Twelfth European Crystallography Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Twelfth European Crystallography Meeting cz TWELFTH EUROPEAN CRYSTALLOGRAPHY MEETING COLLECTED ABSTRACTS Vol. 2 MOSCOW, USSR, AUGUST 20—29, 1989 USSR Academy of Sciences TWELFTH EUROPEAN CRYSTALLOGRAPHIC MEETING Moscow, USSR August 20-29, 1989 COLLECTED ABSTRACTS Vol.2 The meeting is arranged by the Soviet National Committee of Cryst.allographers and the Institute of Crystallography of the USSR Academy of Sciences on behalf of the European Crystallographic Committee under the auspices of the USSR Academy of Sciences and the International Union of Crystallography. Moscow-198 9 Organizing Committee: Co—chairmen: B.K. Vainshtein, A.M.Prokhorov Conference secretary: EJH.Harutyunyan V.V.Davydov, V.P. Fatieva, P.P. Fedorov, N.P. Goltzova, A.G. Kocharov, Yu. A. Kostenko, EX. Lube, I.S. Lyubutin, Yu.M. L'vov, I.L.Minaeve, V.I. Ryabchenkov_, V.I. Simonov, E.V.Suvorov, D.I.Svergun, V.E.Volkov International Programme Committee: Chairman: V.I. Simonov (USSR) H.D.Bartunic (FRG), E.F.Bertaut (France), T.L. Blundell (U.K.), S. Garcia—Blanco (Spain), A.Kalman (Hungary)^K. Lukaszevicz (Poland), L.I.Man (USSR), Yu. Z.Nozik (USSR), H.Schenk (The Netherlands)fD.L.M.Viterbo (Italy) Collected Abstracts have been compiled by V.V. Klechkovskaya, L .L. Aksenova, О. V. Konovalov 3. CRYSTAL CHEMISTRY Oral presentations 1-3 - 4­ FFOH BRONZE PHASES TO BROH20IDS AND PBASOIDS ­ EXCURSION INTO SOME COMPLEX TOHGSTEH OXIDE SYSTEMS Arne MagnSli Arrhenius Laboratory, University of Stockholm, S­106 91 Stockholm, Sweden By hie X­ray diffraction studies in 1935 of the cubic sodium tungsten Ьгопгев НЙдд was able to solve the more than 100 years old problem of the chemical character of this peculiar group of substances. What he found was not a nuaber of discrete compounds but rather one phase with an extraordinarily wide region of composition NaxW03, with values of x ranging from about 1/3 to close to 1. The berthollide character is associated with the crystal structure where a variable proportion of sodium atoms occupy the interstices in an ЛеОз­ type skeleton of WOg­o^tahedra. An alternative way of lookiTiq at the structure is as perovskite type with a variable deficiency of sodium atoos (PTB|. Subsequent studies on bronzes containing alkali atoms larger than sodium revealed other types of skeletons of corner­linked WOg­octahedia. In addition to PTB­type interstices the tetragonal tungsten bronze type (TTBJ contains larger ones, situated in pentagonal tunnels or tubes (PT) formed by rings of five octahedra. Even larger are the interstices in the hexagonal tungsten bronze type IHTB) which contains six­sided tunnels formed by coupling of six octahedra. The skeletons of the bronze structures show a remarkable stability. Hot only can they accommodate a large variety of atoms to substitute *t the alkali atom positions, but substitution may also occur in the skeleton it­ self. Thus ГТВ­type phases occur in the XNbjOsF­wOj system, where Nb and F partly replace W and O, respectively. This phase, while possessing a bronze structure, lacks other characteristics of bronzes such as metallic lustre and electric