Synchronized Protandry and Hermaphroditism in a Tropical Secondary Forest Tree, Schefflera Heptaphylla (Araliaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Synchronized Protandry and Hermaphroditism in a Tropical Secondary Forest Tree, Schefflera Heptaphylla (Araliaceae) Plant Syst Evol (2011) 296:29–39 DOI 10.1007/s00606-011-0474-7 ORIGINAL ARTICLE Synchronized protandry and hermaphroditism in a tropical secondary forest tree, Schefflera heptaphylla (Araliaceae) Nancai Pei • Zhonglai Luo • Mark A. Schlessman • Dianxiang Zhang Received: 23 March 2011 / Accepted: 10 May 2011 / Published online: 4 June 2011 Ó Springer-Verlag 2011 Abstract Selection favoring avoidance of stigma clog- than those in earlier-maturing (first and second order) ging, pollen discounting, self-fertilization, and other neg- umbellets. Floral visitors were primarily flies (Chrysomya ative effects of self-pollination can produce intricate sp. and Syrphinae sp.) and wasps (Vespula sp. and Eu- patterns of intra- and interfloral dichogamy in plants menes sp.). Flowers produced nectar during both the male bearing numerous flowers. Here we report an extensive (pollen presentation) and female (stigma receptivity) stages study of the relationships among dichogamy, floral sex of their development, and the volume of nectar production allocation (pollen-to-ovule ratios), nectar production, floral was higher in the female stage. Nevertheless, flowers visitors, mating system, and fruit set in natural populations received fewer visits in the female stage than they did in of Schefflera heptaphylla, a widespread paleotropical sec- the male stage, and natural fruit set was low, especially in ondary forest tree that produces thousands of flowers in a first and third order umbellets. Fruit set from hand cross- blooming season. Each tree produces 15–30 sequentially and self-pollinations was significantly higher than natural blooming, paniculate, compound inflorescences. Each fruit set, indicating pollen limitation of fruit set. Schefflera compound inflorescence has up to three orders of umbel- heptaphylla has also been reported to be andromonoecious. lets, which also bloom sequentially. While hand-pollina- Both hermaphroditism and andromonoecy are consistent tions showed that S. heptaphylla was capable of self- with theoretical predictions for variation in sex allocation fertilization, our observations of thousands of flowers among sequentially maturing flowers in protandrous showed that strong intra- and interfloral protandry severely species. Further studies comparing hermaphroditic and restricts both autogamous and geitonogamous self-polli- andromonoecious populations of S. heptaphylla could nation. All flowers were bisexual, thus the sexual system of elucidate the selective factors affecting sex expression, the populations we studied was hermaphroditism. The nectar production, and fruit set in species with numerous pollen-to-ovule (P/O) ratios were characteristic of out- flowers displaying both intra- and interfloral dichogamy. crossing species, and P/O ratios of flowers in the last- maturing (third order) umbellets were significantly higher Keywords Araliaceae Á Dichogamy Á Hermaphroditism Á Phenology Á P/O ratios Á Protandry N. Pei Á Z. Luo Á D. Zhang (&) Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Introduction The Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China Flowering plants are under strong selective pressure to e-mail: [email protected] synchronize pollen export and stigma receptivity among N. Pei individuals in order to maximize both male and female The Graduate University of the Chinese Academy of Sciences, reproductive success. In addition to increased levels of Beijing 100049, People’s Republic of China successful pollination and outcrossing, synchronous