Permissiveness in the Learning and Development of Song Syntax in Swamp Sparrows

Total Page:16

File Type:pdf, Size:1020Kb

Permissiveness in the Learning and Development of Song Syntax in Swamp Sparrows ANIMAL BEHAVIOUR, 1999, 58, 93–103 Article No. anbe.1999.1140, available online at http://www.idealibrary.com on Permissiveness in the learning and development of song syntax in swamp sparrows JEFFREY PODOS*, STEPHEN NOWICKI† & SUSAN PETERS† *Department of Ecology and Evolutionary Biology, University of Arizona †Evolution, Ecology and Organismal Biology Group, Department of Zoology, Duke University (Received 5 February 1998; initial acceptance 24 February 1999; final acceptance 24 March 1999; MS. number: A8204R) Vocal learning in swamp sparrows, Melospiza georgiana, is subject to a host of sensory and motor limitations. One such limitation is that young swamp sparrows almost invariably crystallize their songs with a simple trilled syntax, irrespective of the syntax of vocal models from which they learn. A striking exception to this pattern was recently identified by Podos (1996, Animal Behaviour, 51, 1061–1070), who found that large-scale organizational changes in vocal syntax, including the production of an intermit- tent or ‘broken’ syntax, were produced when birds faced limits on vocal performance capacities during motor ontogeny. Our goal in the present study was to determine whether song models with broken syntax could serve as suitable training models for young swamp sparrows, and, if so, if broken syntax could be faithfully reproduced. We hand-reared 10 male swamp sparrows and exposed them to control, rapid and broken song models. Control song models were copied with a high degree of accuracy, as in previous studies. Rapid song models were copied with deficiencies that suggested performance limits on vocal production; such deficiencies included the production of songs with broken syntax and the production of songs in which notes were dropped out as songs progressed. Broken songs proved suitable as training models. Furthermore, copies of broken song models were crystallized either with normal or with broken syntax. These data identify an unexpected direction of permissiveness in the types of songs swamp sparrows will memorize and accurately reproduce, and also point to a possible proximate basis for syntactical changes in the evolution of sparrow songs. 1999 The Association for the Study of Animal Behaviour Most songbirds learn their songs by imitation, through a song learning, during which time exposure to song pat- process that includes an early ‘sensory phase’ when song terns of other birds can help to determine the subset of models are committed to memory, and a subsequent previously memorized song models that an individual ‘sensorimotor phase’ when stored representations of will eventually express (e.g. Nelson 1992; Nelson & these models are accessed and reproduced (Slater 1989). Marler 1994). Learning by imitation is inherently open-ended or ‘per- Song learning is not completely permissive, however, missive’, insofar as sensory information directs the devel- despite the open-endedness associated with imitation. opment of motor patterns (Marler 1976, 1984). In Instead, the range of songs a young bird may memorize songbird vocal learning, permissiveness is illustrated by and subsequently reproduce is restricted in some dimen- the fact that young birds are able to reproduce precisely sions by both sensory and motor factors. For example, the acoustic features of a broad range of models to which young birds typically display a strong predisposition to they are exposed. The range of acoustic stimuli that may memorize conspecific songs in preference to hetero- be imitated includes not only widely divergent variants of specific songs, as revealed by their greater attentiveness to conspecific song (e.g. Marler 1970) but even heterospe- conspecific models (e.g. Dooling & Searcy 1980; Nelson & cific songs under some rearing conditions (e.g. Baptista & Marler 1993) and by their eventual reproduction of con- Petrinovitch 1984; Marler & Peters 1989). Permissiveness specific song models (e.g. Marler & Peters 1977, 1989). also plays an important role in the sensorimotor phase of Evidence for sensorimotor predispositions in song devel- opment comes from the observation that some species- Correspondence: J. Podos, Department of Ecology and Evolutionary Biology, Room 310 Biological Sciences West, University of Arizona, typical motor patterns are produced even when young Tucson, AZ 