conductivity and may properly be designated a bronzoid. Other types of bronze­like phases occur in systems like N^Os­WO^. Here some PTs in a TTB framework are filled with alternating metal and oxygen atoms which, to­ gether with the 0 five­rings of the tunnel, form pentagonal metal­oxygen bi­ pyramids linked by 0 apices to a spine which transforms the PT to a PC (penta­ gonal column)­ The PC is a frequently occurring structure element in transition metal oxides and fluorides. High resolution electron microscopy (HREM) and electron diffraction have been indespensible complements to X­ray diffraction techniques in studies of such materials and of those described below. Intergrowth tungsten bronzes (ITB) forming at low contents of large alkali atoms, e.ej. Cs, have been extensively studied by Kihlborg and coworkers. Their «ОД skeleton is formed by intergrowth of lamellae of НТВ and W03 struc­ tures. Both can vary in width, and crystallites of a particular sample almost invariably differ with respect to the thickness of the slabs. Such variations also abound within the crystallites. Thus there is no obvious correlation between gross composition and structure of the ITBs, and under practically attainable conditions the concepts of compound and phase los^ their meaning for these substances. The region of gross composition as a function of tempe­ rature of preparation seems to be fairly well defined, and the ensemble of ITBs thus behaves rather like a phase and may therefore be described as a phasoid. The conditions are similar in bronzoid ITBs with a pentavalent metal partially substituting for tungsten. ­ 5 ­ NEW MINERALS НТВ TBTBJLHEDBJLL AND MIXED RADICALS U.Yu.PushcharovBky. N.A.Yamnova, T.N.Nadezhina Moscow State University, Faculty of Geology, Moscow, USSB The review summarizes the results of recent structural determinations of four new minerals with original tetrahedral and mixed radicals. The structure of grumentite NafsigO.COH)]H20 contains an interrupted framework of tertiary [SiO.] tetrahedri, which ie untypical for the tetrahedral radical [ЧгоЛ. This silicate anion is one of 11 (Si,0)­tetrahedral configurations, revealed at the Chair of Crystallography of Moscow State University during the last 40 years. The structure of olinobehoite Be(OH), is composed of 3­ layered sheets of Be­tetrahedra linked by H­bonds. The common and distinctive features of 3­layered tetrahedral sheets in clinobehoite, zusmanite, Na,Si,07 and NaPrSigO.,. are discussed. New carbonate mineral Ha6BaTh(CO,)g.6H20 has hexagonal sym­ metry, space group R3 with unit cell parameters a = 14,175, с = 8,605 А, Нщ^ад ­ 0,035 for 565 reflections. A new type of isolated mixed radical composed of Th­icosahedron sharing edges with six [CO,]­triangles, is revealed in this structure. The deviation of C­atoms from the plane formed by three 0­atoms is 0,05 A. The framework mixed radical formed by Mg­octahedra and S­ tetrahedra makes the basis of the structure of new sulphate mi­ neral Mg­(S0.)2(0H) The crystals have tetragonal symmetry, space group P 4­|/amd ilth lattice dimensions a = 5,254, с = 12,971, Rgj^ao • 0,035 for 238 reflections. This mineral is a structural analogue of