flow- M. A. Schlessman ering and fruiting of individuals within a population may Vassar College, Poughkeepsie, NY 12604, USA satiate predators and allow more seeds and seedlings to 123 30 N. Pei et al. escape predation (Janzen 1974; Kelly and Sork 2002; complex cycles of dichogamy, have been documented in Michalski and Durka 2007). At the same time, individual the genera Polyscias (Henwood 1986; Schlessman et al. plants are typically under selective pressures to separate 1990b), Raukaua (Merrett 2005), and Arthrophyllum, pollen release and stigma receptivity of their own flowers, Delarbrea, and Schefflera (Schlessman et al. 1990a). in order to reduce stigma clogging, and in genetically self- However, observations are often limited to just a few compatible species, also pollen discounting, self-fertiliza- individuals or populations per species, and typically only tion, and inbreeding depression (Lloyd and Webb 1986). to portions of extended flowering seasons. Consequently, As a result, angiosperms often exhibit intricate phenolog- data on floral visitors to tropical araliads are also limited. ical patterns involving dichogamy, the temporal separation Here we report an extensive study of the floral phenol- of anther dehiscence, and stigmatic receptivity, both within ogy, sex expression, mating system, and fruit set of the individual flowers (intrafloral) and among different flowers widespread tropical araliad tree, Schefflera heptaphylla. on the same plant (Lloyd and Webb 1986; Bertin and Our study spanned two flowering seasons, and we exam- Newman 1993). There are two forms of dichogamy: prot- ined thousands of flowers among numerous individual trees andry, in which anthers dehisce before stigmas become in three distinct populations. We documented floral phe- receptive, and protogyny, in which stigmas become nology, pollen and ovule production, nectar secretion, receptive before anthers dehisce (Sprengel 1793). floral visitors, self-fertility, and fruit set. We predicted Marked, synchronized, intra- and interfloral protandry is that (1) like other species with small, white to greenish- characteristic of the primarily tropical and woody Aralia- yellowish flowers, S. heptaphylla would be pollinated by ceae (Schlessman et al. 1990a, 2010). Individual plants small, generalized insects (Willemstein 1987; Bawa 1990; may produce hundreds to thousands of small, white to Proctor et al. 1996); (2) like other araliads, S. heptaphylla greenish-white flowers, which are typically borne on would exhibit both self-fertility and intra- and interfloral compound inflorescences composed of two or more struc- protandry that limited opportunities for both autogamy and turally distinct flower clusters (Philipson 1970; Frodin and geitonogamy (Schlessman et al. 1990a); and (3) the pollen- Govaerts 2003). The way that interfloral dichogamy is to-ovule ratios of S. heptaphylla flowers would be within expressed in these compound inflorescences, i.e., whether the range reported for animal-pollinated, primarily out- orders of umbels mature synchronously or sequentially, crossing species (Cruden 2000). We proposed that her- appears to be key in determining the sexual system. Syn- maphroditism was consistent with theoretical predictions chrony among umbel orders is correlated with hermaph- for variation in sex allocation among sequentially maturing roditism (all flowers bisexual), while sequential maturation flowers in protandrous species. is correlated with andromonoecy (Schlessman et al. 1990a, 2010). However, the most comprehensive studies of araliad Materials and methods floral phenology to date have been conducted on eastern North American herbaceous species of the temperate gen- Study species and populations era Aralia and Panax, and the latter is unusual in that it lacks compound inflorescences. Aralia