85721, U.S.A. (email: [email protected]). S. Nowicki birds are deprived of all external song models (Marler & and S. Peters are at the Department of Zoology, Duke University, Sherman 1985). In addition, motor limitations on the Durham, NC 27708-0325, U.S.A. performance capacities of the vocal apparatus may restrict 0003–3472/99/070093+11 $30.00/0 93 1999 The Association for the Study of Animal Behaviour 94 ANIMAL BEHAVIOUR, 58, 1 Figure 1. Expression of broken syntax as an outcome of learning from rapid models (examples from Podos 1996). (a) Typical wild swamp sparrow song. (b) Digitally manipulated version of that wild song, used as a training model. The trill rate of this model was increased by 92%, compared with the trill rate of the original wild song. (c) Copy of model, produced with broken syntax. *Syllable period within multisyllable segments; **syllable period across gaps. Sonagrams were made using a Kay Elemetric Digital Sonagraph (Model 5500) at 300-Hz filter bandwidth and a frequency range of 0–8 kHz. a bird’s ability to reproduce accurately songs that had swamp sparrow songs are produced as continuous trills of been successfully memorized during the sensory phase identical syllables repeated at a relatively constant rates. (Podos 1996, 1997). In almost every case, these trills include only one type of The swamp sparrow, Melospiza georgiana, is a species in syllable; much more rarely, songs begin with one syllable which sensory and motor restrictions appear to play an type and then switch to a second syllable type (i.e. to a especially strong role in the song-learning process. This different set of repeated notes) about halfway through the species’ song lasts about 2 s and is composed of a repeat- song, but in such cases the trill remains continuous with ing sequence of one to five individual notes; the repeat- no obvious break between the repetitions of the first and ing sequence of notes is referred to as a ‘syllable’, and the second syllable type. In the laboratory, swamp sparrows repeated syllables form a ‘trill’ (Fig. 1a; Marler & Pickert show a strong preference for imitating conspecific songs 1984; Podos 1996). Although the species is widely distrib- and are especially resistant to learning phonology that uted across eastern and central North America (Mowbrey deviates from the set of six species-typical note types, 1997), all swamp sparrow songs show a relatively narrow even when given no other choice of models (Marler & range of structural characteristics. On the phonological Peters 1977, 1980, 1989). When young birds learn from level, all notes produced by individuals across the entire swamp sparrow phonology presented in a more complex species range fall into only six categories of perceptually syntactical structure, they typically reproduce this pho- distinct note types (Marler & Pickert 1984; Clark et al. nology as simple continuous trills (Marler & Peters 1980). 1987; Nelson & Marler 1989). On the syntactical level, all Even birds raised in total isolation with no exposure at all PODOS ET AL.: PERMISSIVENESS IN SONG LEARNING 95 to song models produce songs as continuous trills (Marler broken syntax when faced with a performance limitation & Sherman 1985). The fact that swamp sparrows rarely, if is mirrored by an unexpected permissiveness to learn and ever, deviate from production of continuous trills, irre- reproduce this novel vocal pattern. spective of early experience, led Marler (1984) to suggest that an innate central motor programme underlies this METHODS species-typical feature of swamp sparrow song. A striking exception to the tendency for swamp spar- We collected 10 male swamp sparrows from eight nests, rows to develop songs with continuous trilled syntax was 4–7 days after hatching, on 25–26 May 1995, from a revealed in a laboratory study of song learning, in which population in Crawford County, Pennsylvania. Birds young birds were tutored with song models that were were hand-reared (as in Marler & Peters 1988) and housed digitally manipulated to have trill rates higher than in individual cages inside two walk-in acoustic isolation species norms (Podos 1996; see e.g. Fig. 1a versus b). Birds chambers (5 birds/chamber). Cages were positioned were able to memorize these fast-trill models, but proved inside these chambers so that birds could not see each unable to reproduce them accurately. Instead, birds’ other, although they were able to hear each other. reproductions of these models included several kinds of Using ‘Signal’ software (Engineering Design 1996), we