Care Theme McCormick Place: Hall A, (312) 791‑6705 811 S. State Street A Development Chicago, IL 60605 B Neural Excitability, Synapses, and Glia: Volunteer Leadership Lounge (312) 566‑9510 Cellular Mechanisms McCormick Place: S505A, (312) 791‑6735 Walgreens Pharmacy C Disorders of the Nervous System General Information Booths (closest to McCormick Place) D Sensory and Motor Systems McCormick Place: 3405 S. Martin Luther King Drive E Integrative Systems: Neuroendocrinology, Gate 3 Lobby, (312) 791‑6724 Chicago, IL 60616 Neuroimmunology and Homeostatic Challenge Hall A (312) 791‑6725 (312) 326‑4064 F Cognition and Behavior Press Offices Venues G Novel Methods and Technology Development Press Room McCormick Place H History, Teaching, Public Awareness, and McCormick Place: Room S501ABC 2301 S. Martin Luther King Drive Societal Impacts in Neuroscience (312) 791‑6730 Chicago, IL 60616 Exhibit Management Fairmont Chicago, Millennium Park Hotel Note: Theme H Posters will be located in Hall A McCormick Place: Hall A, (312) 791‑6740 200 N. Columbus Drive beginning at 1 p.m. on Saturday, Oct. 17, and will Chicago, IL 60601 remain posted until 5 p.m., Sunday, Oct.
    [Show full text]
  • Progesterone Receptor B As Prognostic Marker for Patient Survival
    Lenhard et al. BMC Cancer 2012, 12:553 http://www.biomedcentral.com/1471-2407/12/553 RESEARCH ARTICLE Open Access Steroid hormone receptor expression in ovarian cancer: progesterone receptor B as prognostic marker for patient survival Miriam Lenhard1*, Lennerová Tereza2, Sabine Heublein2, Nina Ditsch1, Isabelle Himsl1, Doris Mayr3, Klaus Friese1,2 and Udo Jeschke2 Abstract Background: There is partially conflicting evidence on the influence of the steroid hormones estrogen (E) and progesterone (P) on the development of ovarian cancer (OC). The aim of this study was to assess the expression of the receptor isoforms ER-α/-β and PR-A/-B in OC tissue and to analyze its impact on clinical and pathological features and patient outcome. Methods: 155 OC patients were included who had been diagnosed and treated between 1990 and 2002. Patient characteristics, histology and follow-up data were available. ER-α/-β and PR-A/-B expression were determined by immunohistochemistry. Results: OC tissue was positive for ER-α/-β in 31.4% and 60.1% and PR-A/-B in 36.2% and 33.8%, respectively. We identified significant differences in ER-β expression related to the histological subtype (p=0.041), stage (p=0.002) and grade (p=0.011) as well as PR-A and tumor stage (p=0.03). Interestingly, median receptor expression for ER-α and PR-A/-B was significantly higher in G1 vs. G2 OC. Kaplan Meier analysis revealed a good prognosis for ER-α positive (p=0.039) and PR-B positive (p<0.001) OC. In contrast, ER-β negative OC had a favorable outcome (p=0.049).
    [Show full text]
  • Transcription Factor I in Ovarian Epithelial Cancers and Normal Ovaries
    25-32 30/5/07 16:15 Page 25 ONCOLOGY REPORTS 18: 25-32, 2007 25 Analysis of the expression of estrogen receptor, progesterone receptor and chicken ovalbumin upstream promoter- transcription factor I in ovarian epithelial cancers and normal ovaries ROBÉRIO DE SOUSA DAMIÃO1, CELINA TIZUKO FUJIYAMA OSHIMA2, JOÃO NORBERTO STÁVALE2 and WAGNER JOSÉ GONÇALVES1 1Discipline of Gynecologic Oncology, Department of Gynecology, and 2Department of Pathology, Federal University of São Paulo, São Paulo, Brazil Received March 3, 2007; Accepted April 10, 2007 Abstract. Sex hormones are involved in the carcinogenesis survival or clinical prognostic variables. Multivariate analysis of some gynecologic cancers, and the status of their receptors revealed a residual tumor <1 cm as the most significant represents an indicator of prognosis and of the therapeutic clinical prognostic factor in group A (p=0.010, OR=4.14). response in breast and endometrial cancers. In the ovary, this These data support the importance of cytoreduction in the role is not clearly defined, with epithelial cancers being treatment of ovarian cancer, the role of steroid receptors in the poorly responsive to hormone therapy. COUP-TFI (chicken mechanism of carcinogenesis, and the need for selection of ovalbumin upstream promoter-transcription factor I) is an subgroups that may respond to hormone therapy. orphan nuclear receptor, which is expressed in various tissues and regulates the estrogen receptor (ER) by competition for Introduction DNA binding. To investigate the role of these receptors in ovarian carcinogenesis and their implications for cancer Ovarian cancer is the fourth most frequent cause of cancer prognosis, we evaluated the immunohistochemical expression death in Western countries (1).
    [Show full text]
  • Progesterone Receptors
    SCUOLA DI DOTTORATO Medicina Sperimentale e Biotecnologie Mediche XXIX Ciclo DIPARTIMENTO Biotecnologie Mediche e Medicina Traslazionale TESI DI DOTTORATO DI RICERCA Effects of 3-ketodesogestrel and all-trans retinoic acid on PHOX2A and PHOX2B expression: a common strategy as new therapeutic perspective in Congenital Central Hypoventilation Syndrome (CCHS) and Neuroblastoma (NB) treatment. settore scientifico disciplinare: Bio/14 NOME DEL DOTTORANDO Debora Belperio NOME E COGNOME DEL TUTOR Prof. Diego Fornasari NOME E COGNOME DEL COORDINATORE DEL DOTTORATO Prof. Massimo Locati A.A. 2016/2017 1 Contents Abbreviations: ............................................................................................................................................... 4 Abstract ......................................................................................................................................................... 5 CHAPTER 1 ..................................................................................................................................... 7 General introduction .................................................................................................................................. 7 1.1 Phox2 proteins in nervous system development .................................................................................... 8 1.2 Phox2b and the brainstem respiratory circuit ...................................................................................... 12 1.3 PHOX2 proteins in normal condition: structure
    [Show full text]
  • The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent
    New Research Integrative Systems The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent Kalpana D. Acharya,1 Sabin A. Nettles,1 Katherine J. Sellers,2 Dana D. Im,1 Moriah Harling,1 Cassandra Pattanayak,3 Didem Vardar-Ulu,4 Cheryl F. Lichti,5 Shixia Huang,6 Dean P. Edwards,6 Deepak P. Srivastava,2 Larry Denner,7 and Marc J. Tetel1 DOI:http://dx.doi.org/10.1523/ENEURO.0272-17.2017 1Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA, 2Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK, 3Quantitative Analysis Institute, Departments of Mathematics and Quantitative Reasoning, Wellesley College, Wellesley, MA 02481, USA, 4Chemistry Department, Boston University, Boston, MA 02215, USA, 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, 6Department of Molecular and Cellular Biology, Department of Pathology and Immunology, and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA, and 7Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA Abstract Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B.
    [Show full text]