hispida exhibits Schefflera heptaphylla (L.) Frodin (Araliaceae), the ‘‘ivy multiple cycles of protandry as sequentially maturing tree,’’ is a winter-flowering species common in tropical or cluster of flowers (umbels) open, and this temporal sepa- subtropical evergreen broadleaved forests. It is widely ration of male and female function is thought to reduce distributed in Fujian, Guangdong, Guangxi, Guizhou, opportunities for self-pollination, promote out-breeding, Hunan, Jiangxi, Xizang, Yunnan, Zhejiang, and Taiwan in and intensify competition among staminate flowers for China, and also in the neighboring countries India, Japan, ovules (Thomson and Barrett 1981; Thomson et al. 1982; Thailand, and Vietnam (He and Zeng 1974; Xiang and Barrett 1984). In the simple, single umbel inflorescences of Lowry 2007). Individual trees range from 2 to 8 m in Panax quinquefolius, intra- and interfloral protandry height, and the trunk diameter at breast height can exceed reduces opportunities for selfing but does not entirely 0.30 m. Mature trees typically produce 15–30 compound, prevent it (Lewis and Zenger 1983; Schlessman 1985; paniculate inflorescences during a flowering season. A Anderson et al. 1993; Mooney and McGraw 2007). Simi- typical compound inflorescence consists of a first order larly, marked intra- and interfloral protandry restricts aut- (primary, terminal) umbel, 15.55 ± 0.67 branches ogamous and geitonogamous selfing in the simple (mean ± SE, n = 20) terminating in second order (sec- inflorescences of Panax trifolius (Schlessman 1990). ondary, lateral) umbels, and 7.45 ± 0.40 third order (ter- Studies of the floral biology of the more common and tiary, sublateral) umbels (n = 20) on each branch. Each representative tropical Araliaceae have been somewhat umbellet is composed of 11.70 ± 0.53 small (ca. 5 mm narrow in scope. Intra- and interfloral protandry, along with diameter) flowers (n = 20). Thus, a single compound 123 Synchronized protandry of Schefflera heptaphylla 31 inflorescence may have 1,337.60 ± 86.40 flowers (abscising), or all fallen; stamens with anthers undehis- (n = 20), and trees typically produce thousands of flowers ced, dehiscing (exposing pollen), or empty
Recommended publications
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Title General Flowering in an Asesonal Tropical Forest : Plant Reproductive Phenology and Plant-Pollinator Interactions in A
    General flowering in an asesonal tropical forest : plant Title reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak( Dissertation_全文 ) Author(s) Sakai, Shoko Citation 京都大学 Issue Date 1999-03-23 URL https://doi.org/10.11501/3149376 Right Type Thesis or Dissertation Textversion author Kyoto University Shoko Sakai 1 Doctoral thesis General flowering in an aseasonal tropical forest: plant reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak i1-:;r"J'Ji~tt!3"79 1 \t5-:t:t-*1=d=311 ~f®~m~9m"7 I .J o 9-c f@~7ll-~fJJ~t§B:fJ=f§ Shoko SAKAI Fuculty of Science, Kyoto University March 1999 Shoko Sakai 2 CONTENTS Summary 4 Chapter 1. Introduction 6 Chapter 2. Canopy observation system 11 Chapter 3. Plant reproductive phenology 16 Chapter 4. Pollination system in a general flowering period 56 Chapter 5. General discussion 77 Acknowledgments 88 Reference 89 Appendix 99 Shoko Sakai 3 Jttm 7:; 7 ~m~f~:lt!!. 7 7 ;\ tf .:t-w-r: I±, - =for oo:rE e: Df'Jn ~ :m~-IJ\jo G n -c \,t) ~ o -=for 001£ C: I±, 2-10 ifmJM-r:w7Ct ~ f~hX:T ~ :f*4 ~f!Hi-/J\~7 JJ ~Fa, ~:.:J(4 C: 001£ · ~~T ~ ;m~ -r:~ ~ o -: ~:m~ ~~~~ t-:=&IJ, 1992ifiJ" G? v- Y 7 · -IT 7 r:7 71+1 · 7 / ~-Jv00J1.0~ ~=13 v)-c, JE:M89~: 305{i576f~1*~til!fo/J~001E · fffl~15th~~c&~l .. 53'-;fJl-~13-:~-:>t-:= o i-~~ :lf!;, 1992if-IJ"G 19951f:i-r:'±~1tjt~~til!fo/J~~ ~~OO:rEL-cv)~{i, ~~v)l±f~i*~~Uil '±~~: 2-5% C: 1~-/J"-:> t-:=-/J\, f-~~Ui!L± 19961f: 3 JJ iJ" Gf&,Jt~:_t~ L-c 20% ~=~ l, - =foTOO 1E ~ ~c&~ L t-:= o 001E~Uil~ ~1tL± 5 JJ C: 9 Jn: I!