modifications in timing and syllable structure, all of constructed 10 songs to be used as learning models: two which appeared to result from an inability of the vocal ‘control’ models, four ‘rapid’ models and four ‘broken’ apparatus to produce the faster trill rates of the models. models. Control and rapid models were constructed as in The most unusual of these modifications was the appear- Podos (1996). Briefly, we digitized songs recorded in the ance of a ‘broken’ syntax (Fig. 1c), in which short bursts wild at a sample rate of 25 kpt/s (Data Translation 2128G of syllables (reproduced accurately and at the fast rate of A/D board), after high-pass filtering to reduce low- the model) were separated by silent gaps, as if the motor frequency environmental noise (Krohn-Hite 3500, 1-kHz system could not sustain the high trill rate without breaks corner frequency) and low-pass filtering to prevent alias- for the entire duration of the song. The appearance of ing (Stanford Research Systems SR640, 10-kHz corner broken syntax songs is of interest not only because it is frequency; see Stoddard 1998 for explanation of sampling consistent with the hypothesis that motor limitations and aliasing).
Recommended publications
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below.
    [Show full text]
  • Ediacaran Algal Cysts from the Doushantuo Formation, South China
    Geological Magazine Ediacaran algal cysts from the Doushantuo www.cambridge.org/geo Formation, South China Małgorzata Moczydłowska1 and Pengju Liu2 1 Original Article Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden and 2Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China Cite this article: Moczydłowska M and Liu P. Ediacaran algal cysts from the Doushantuo Abstract Formation, South China. Geological Magazine https://doi.org/10.1017/S0016756820001405 Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles Received: 24 February 2020 of very high diversity. These microfossils are diagenetically permineralized and observed in pet- Revised: 1 December 2020 rographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven Accepted: 2 December 2020 species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain Keywords: either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate organic-walled microfossils; zygotic cysts; reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late Chloroplastida; microalgae; animal embryos; ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the eukaryotic evolution studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holo- Author for correspondence: Małgorzata zoan. The first record of a late developmental stage of a completely preserved specimen of Moczydłowska, Email: [email protected] T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of iden- tical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts.
    [Show full text]
  • With Two New Genera in Burmese Amber G.O
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (3), стор. 157¢164, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (3), pp. 157¢164, 2016 ARTICLE UDC 595.768 A NEW WEEVIL TRIBE, MEKORHAMPHINI TRIB. NOV. (COLEOPTERA, ITHYCERIDAE) WITH TWO NEW GENERA IN BURMESE AMBER G.O. Poinar, Jr.1, A.E. Brown2, A.A. Legalov3 1Department of Integrative Biology, Oregon State University, Corvallis OR 97331 USA. E-mail: [email protected]. 22629 Euclid Avenue, Berkeley CA 94708 USA. 3Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze str. 11, Novosibirsk 630091 Russia. E-mail: [email protected] A new tribe, Mekorhamphini trib. n., two new genera Mekorhamphus gen. n. and Habropezus gen. n. and two new species (M. gyralommus sp. n. and H. plaisiommus sp. n.) are described from Burmese amber. The new tribe resembles the tribe Mesophyletini but differs from the latter by possessing contiguous procoxal cavities and very wide elytra with regular striae. From the tribe Anchineini, it differs by the contiguous procoxal cavities, precoxal portion of the prosternum elongated, and swollen trochanters. The new taxa can be distinguished from modern Carini by having antennae attached near the middle of the rostrum, an elongated precoxal portion of the prosternum and enlarged trochanters. Key words: Curculionoidea, Carinae, Mekorhamphini trib. n., Mekorhamphus gyralommus gen. et sp. n., Habropezus plaisiommus gen. et sp. n., Early Cretaceous, Cenomanian. Citation: Poinar, G.O., Jr., Brown, A.E., Legalov, A.A. (2016). A new weevil tribe, Mekorhamphini trib. nov. (Coleoptera, Ithyceridae) with two new genera in Burmese amber.