previously investigated synthetic crystal ME1(33S04(OH)1>33[H2O]0(67. The comparative crystal­chemical analysis of studied minerals allowed us to represent the connections between chemi­ cal compositions end their structures. ­ 6 ­ AIMMM Grat: SyntSwiiit StmcUf t, md шммг яя Nn Sptcfrescflfy 2 3 5 yjjHjr', G.A. Lager , G. Anrthausr , J.F. rschardson*. and T. Armbruster z 'Tcchniicht Universitat Berin, Ernst Router Platz 1, D­1000 Berlin 12. Dept. 3 fisohjIU. Uniy. LourtY*., Lean»»», KY 40292. U.S.A.. mstitut fik­ Gaowissen­ schaften, UramrsHIt Salzburg, A­S020 Salzba­f. Austria. *Оар<. Chemistry, s Univ. Loutsvise. Ub. (or Chemical and Mnaratofjcal frystafeo/aphy. Univ. Barn. Freiestrasse 3. СН­Э012. Barn, Switzerland. Singio crystals of almandeur garnet (Fo3Al2Si30t2) up to ~ 1 mm in size have been synthesized at 1073 К and 1.5 GPa in a piaten­cvRnder apparatus. Larfa cryslala ef this size hove not bean synthesized previously. The crystals Mora grown hydrefhermafy from an aside and re­metal mix in iron capsules for two days duration. We report the first single crystal X­ray structure refinement, NIR spectrum and crystal fiaW stebifezation anorajt (WSE) for synthetic end menibar akmndine. The X­ray work at 2M X Luntliiiied the space group Ia3d, «nth a,= 11.521 A (1), and osygen parameters X = 0 033*5 (10), Y = 0.04912 (10), and Z = 0.65306 (Ю). Selected bond kmgths in A aro SHOO) = 1.633 (1), FelD­OU) ­= 2.218 (1). FM2>­OU) • 2.36» (1) and At­Ot» ­ 1.893 (1). These vahies are vary similar to those reported for naturaiy occurring аитшняпе­­г1сп garnets /1/, /2/. Mossbauer spoclro taken on other armandine syntheses consisting of smaler cryslala have imilnauli seetttnei of 3.S9 I 0.01 mm/sec (298 Kl and 3.65 (78 K) and leeaw shifts of 1.28 ! 0.01 mm/sec 1298 K) and 1.42 1 (78 Ю for the Fa * doublet. Sight asymmetries and different Kne vrktths. In the ooualil wore observed and hence, two components could be fit to the spectra /3/. Ilowavar, the X­ray data do not Indkato the preaonce of more than one crystalegrephic dadecahodral «No and, tharsfore, a garnet symmetry tower a than Ia3d И.о. 12,31 at 2»i K. The asymmetry of the Fe * doublet in the Moasbalnv spectra could bo due to relaxation effocte. FT­MR moasuramonts were made on single crystale betwaan 10,000 and 1 3.000 cm' ta locate the ваеЮеае of throe bands rotated ta dd electronic 2 transition» ef tks t2, orbHal of Fa * In the dodocahodral site of point group symmetry D2. The bands are located at 7561, S7I3. and 4348 cm"'. This gives 1 \* 5324 cm"' and.a CFSE of 3744 cm' , assuming that the lower energy a, s 5 1 transition A­»­ B, Is ItOO cm" /4/. These values are lower than those calculated for natural abnandines /4/. Two Ifl bands were also observed at ­1 1 1 1 3«13 cm and ­ 3490 cm" (298 K) end 3617 cm" and 3595 cm" (78 K). They are interpreted aa OH~ stretching vibrations related to a small number 4 of (04H4) ~ groups substituting for the SK>4 tetrahedra in the hydrogarnel substitution. /1/ Pram* W„ Zeit. KiistjU. Щ. 333 (19711. /2/ Novak 0Л. and Slabs G.V.. Am. Mneral. 56, 791 (1971). /3/ Murad E., Wagner Г.Е.. Phys. Chom. Mineral» it 264 (1987). /4/ Burin; R.G.. й RMVYJWS in Mineraloey v.