- 7 ~ ~--:::> =L1J ~ ~ L t-:: o it-::, - =for 001£ L± 70 ;~-- r Jv ~-: -t~tH*n" G*f'*f~*-?~~ 7 / i -r:~l*~til!fo/J-/J\--:::> < ~ te-t:m~t! e: v) ~-: (: -/)\ b -/)'> -:> t-:= 0 7 7 ;\if .:t- W~fil!fo/J I± i- ~ Li C: lv C:"-/J\j}J!fo/J ~: ~~' ~ {t(fF L-c v) ~ ~ -r:, - =for OO:f£-/J\13-: ~ C:~f;t~~11ff~-/J\f&,~=r'§J < ~~ 0 ttg:I±1Eit?]Jjt~z Lv)w-r:-=foT001E~~~m-~T- ~AiJ\C:"~ J:: ~ 1: 1 iJ" ~ b n -c \,t) ~ ~ iJ"I±, -=for oo:rE ~ &~J <" ~ * ~ ~ rQ~m~ ---:::> -c- ~ ~ o -: n 1 -r: .
    [Show full text]
  • Final Report
    FINAL REPORT Department of Natural Resources and Environment, Gippsland Region, March 2002 1 © The State of Victoria, Department of Natural Resources and Environment 2002. This publication is copyright. Apart from any fair dealings for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical, or graphic) without written prior permission of the State of Victoria, Department of Natural Resources and Environment. All requests and enquires should be directed to the Copyright Officer, Library Information Services, Department of Natural Resources and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002. ISBN 1 74106 548 8 Find more information about the Department at www.dse.vic.gov.au Customer Service Centre Phone: 136 186 [email protected] General disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequences which may arise from your relying on information in this publication. COVER PHOTO LOCATIONS (TOP TO BOTTOM) Photo 1. Depauperate Coastal Tussock Grassland (EVC 163-04) on islands off Wilsons Promontory. Photo 2. Gippsland Plains Grassy Woodland (EVC 55-03) at Moormurng Flora and Fauna Reserve south-west of Bairnsdale. Photo 3. Wet Forest (EVC 30) in the Strzelecki ranges. Photo 4. Mangrove Shrubland (EVC 140) on the South Gippsland coastline at Corner Inlet.
    [Show full text]
  • Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp.
    [Show full text]
  • Intergeneric Graft Compatibility Within the Family Araliaceae
    RESEARCH UPDATES Fatshedera ( Fatsia x Hedera) that have Materials and methods Intergeneric been grown erect are sold as novelty specimens. Growers usually get a high Twenty-three cultivars of Graft percentage of successful grafts with Araliaceae representing six genera and Compatibility healthy plant material and good graft- 16 species were obtained from com- ing technique. mercial sources. Two species each of within the Family Variegated forms of Aralia elata two genera native to Hawaii, do not root from cuttings and produce Cheirodendron and Tetraplasandra, Araliaceae nonvariegated seedlings. The varie- were collected in the Koolau Moun- gated forms are propagated by bud- tains on Oahu (Table 1). ding onto seedling or vegetatively Rootstocks propagated from tip Kenneth W. Leonhardt1 produced nonvariegated rootstocks of cuttings rooted in equal parts ver- A. elata (Leiss, 1977). One variegated miculite and perlite under intermit- form of A. elata also has been cleft- tent mist and full sun were grown in Additional index words. Aralia, grafted successfully onto a rootstock 15-cm plastic pots containing equal Ginsing, Panax family, propagation of A. spinosa (Raulston, 1985.) parts peat moss, perlite, and field soil The relative ease of the Hedera x (by volume). Lime and a slow-release Summary. Novelty Araliaceae potted Fatshedera graft raised the possibility granular fertilizer were incorporated. plants were created by a wide variety of graft compatibility of Hedera with Rootstocks were established in a green- of interspecific and intergeneric graft other relatives, particularly those grow- house under 25% shade cover until combinations. Twenty-four species of ing tall rapidly or having other desir- grafted.