    [Show full text]
  • Systematics, Genetics and Speciation
    Systematics, Genetics and Speciation Fundamentals of Fish Biology 27 January 2014 Why should I listen today? Class objectives 1. understand general terms about Systematics of fish 2. be able to list the five methods of categorizing fish groups 3. understand how species evolve via allopatric and sympatric speciation 4. understand the taxonomy and binomial nomenclature behind the system of naming fish Some definitions • Systematics – the study of the evolutionary relationship among organisms • Taxonomy – the science of describing and classifying organisms • Evolutionary Trees – early diagrams used to show relationships among higher levels • Phylogenetic systematics –uses branching diagrams called cladograms – each branch represents a monophyletic group of organisms (e.g. species, families, order…) – uses characteristics that can be quantified and therefore reduces subjective classification Evolutionary Trees Cladograms More definitions • Monophyletic group is a group including an ancestor and all descendants (e.g. vertebrates) • Paraphyletic group is a group containing some but not all descendants of an ancestor (e.g. dinosaurs) • Polyphyly is a group containing descendants of different ancestors (e.g. invertebrates) Other ways of classifying fish • Warm vs cold water fishes (bass and trout) • Saltwater vs freshwater • Pelagic or benthic • Reproductive styles • Trophic level • Freshwater fish based on evolutionary history (primary, secondary, diadromy) Five categories of taxonomic methods • Morphometric measurements • Meristic traits – considered
    [Show full text]
  • Can We Understand Evolution Without Symbiogenesis?
    Can We Understand Evolution Without Symbiogenesis? Francisco Carrapiço …symbiosis is more than a mere casual and isolated biological phenomenon: it is in reality the most fundamental and universal order or law of life. Hermann Reinheimer (1915) Abstract This work is a contribution to the literature and knowledge on evolu- tion that takes into account the biological data obtained on symbiosis and sym- biogenesis. Evolution is traditionally considered a gradual process essentially consisting of natural selection, conducted on minimal phenotypical variations that are the result of mutations and genetic recombinations to form new spe- cies. However, the biological world presents and involves symbiotic associations between different organisms to form consortia, a new structural life dimension and a symbiont-induced speciation. The acknowledgment of this reality implies a new understanding of the natural world, in which symbiogenesis plays an important role as an evolutive mechanism. Within this understanding, symbiosis is the key to the acquisition of new genomes and new metabolic capacities, driving living forms’ evolution and the establishment of biodiversity and complexity on Earth. This chapter provides information on some of the key figures and their major works on symbiosis and symbiogenesis and reinforces the importance of these concepts in our understanding of the natural world and the role they play in the establishing of the evolutionary complexity of living systems. In this context, the concept of the symbiogenic superorganism is also discussed. Keywords Evolution · Symbiogenesis · Symbiosis · Symbiogenic superorgan- ism · New paradigm F. Carrapiço (*) Centre for Ecology Evolution and Environmental Change (CE3C); Centre for Philosophy of Science, Department of Plant Biology, Faculty of science, University of Lisbon, Lisbon, Portugal e-mail: [email protected] © Springer International Publishing Switzerland 2015 81 N.