Recommended publications
  • Large-Scale Hydrothermal Zoning Reflectedin The
    Canadian Mineralogist Vol. 27, pp. 383-400 (1989) LARGE-SCALE HYDROTHERMAL ZONING REFLECTED IN THE TETRAHEDRITE-FREIBERGITE SOLID SOLUTION, KENO HILL Ag-Pb-Zn DISTRICT, YUKON J.V. GREGORY LYNCH* Department of Geology, The University of Alberta, Edmonton, Alberta T6G 2E3 ABSTRACT en argent se distinguent aussi par une augmentation dans Ie nombre de cations dans leur formule chimique. Le rap- The zoned Keno Hill vein system of central Yukon port Sb/ As demeure uniformement eleve. extends laterally from a Cretaceous plutonic-metamorphic center and surrounding quartz-feldspar veins, to (Traduit par la Redaction) carbonate-Ag-Pb-Zn deposits, and further to peripheral veins having epithermal characteristics. Seven distinct Mots-cles: zonation hydrothermale, nappe aquifere, tetra- mineralogical zones are recognized, and the entire sequence edrite, solution solide, plutonique, epithermal, altera- is continuous from east to west in a 4O-km belt. The fault- tion, district de Keno Hill, Yukon. and fracture-controlled veins are stratabound to the brit- tle moderately dipping Keno Hill Quartzite unit, of Mis- INTRODUCTION sissippian age. The unit is graphitic and appears to have acted as a large-scale hydrothermal aquifer, restricting fluid This paper concerns the large-scale nature of the flow during minera1ization and" development of zoning predominantly to the lateral direction. Tetrahedrite is dis- Keno Hill hydrothermal system. A broad and con- tributed along a 25-km-Iong portion of the system, and is tinuous sequence of mineral zoning can be the principal ore mineral of Ag. Both Ag/Cu and Fe/Zn documented within veins distributed along an exten- values in tetrahedrite are highest at the outer extremity of sive portion of the Keno Hill Quartzite, which is the the system, where freibergite dominates over tetrahedrite; main host rock to the ore in the area.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Germanium-Bearing Colusite from the Yanahara Mine, Japan, and Its Significance to Ore Genesis
    RESOURCE GEOLOGY, 44(1), 33•`38, 1994 Germanium-bearing Colusite from the Yanahara Mine, Japan, and Its Significance to Ore Genesis Katsuo KASE*, Masahiro YAMAMOTO* and Chiharu MITSUNO* Abstract: Colusite, Cu26V2(As,Ge)6S32, containing up to 4.3 wt.% Ge occurs with pyrite, chalcopyrite and bomite in sphalerite-barite-rich ores of the volcanogenic massive sulfide orebody at Hinotani L-1, the Yanahara mine. Electron micro- probe analysis reveals that As and V are pentavalent and Ge is tetravalent in the mineral the same as in germanite and renierite, suggesting that the Ge-bearing colusite was precipitated under high fs2 and foe conditions. These Ge-bearing min- erals sometimes occur in the Kuroko deposits related with felsic volcanism, associated with pyrite, chalcopyrite and bomite as at Hinotani, while practically no Ge-bearing minerals occur in the Besshi-type deposits related with mafic volcanism. It is concluded that the ore solutions responsible for the Hinotani L-1 orebody and possibly for whole orebodies at Yanahara are related with felsic volcanism. ore mineralogy is similar to that of the typical 1. Introduction Besshi-type deposits. The deposit is thus ambigu- There are two major types of volcanogenic mas- ous in the classification, and sometimes called sive sulfide deposits in Japan: Kuroko deposits and Besshi-type deposits. The Kuroko deposits are genetically related with Miocene dacitic-rhy- olitic volcanism, and characterized by high Zn, Pb and Ag contents and an abundance of sulfate min- erals. The Besshi-type cupriferous iron sulfide de- posits, equivalent to Kieslager, occur in the se- quence consisting of basalts and sediments, or their metamorphic equivalents, and are very low in the Pb content and poor in sulfate minerals.