    [Show full text]
  • Bale-Travel-Guidebook-Web.Pdf
    Published in 2013 by the Frankfurt Zoological Society and the Bale Mountains National Park with financial assistance from the European Union. Copyright © 2013 the Ethiopian Wildlife Conservation Authority (EWCA). Reproduction of this booklet and/or any part thereof, by any means, is not allowed without prior permission from the copyright holders. Written and edited by: Eliza Richman and Biniyam Admassu Reader and contributor: Thadaigh Baggallay Photograph Credits: We would like to thank the following photographers for the generous donation of their photographs: • Brian Barbre (juniper woodlands, p. 13; giant lobelia, p. 14; olive baboon, p. 75) • Delphin Ruche (photos credited on photo) • John Mason (lion, p. 75) • Ludwig Siege (Prince Ruspoli’s turaco, p. 36; giant forest hog, p. 75) • Martin Harvey (photos credited on photo) • Hakan Pohlstrand (Abyssinian ground hornbill, p. 12; yellow-fronted parrot, Abyssinian longclaw, Abyssinian catbird and black-headed siskin, p. 25; Menelik’s bushbuck, p. 42; grey duiker, common jackal and spotted hyena, p. 74) • Rebecca Jackrel (photos credited on photo) • Thierry Grobet (Ethiopian wolf on sanetti road, p. 5; serval, p. 74) • Vincent Munier (photos credited on photo) • Will Burrard-Lucas (photos credited on photo) • Thadaigh Baggallay (Baskets, p. 4; hydrology photos, p. 19; chameleon, frog, p. 27; frog, p. 27; Sof-Omar, p. 34; honey collector, p. 43; trout fisherman, p. 49; Finch Habera waterfall, p. 50) • Eliza Richman (ambesha and gomen, buna bowetet, p. 5; Bale monkey, p. 17; Spot-breasted plover, p. 25; coffee collector, p. 44; Barre woman, p. 48; waterfall, p. 49; Gushuralle trail, p. 51; Dire Sheik Hussein shrine, Sof-Omar cave, p.
    [Show full text]
  • Lamellorthoceratid Cephalopods in the Cold Waters of Southwestern Gondwana: Evidences from the Lower Devonian of Argentina
    Lamellorthoceratid cephalopods in the cold waters of southwestern Gondwana: Evidences from the Lower Devonian of Argentina MARCELA CICHOWOLSKI and JUAN JOSÉ RUSTÁN Cichowolski, M. and Rustán, J.J. 2020. Lamellorthoceratid cephalopods in the cold waters of southwestern Gondwana: Evidences from the Lower Devonian of Argentina. Acta Palaeontologica Polonica 65 (2): 305–312. Based on three specimens assigned to Arthrophyllum sp., the family Lamellorthoceratidae is reported from the Lower Devonian Talacasto Formation in the Precordillera Basin, central western Argentina. These Devonian cephalopods have been known only from low to mid palaeolatitudes and its presence in the cold water settings of southwestern Gondwana is notable. A nektonic mode of life, not strictly demersal but eventually pelagic, with a horizontal orientation of the conch is proposed for adults lamellorthoceratids, whereas a planktonic habit is suggested for juvenile individuals. These features would had allow their arrival to this southern basin, explaining their unusual presence in the Malvinokaffric Realm, and reinforcing the need of re-evaluate the distribution pattern of several groups of cephalopods. Key words: Cephalopoda, Lamellorthoceratidae, Arthrophyllum, Palaeozoic, Talacasto Formation, Malvinokaffric Realm, Precordillera Basin, Argentina. Marcela Cichowolski [[email protected]], Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), CON- ICET, and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina. Juan J. Rustán [[email protected]], Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Centro de Investigaciones Paleobiológicas (CIPAL), CONICET, Universidad Nacional de Córdoba, Av. Vélez Sarsfield Nº 1611, X5016GCA, Córdoba, Argentina and Universidad Nacional de La Rioja, M. de la Fuente s/n, CP 5300, La Rioja, Argentina.