    [Show full text]
  • Plant Systematics: an Overview
    I Systematics 1 Plant Systematics: An Overview PLANTS . 3 Evolution . 10 What Is a Plant? . 3 Taxonomy . 10 Plants and the Evolution of Life . 3 Phylogeny . 13 Land Plants . 5 Why Study Systematics? . 13 Why Study Plants? . 6 REVIEW QUESTIONS . 15 SYSTEMATICS . 7 EXERCISES . 16 What Is Systematics? . 7 REFERENCES FOR FURTHER STUDY . 16 This book is about a fascinating fi eld of biology called plant defi ned by the common (but independently evolved) characteristic systematics. The purpose of this chapter is to introduce the of photosynthesis. However, delimiting organismal groups based basics: what a plant is, what systematics is, and the reasons on evolutionary history has gained almost universal acceptance. for studying plant systematics. This latter type of classifi cation directly refl ects the patterns of that evolutionary history and can be used to explicitly test evolutionary hypotheses (discussed later; see Chapter 2). PLANTS An understanding of what plants are requires an explanation of the evolution of life in general. WHAT IS A PLANT? This question can be answered in either of two conceptual PLANTS AND THE EVOLUTION OF LIFE ways. One way, the traditional way, is to defi ne groups of Life is currently classifi ed as three major groups (sometimes organisms such as plants by the characteristics they possess. called domains) of organisms: Archaea (also called Archae- Thus, historically, “plants” included those organisms that pos- bacteria), Bacteria (also called Eubacteria), and Eukarya or sess photosynthesis, cell walls, spores, and a more or less sed- eukaryotes (also spelled eucaryotes). The evolutionary relation- entary behavior. This traditional grouping of plants contained ships of these groups are summarized in the simplifi ed evolu- a variety of microscopic organisms, all of the “algae,” and tionary tree or cladogram of Figure 1.1.
    [Show full text]
  • Systematics, Evolution and Phylogeny of Annelida – a Morphological Perspective
    Memoirs of Museum Victoria 71: 247–269 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Systematics, evolution and phylogeny of Annelida – a morphological perspective GÜNTER PURSCHKE1,*, CHRISTOPH BLEIDORN2 AND TORSTEN STRUCK3 1 Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany ([email protected]) 2 Molecular Evolution and Animal Systematics, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany (bleidorn@ rz.uni-leipzig.de) 3 Zoological Research Museum Alexander König, Adenauerallee 160, 53113 Bonn, Germany (torsten.struck.zfmk@uni- bonn.de) * To whom correspondence and reprint requests should be addressed. Email: [email protected] Abstract Purschke, G., Bleidorn, C. and Struck, T. 2014. Systematics, evolution and phylogeny of Annelida – a morphological perspective . Memoirs of Museum Victoria 71: 247–269. Annelida, traditionally divided into Polychaeta and Clitellata, is an evolutionary ancient and ecologically important group today usually considered to be monophyletic. However, there is a long debate regarding the in-group relationships as well as the direction of evolutionary changes within the group. This debate is correlated to the extraordinary evolutionary diversity of this group. Although annelids may generally be characterised as organisms with multiple repetitions of identically organised segments and usually bearing certain other characters such as a collagenous cuticle, chitinous chaetae or nuchal organs, none of these are present in every subgroup. This is even true for the annelid key character, segmentation. The first morphology-based cladistic analyses of polychaetes showed Polychaeta and Clitellata as sister groups.