    [Show full text]
  • DESCRIPTIVE MODEL of KIPUSHI Cu-Pb-Zn
    Model 32c DESCRIPTIVE MODEL OF KIPUSHI Cu-Pb-Zn By Dennis P. Cox and Lawrence R. Bernstein DESCRIPTION Massive base-metal sulfides and As-sulfosalts in dolomite breccias characterized by minor Co, Ge, Ga, U, and V. GEOLOGICAL ENVIRONMENT Rock Types Dolomite, shale. No rocks of unequivocal igneous origin are related to ore formation. [The pseudoaplite at Tsumeb is herein assumed to be a metasedimentary rock following H. D. LeRoex (1955, unpublished report).] Textures Fine-grained massive and carbonaceous, laminated, stromatolitic dolomites. Age Range Unknown; host rocks are Proterozoic in Africa, Devonian in Alaska, Pennsylvanian in Utah. Depositional Environment High fluid flow along tabular or pipe-like fault- or karst (?)-breccia zones. Tectonic Setting(s) Continental platform or shelf terrane with continental or passive margin rifting. Ore formation at Tsumeb and Ruby Creek predates folding. Associated Deposit Types Sedimentary copper, U-veins, barite veins. Sedimentary exhalative Pb-Zn may be a lateral facies. DEPOSIT DESCRIPTION Mineralogy Ruby Creek: pyrite, bornite, chalcocite, chalcopyrite, carrollite, sphalerite, tennantite. Tsumeb: galena, sphalerite, bornite, tennantite, enargite. Kipushi: sphalerite, bornite, chalcopyrite, carrollite, chalcocite, tennantite, pyrite. Less abundant minerals in these deposits are linnaeite, Co-pyrite, germanite, renierite, gallite, tungstenite, molybdenite, and native Bi. Bituminous matter in vugs. At Apex mine, marcasite. Texture/Structure Massive replacement, breccia filling, or stockwork. Replacement textures of pyrite after marcasite at Ruby Creek and Apex. Alteration Dolomitization, sideritization, and silicification may be related to mineralization. Early pyrite or arsenopyrite as breccia filling or dissemination. Ore Controls Abundant diagenetic pyrite or other source of S acts as precipitant of base metals in zones of high porosity and fluid flow.
    [Show full text]
  • Silver Enrichment in the San Juan Mountains, Colorado
    SILVER ENRICHMENT IN THE SAN JUAN MOUNTAINS, COLORADO. By EDSON S. BASTIN. INTRODUCTION. The following report forms part of a topical study of the enrich­ ment of silver ores begun by the writer under the auspices of the United States Geological Survey in 1913. Two reports embodying the results obtained at Tonopah, Nev.,1 and at the Comstock lode, Virginia City, Nev.,2 have previously been published. It was recognized in advance that a topical study carried on by a single investigator in many districts must of necessity be less com­ prehensive than the results gleaned more slowly by many investi­ gators in the course of regional surveys of the usual types; on the other hand the advances made in the study of a particular topic in one district would aid in the study of the same topic in the next. In particular it was desired to apply methods of microscopic study of polished specimens to the ores of many camps that had been rich silver producers but had not been studied geologically since such methods of study were perfected. If the results here reported appear to be fragmentary and to lack completeness according to the standards of a regional report, it must be remembered that for each district only such information could be used as was readily obtainable in the course of a very brief field visit. The results in so far as they show a primary origin for the silver minerals in many ores appear amply to justify the work in the encouragement which they offer to deep mining, irrespective of more purely scientific results.