    [Show full text]
  • Evolutionary Relationships in Afro-Malagasy Schefflera (Araliaceae) Based on Nuclear and Plastid Markers
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Evolutionary relationships in Afro-Malagasy Schefflera (Araliaceae) based on nuclear and plastid markers Morgan Gostel Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/122 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Morgan Robert Gostel 2010 All Rights Reserved ii EVOLUTIONARY RELATIONSHIPS IN AFRO-MALAGASY SCHEFFLERA (ARALIACEAE) BASED ON NUCLEAR AND PLASTID MARKERS A thesis submitted in partial fulfillment of the requirements for the degree of M.S. Biology at Virginia Commonwealth University. by MORGAN ROBERT GOSTEL B.S. Biology, Virginia Commonwealth University, 2008 Director: DR. GREGORY M. PLUNKETT AFFILIATE RESEARCH PROFESSOR, DEPARTMENT OF BIOLOGY, VIRGINIA COMMONWEALTH UNIVERSITY AND DIRECTOR, CULLMAN PROGRAM FOR MOLECULAR SYSTEMATICS, THE NEW YORK BOTANICAL GARDEN Co-Director: DR. RODNEY J. DYER ASSOCIATE PROFESSOR, DEPARTMENT OF BIOLOGY Virginia Commonwealth University Richmond, Virginia July 2010 iii Acknowledgements I have been tremendously fortunate in my life to be taught by truly gifted teachers – assets that are simultaneously the most important and undervalued in our world. I would like to extend my deepest gratitude to my friend and advisor, Dr. Gregory M. Plunkett, who has taught me that patience and diligence together with enthusiasm are necessary to pursue what we are most passionate about and who has provided me with the most exciting opportunities in my life.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Addis Ababa University Science Faculty School of Graduate Studies Department of Environmental Science Zoology Module
    ADDIS ABABA UNIVERSITY SCIENCE FACULTY SCHOOL OF GRADUATE STUDIES DEPARTMENT OF ENVIRONMENTAL SCIENCE ZOOLOGY MODULE AN INVESTIGATION OF AMPHIBIAN DIVERSITY AND ABUNDANCE IN RELATION TO ENVIRONMENTAL CHANGE IN HARENNA FOREST, BALE MOUNTAINS NATIONAL PARK, ETHIOPIA A Thesis Submitted to the School of Graduate Studies of Addis Ababa University, in Partial Fulfillment of the Requirements for the Degree of Master of Environmental Science By Roman Kassahun Advisors: Professor Samy A.Saber, A.A.U. Ethiopia Dr. Simon Loader, Institute of Biogeography, Basel, Switzerland July, 2009 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES An investigation of Amphibian diversity and abundance in relation to environmental change in Harenna Forest, Bale Mountains National Park. By Roman Kassahun A Thesis presented to the School of Graduate Studies of Addis Ababa University, in partial fulfillment of the requirements for the Degree of Master of Environmental Science Approved by Examining Board: _______________________ _____________ _____________________________ ________________ _____________________________ ________________ ______________________________ ________________ Acknowledgement I owe my sincere gratitude to my adviser Prof Samy A. Saber for his advice and encouragement prior to the start of research work and for his enormously consistent and valuable guidance and advice without which this research project would not have been realized. I am also grateful to my Co-advisor Dr. Simon Loader from the University of Basel, for the logistical support and great help during the wet season of the project, for his guidance in the identifications of the specimens and for giving me this opportunity in the first place. My gratitude also goes to the Ethiopian Wild Life Conservation Authority (EWCA) for allowing me to pursue the M.S.C.