    [Show full text]
  • Systematics - BIO 615
    Systematics - BIO 615 Outline - History and introduction to phylogenetic inference 1. Pre Lamarck, Pre Darwin “Classification without phylogeny” 2. Lamarck & Darwin to Hennig (et al.) “Classification with phylogeny but without a reproducible method” 3. Hennig (et al.) to today “Classification with phylogeny & a reproducible method” Biosystematics History alpha phylogenetics Aristotle - Scala Naturae - ladder of perfection with humans taxonomy at top - DIFFICULT mental concept to dislodge! (use of terms like “higher” and “lower” for organisms persist) character identification evolution Linnaeus - perpetuated the ladder-like view of life linear, pre evolution descriptions phylogeny 1758 - Linnaeus grouped all animals into 6 higher taxa: 1. Mammals ( top ) 2. Birds collections classification biogeography 3. Reptiles 4. Fishes 5. Insects Describing taxa = assigning names to groups (populations) 6. Worms ( bottom ) = classification Outline - History and introduction to History phylogenetic inference Lamarck - 1800 - Major impact on Biology: 1. Pre Lamarck, Pre Darwin - First public account of evolution - proposed that modern species had descended from common ancestors over “Classification without phylogeny” immense periods of time - Radical! evolution = descent with modification 2. Lamarck & Darwin to Hennig (et al.) - Began with a ladder-like description… but considered “Classification with phylogeny but Linnaeus’s “worms” to be a chaotic “wastebucket” without a reproducible method” taxon 3. Hennig (et al.) to today - He raided the worm group
    [Show full text]
  • Evolutionary History of Life
    Evolutionary history of life The evolutionary history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to the present. Earth formed about 4.5 billion years (Ga) ago and evidence suggests life emerged prior to 3.7 Ga.[1][2][3] (Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non- biological formation of the purported fossils.[1][4][5][6][7]) The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor.[8] Approximately 1 trillion species currently live on Earth[9] of which only 1.75–1.8 million have been named[10][11] and 1.6 million documented in a central database.[12] These currently living species represent less than one percent of all species that have ever lived on earth.[13][14] The earliest evidence of life comes from biogenic carbon signatures[2][3] and stromatolite fossils[15] discovered in 3.7 billion- Life timeline Ice Ages year-old metasedimentary rocks from western Greenland. In 2015, 0 — Primates Quater nary Flowers ←Earliest apes possible "remains of biotic life" were found in 4.1 billion-year-old P Birds h Mammals [16][17] – Plants Dinosaurs rocks in Western Australia. In March 2017, putative evidence of Karo o a n ← Andean Tetrapoda possibly the oldest forms of life on Earth was reported in the form of -50 0 — e Arthropods Molluscs r ←Cambrian explosion fossilized microorganisms discovered in hydrothermal
    [Show full text]
  • View Preprint
    The origin of animals as microbial host volumes in nutrient- limited seas The microbe-stuffed gut, rather than the genome, represents the most dynamic gene reservoir within complex, multicellular metazoa (animals). Microbes are known to confer increased metabolic efficiency, increased nutrient recovery, and tolerance of ocean acidity to basal taxa such as sponges, arguably the extant taxa most comparable to the first metazoan. We hypothesize that metazoan origins may be rooted in the capability to compartmentalize, metabolize, and exchange genetic material with a modulated microbiome. We present evidence that the most parsimonious adaptive response of clonal eukaryotic colonies experiencing oligotrophic (nutrient-limited) conditions that accompanied Neoproterozoic glaciation events, which were broadly contemporaneous with metazoan origins, is to evolve a morphological volume to harbor a densified microbiome. Dense microbial communities housed within a cavity would increase instances of horizontal gene transfer between microorganisms and host, accelerating evolutionary innovation at the genetic and epigenetic levels for the holobiont. The accelerated tempo of genetic exchange would continue until the host’s metabolic and reproductive cells became spatially and temporally segregated from one another, at which point the process is effectively suppressed with the emergence of specialized gut and reproductive tissues. This framework may lead to new, testable hypotheses regarding metazoan evolution on Earth and a more tractable means of estimating the pervasiveness of complex, multicellular animal-like life with convergent morphologies on other planets. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27173v1 | CC BY 4.0 Open Access | rec: 5 Sep 2018, publ: 5 Sep 2018 1 The origin of animals as microbial host volumes in 2 nutrient-limited seas 3 4 Zachary R.
