Highly Selective and Rapid Uptake of Radionuclide Cesium
Article pubs.acs.org/cm Highly Selective and Rapid Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy † † † † † † † Huajun Yang, Min Luo, Li Luo, Hongxiang Wang, Dandan Hu, Jian Lin, Xiang Wang, ‡ ‡ § ⊥ † Yanlong Wang, Shuao Wang, Xianhui Bu,*, Pingyun Feng,*, and Tao Wu*, † College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China ‡ School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China § Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States ⊥ Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States *S Supporting Information ABSTRACT: The safe use of nuclear energy requires the development of advanced adsorbent technology to address environment damage from nuclear waste or accidental release of radionuclides. Recently developed amine-directed chalcogenide frameworks have intrinsic advantages as ion-exchange materials to capture radionuclides, because their exceptionally negative framework charge can lead to high cation-uptake capacity and their 3-D multidimensional intersecting channel promotes rapid ion diffusion and offer a unique kinetic advantage. Prior to this work, however, such advantages could not be realized because organic cations in the as-synthesized materials are sluggish during ion exchange. Here we report an ingenious approach on the activation of amine- directed zeolitic chalcogenides through a stepwise ion-exchange strategy and their use in cesium adsorption. The activated porous chalcogenide exhibits highly enhanced cesium uptake compared to the pristine form and is comparable to the best metal chalcogenide sorbents so far. Further ion-exchange experiments in the presence of competing ions confirm the high selectivity for cesium ions.
[Show full text]