    [Show full text]
  • A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores
    A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores Chapter A of Mineral Deposit Models for Resource Assessment 2 cm Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus marcasite) from the Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and Scientificsphalerite Investigations alnong colloform Report layers of2010–5070–A light-colored spahlerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerire and iron sulfides. Size of sample is 20x13 cm. Photo by David Leach. U.S. Department of the Interior U.S. Geological Survey COVER: Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus mar- casite) from Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and sphalerite along colloform layers of light-colored sphalerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerite and iron sulfides. Size of sample is 20x13 centimeters. (Photograph by David L. Leach, U.S. Geological Survey.) A Deposit Model for Mississippi Valley- Type Lead-Zinc Ores By David L. Leach, Ryan D. Taylor, David L. Fey, Sharon F. Diehl, and Richard W. Saltus Chapter A of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–A U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Nabokoite Cu7(Te4+O4)
    4+ Nabokoite Cu7(Te O4)(SO4)5 • KCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 4/m 2/m 2/m. Crystals are thin tabular on {001}, to 1 mm, showing {001}, {110}, {102}, {014}, in banded intergrowth with atlasovite. Physical Properties: Cleavage: Perfect on {001}. Hardness = 2–2.5 D(meas.) = 4.18(5) D(calc.) = 3.974 Optical Properties: Transparent. Color: Pale yellow-brown, yellow-brown. Streak: Yellow- brown. Luster: Vitreous. Optical Class: Uniaxial (–). ω = 1.778(3) = 1.773(3) Cell Data: Space Group: P 4/ncc. a = 9.833(1) c = 20.591(2) Z = 4 X-ray Powder Pattern: Tolbachik volcano, Russia. 10.35 (10), 2.439 (7), 3.421 (6), 2.881 (5), 4.57 (4), 3.56 (4), 1.972 (4) Chemistry: (1) (2) SO3 33.66 33.60 TeO2 13.78 13.40 V2O3 0.07 Bi2O3 0.49 Fe2O3 0.09 CuO 45.25 46.74 ZnO 1.26 PbO 0.28 K2O 3.94 3.95 Cs2O 0.11 Cl 2.92 2.98 −O=Cl2 0.66 0.67 Total 101.19 100.00 (1) Tolbachik volcano, Russia; by electron microprobe, corresponds to (Cu6.74Zn0.18)Σ=6.92 (Te1.02Bi0.02Pb0.01Fe0.01V0.01)Σ=1.07O4.10(SO4)4.98Cl0.98. (2) KCu7(TeO4)(SO4)5Cl. Polymorphism & Series: Forms a series with atlasovite. Occurrence: A rare sublimate formed in a volcanic fumarole. Association: Atlasovite, chalcocyanite, dolerophanite, chloroxiphite, euchlorine, piypite, atacamite, alarsite, fedotovite, lammerite, klyuchevskite, anglesite, langbeinite, hematite, tenorite. Distribution: From the Tolbachik fissure volcano, Kamchatka Peninsula, Russia.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • The Crystal Structure of Klyuchevskite, K3cu3(Fe,A1)O2(SO4)4, a New Mineral from Kamchatka Volcanic Sublimates
    The crystal structure of klyuchevskite, K3Cu3(Fe,A1)O2(SO4)4, a new mineral from Kamchatka volcanic sublimates M. G. GORSKAYA*, S. K. FILATOV*, I. V. ROZHDESTVENSKAYA'~AND L. P. VERGASOVA~ State University,* LPO 'Burevestnik't St.-Petersburg Institute of Volcanology, Academy of Sciences, Petropavlovsk-Kamchatsky:~, Russia Abstract The crystal structure of klyuchevskite, K3Cu3(Fe3+,A1)O2(SO4)4, was determined in space group 12 using the total of 715 independent reflections up to R 0.12. Klyuchevskite is a structural analogue of piypite (caratiite) K4Cu402(SO4)4MeC1 with the substitution K + + Cu 2+ ~ (Fe3+,A1) + MeC1. Compared to piypite, the ordering of Cu 2+ and Fe 3+ cations in the klyuchevskite structure results in the distortion of the unit cell and in lowering the symmetry of the chains to 1. This brings about a more compact packing of the chains. The chain-like arrangement of the structure determines physical properties of the mineral, its acicular habit, perfect cleavage, strong anisotropy of optical properties and orientation of optical indicatrix. KEYWORDS: klyuchevskite, crystal structure, piypite, Tolbachik volcano, Russia. THE systematic study of the products of fumarolic described (Effenberger, 1985b). The similarity of activity of Tolbachik Main Fracture Eruption (the crystal chemical formulae, and certain physical Kamchatka Peninsula 1975-1976) resulted in the properties of piypite and klyuchevskite (Table 1) discovery of a series of new minerals. One of them and their forms of occurrence indicates that these is klyuchevskite (Vergasova etal., 1989). The minerals are structurally related. The structural mineral fills cavities and small joints in the data obtained for klyuchevskite support this massive sublimates.