    [Show full text]
  • A Molecular Perspective on Systematics, Taxonomy and Classification Amazonian Discus Fishes of the Genus Symphysodon
    SAGE-Hindawi Access to Research International Journal of Evolutionary Biology Volume 2011, Article ID 360654, 16 pages doi:10.4061/2011/360654 Research Article A Molecular Perspective on Systematics, Taxonomy and Classification Amazonian Discus Fishes of the Genus Symphysodon Manuella Villar Amado,1, 2 Izeni P. Farias,1 and Tomas Hrbek1, 3 1 Laboratorio´ de Evoluc¸ao˜ e Gen´etica Animal, Departamento de Biologia, Universidade Federal do Amazonas, Avenida Rodrigo Octavio´ Jordao˜ Ramos, 3000, 69077-000 Manaus, AM, Brazil 2 Instituto Federal de Educac¸ao,˜ Ciˆencia e Tecnologia do Esp´ırito Santo, Unidade Vitoria,´ Avenida Vitoria,´ 1729, 29040-780 Vitoria, ES, Brazil 3 Biology Department, University of Puerto Rico—Rio Piedras, 00931 San Juan, PR, Puerto Rico Correspondence should be addressed to Tomas Hrbek, [email protected] Received 21 December 2010; Accepted 2 May 2011 Academic Editor: Martin J. Genner Copyright © 2011 Manuella Villar Amado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. With the goal of contributing to the taxonomy and systematics of the Neotropical cichlid fishes of the genus Symphysodon, we analyzed 336 individuals from 24 localities throughout the entire distributional range of the genus. We analyzed variation at 13 nuclear microsatellite markers, and subjected the data to Bayesian analysis of genetic structure. The results indicate that Symphysodon is composed of four genetic groups: group PURPLE—phenotype Heckel and abacaxi; group GREEN—phenotype green; group RED—phenotype blue and brown; and group PINK—populations of Xingu´ and Cameta.´ Although the phenotypes blue and brown are predominantly biological group RED, they also have substantial contributions from other biological groups, and the patterns of admixture of the two phenotypes are different.
    [Show full text]
  • Chrysidid Wasps (Hymenoptera: Chrysididae) from Cretaceous Burmese Amber: Phylogenetic Affinities and Classification
    Cretaceous Research 89 (2018) 279e291 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Chrysidid wasps (Hymenoptera: Chrysididae) from Cretaceous Burmese amber: Phylogenetic affinities and classification * Daercio A.A. Lucena a, Gabriel A.R. Melo b, a Laboratorio de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ci^encias e Letras de Ribeirao~ Preto, Universidade de Sao~ Paulo, Avenida Bandeirantes, 3900, 14040-901, Ribeirao~ Preto, Sao~ Paulo, Brazil b Universidade Federal do Parana, Departamento de Zoologia, Laboratorio de Biologia Comparada de Hymenoptera, Caixa Postal 19020, 81531-980, Curitiba, Parana, Brazil article info abstract Article history: Representatives of chrysidid wasps are described for the first time from inclusions in Late Cretaceous Received 3 November 2017 Burmese amber. Five new genera and new species are described and illustrated: yAuricleptes nebulosus Received in revised form gen. et sp. nov., yAzanichrum pilosum gen. et sp. nov., yBohartiura glabrata gen. et sp. nov., yBurmasega 10 February 2018 ammirabilis gen. et sp. nov., and yMiracorium tetrafoveolatum gen. et sp. nov. We coded 49 morphological Accepted in revised form 20 March 2018 characters for species representing the subfamilies Amiseginae, Loboscelidiinae, Cleptinae and Chrys- Available online 22 March 2018 idinae. The cladistic analysis recovered the following relationships: Cleptinae þ (yAuricleptes þ (yBurmasega þ (yMiracorium þ ((Loboscelidiinae þ Amiseginae) þ ((yAzanichrum þyBohartiura) þ Keywords: y þ Chrysidoidea ( Palaeochrum Krombein (extant Chrysidinae)))))). In light of the cladistic results, we discuss the Cladistics implications of characters for the interpretation of phylogenetic relationships within the family, and Comparative morphology explore the main morphological changes occurred during the diversification of the chrysidid wasps.
    [Show full text]