    [Show full text]
  • Polyscias Sp. Douglas-Denison (R.Schahinger HO526133) Tas Herbarium Common Name: Ferny Panax (Wapstra Et Al
    Listing Statement for Polyscias sp. Douglas-Denison (ferny panax) Polyscias sp. Douglas-Denison ferny panax T A S M A N I A N T H R E A T E N E D F L O R A L I S T I N G S T A T E M E N T Image by Louise Gilfedder Scientific name: Polyscias sp. Douglas-Denison (R.Schahinger HO526133) Tas Herbarium Common name: ferny panax (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Araliaceae Name history: Polyscias sambucifolia, Polyscias aff. sambucifolia Status: Threatened Species Protection Act 1995: endangered Environment Protection and Biodiversity Conservation Act 1999: Not Listed Distribution: Endemic status: Endemic to Tasmania? Tasmanian NRM Regions: North & South Figure 1. Distribution of Polyscias sp. Douglas- Plate 1. Polyscias sp. Douglas-Denison Denison, showing Natural Resource Management (image by Richard Schahinger) regions Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Polyscias sp. Douglas-Denison (ferny panax) IDENDIFICATION AND ECOLOGY ovule. Fruit are laterally compressed succulent Polyscias sp. Douglas-Denison is a small drupes, about 4 mm long, bluish-green or steel- evergreen tree in the Araliaceae family (Baker & blue in colour. Duretto 2011). It is known in Tasmania from six sites on the central east coast where it grows Confusing Species in damp sclerophyll forest. Forms of Polyscias sambucifolia have been in cultivation in Tasmanian gardens since the late Polyscias sp. Douglas-Denison is capable of 1800s, with some escapees now considered to vigorous spread via root suckering, especially be naturalised (Rodway 1903, Curtis 1963, de after fire.
    [Show full text]
  • A Dictionary of the Plant Names of the Philippine Islands," by Elmer D
    4r^ ^\1 J- 1903.—No. 8. DEPARTMEl^T OF THE IE"TEIlIOIi BUREAU OF GOVERNMENT LABORATORIES. A DICTIONARY OF THE PLAIT NAMES PHILIPPINE ISLANDS. By ELMER D, MERRILL, BOTANIST. MANILA: BUREAU OP rUKLIC I'RIN'TING. 8966 1903. 1903.—No. 8. DEPARTMEE^T OF THE USTTERIOR. BUREAU OF GOVEENMENT LABOEATOEIES. r.RARV QaRDON A DICTIONARY OF THE PLANT PHILIPPINE ISLANDS. By ELMER D. MERRILL, BOTANIST. MANILA: BUREAU OF PUBLIC PRINTING. 1903. LETTEE OF TEANSMITTAL. Department of the Interior, Bureau of Government Laboratories, Office of the Superintendent of Laboratories, Manila, P. I. , September 22, 1903. Sir: I have the honor to submit herewith manuscript of a paper entitled "A dictionary of the plant names of the Philippine Islands," by Elmer D. Merrill, Botanist. I am, very respectfully. Paul C. Freer, Superintendent of Government Laboratories. Hon. James F. Smith, Acting Secretary of the Interior, Manila, P. I. 3 A DICTIONARY OF THE NATIVE PUNT NAMES OF THE PHILIPPINE ISLANDS. By Elmer D. ^Ikkrii.i., Botanist. INTRODUCTIOX. The preparation of the present work was undertaken at the request of Capt. G. P. Ahern, Chief of the Forestry Bureau, the objeet being to facihtate the work of the various employees of that Bureau in identifying the tree species of economic importance found in the Arcliipelago. For the interests of the Forestry Bureau the names of the va- rious tree species only are of importance, but in compiling this list all plant names avaliable have been included in order to make the present Avork more generally useful to those Americans resident in the Archipelago who are interested in the vegetation about them.
    [Show full text]