    [Show full text]
  • Sofiite Zn2(Se4+O3)Cl2
    4+ Sofiite Zn2(Se O3)Cl2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are thin platy to micalike, pseudohexagonal, may be elongated along [001], with {010}, {100}, to 5 mm. Twinning: On {100}, contact, to give “swallow-tail” forms. Physical Properties: Cleavage: On {010}, perfect; on {201}, less perfect. Tenacity: Brittle. Hardness = n.d. VHN = 38–61, average 49 (10 g load). D(meas.) = n.d. D(calc.) = 3.64(1) Soluble with difficulty in H2O. Optical Properties: Transparent. Color: Colorless, becomes sky-blue on long exposure to air. Streak: White. Luster: Vitreous to greasy or silky. Optical Class: Biaxial (+). Orientation: X = b; Y = c; Z = a. α = 1.709(3) β = 1.726(2) γ = 1.750(2) 2V(meas.) = n.d. 2V(calc.) = 91◦ Cell Data: Space Group: P ccn. a = 10.251(4) b = 15.223(2) c = 7.666(5) Z = 8 X-ray Powder Pattern: Tolbachik volcano, Russia; preferred orientation due to {010} cleavage. 7.61 (100), 3.807 (23), 2.918 (12), 3.055 (8), 3.237 (6), 2.538 (6), 2.727 (4) Chemistry: (1) (2) SeO2 34.48 33.76 CuO 0.19 ZnO 47.83 49.53 PbO 0.35 Cl 22.26 21.58 −O=Cl2 5.02 4.87 Total 100.09 100.00 (1) Tolbachik volcano, Russia; by electron microprobe, average of 38 analyses; corresponds to (Zn1.92Cu0.01Pb0.01)Σ=1.94(Se1.02O2.94)Cl2.06. (2) Zn2(SeO3)Cl2. Occurrence: In fractures in volcanic fumaroles, formed at 180 ◦C–230 ◦C.
    [Show full text]
  • Geology and Mineralogy of the Ape.X Washington County, Utah
    Geology and Mineralogy of the Ape.x Germanium-Gallium Mine, Washington County, Utah Geology and Mineralogy of the Apex Germanium-Gallium Mine, Washington County, Utah By LAWRENCE R. BERNSTEIN U.S. GEOLOGICAL SURVEY BULLETIN 1577 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1986 For sale by the Distribution Branch, Text Products Section U.S. Geological Survey 604 South Pickett St. Alexandria, VA 22304 Library of Congress Cataloging-in-Publication Data Bernstein, Lawrence R. Geology and mineralogy of the Apex Germanium­ Gallium mine, Washington County, Utah (U.S. Geological Survey Bulletin 1577) Bibliography: p. 9 Supt. of Docs. no.: I 19.3:1577 1. Mines and mineral resources-Utah-Washington County. 2. Mineralogy-Utah-Washington County. 3. Geology-Utah-Wasington County. I. Title. II. Series: United States. Geological Survey. Bulletin 1577. QE75.B9 no. 1577 557.3 s 85-600355 [TN24. U8] [553' .09792'48] CONTENTS Abstract 1 Introduction 1 Germanium and gallium 1 Apex Mine 1 Acknowledgments 3 Methods 3 Geologic setting 3 Regional geology 3 Local geology 3 Ore geology 4 Mineralogy 5 Primary ore 5 Supergene ore 5 Discussion and conclusions 7 Primary ore deposition 7. Supergene alteration 8 Implications 8 References 8 FIGURES 1. Map showing location of Apex Mine and generalized geology of surrounding region 2 2. Photograph showing main adit of Apex Mine and gently dipping beds of the Callville Limestone 3 3. Geologic map showing locations of Apex and Paymaster mines and Apex fault zone 4 4. Scanning electron photomicrograph showing plumbian jarosite crystals from the 1,601-m level, Apex Mine 6 TABLES 1.
    [Show full text]