The ATLAS Experiment, the World's Largest-Volume Particle Physics

Total Page:16

File Type:pdf, Size:1020Kb

The ATLAS Experiment, the World's Largest-Volume Particle Physics The ATLAS experiment, the world’s largest-volume particle physics detector. 14 | CERN “For the physics community, the LHC is a discovery machine, in that finding just the Higgs boson anticipated by the Standard Model would be almost a disappointment.” Sergio Bertolucci in the CERN Bulletin. Physics and Experiments ALICE, probing the quark–gluon plasma continued during 2008 for detectors added later to the design ALICE is a heavy-ion experiment designed to study the physics (TRD, PHOS, and EMCAL). Thus, detector integration and of strongly interacting matter and the quark–gluon plasma in commissioning were the main activities in 2008. lead–lead collisions at the LHC. The ALICE Collaboration currently includes more than 1000 physicists and senior Several runs with cosmic rays were performed at the beginning engineers — from both nuclear and high-energy physics — of the year, and from May until mid-October ALICE was from about 100 institutions in some 30 countries. Some new operated continuously (24/7). As far as could be verified, the institutes from the US and South Korea joined ALICE in 2008, performance of all subsystems is very close to (or better than) while the associate members IPE Karlsruhe (Germany) and specification. BARC (Mumbai, India) left after completing their respective technical contributions to the experiment. During LHC commissioning in September, only a subset of detectors was switched on because the particle flux was ALICE consists of a central part, which measures hadrons, occasionally very high during beam tuning. Nevertheless, electrons, and photons, and a forward spectrometer to measure timing of most trigger detectors was verified and adjusted with muons. The central part is embedded in the large L3 solenoid beam. magnet and comprises an inner tracking system (ITS) of high- resolution detectors, a cylindrical time projection chamber The commissioning of ALICE required an extremely large (TPC), three particle identification arrays of time-of-flight effort in terms of manpower. Extrapolating from the experience (TOF), ring imaging Cherenkov (HMPID) and transition with operation 24 hours per day, a nominal year of data taking radiation (TRD) detectors, plus two single-arm electromagnetic would require the collaboration to provide about 17 000 shifts, calorimeters (the high-resolution photon spectrometer PHOS as each subsystem currently requires at least one person on shift and the large-acceptance jet calorimeter EMCAL). The forward in the ALICE control room in addition to experts being on call muon arm consists of a complex arrangement of absorbers, a at CERN. However, this need will be reduced in the course of large dipole magnet, and 14 planes of tracking and triggering 2009 by automating procedures and recovery operations and chambers. Several smaller detectors (ZDC, PMD, FMD, T0, by combining shifts for different detector systems. V0) used for global event characterization and triggering are located at forward angles. An array of scintillators (ACORDE) ATLAS, the largest volume particle detector on top of the L3 magnet is used to trigger on cosmic rays. ATLAS is a general-purpose experiment for recording proton– proton collisions at the LHC. The detector design has been Most of the ALICE detectors were installed, tested, and pre- optimized to cover the largest possible range of LHC physics. commissioned in situ during 2007. Construction and assembly This includes searches for Higgs bosons or alternative schemes 2008 | 15 Inner view of the ALICE detector; the red part is the gigantic magnet. to answer the puzzling question about the origin of mass, and A major challenge concerned the installation of over searches for supersymmetric particles, and other new physics 50 000 cables, more than 3000 km in length, and more than beyond the Standard Model. The ATLAS Collaboration 10 000 pipes for services. On 16 June an historic moment consists of 169 institutions from 37 countries with roughly occurred with the closure of the LHC beam pipe, followed in 2800 scientific participants. early August with the successful bake-out of the beam pipe. The latter operation was particularly critical because it required the The ATLAS detector has cylindrical symmetry around the evaporative cooling system to be in full working order to protect beam pipe, with increasingly large layers of subdetectors placed the pixel layers from overheating. The evaporative cooling plant around it and endcaps to ensure hermiticity. The inner detectors had suffered a major failure of its compressors at the beginning — a series of thin silicon and gas detectors immersed in a of May 2008, and the repair and cleaning of the plant dictated solenoidal magnetic field — are used for pattern recognition, the critical path for the closure of the detector. and for momentum and vertex measurements. In addition to the central solenoid, the magnet system also comprises a barrel In 2008 several dedicated running periods with cosmic rays were toroid and two endcap toroids. The high granularity liquid-argon used to test and calibrate detectors, including the trigger and electromagnetic calorimeters and the hadronic scintillator-tile data-acquisition systems. The detector was largely operational calorimeter are surrounded by the muon spectrometer, which defines the overall dimensions of the ATLAS detector. for the LHC start-up in September, as was the distributed computing infrastructure. The first beam-related events were Installation in the cavern 90 m underground began in summer successfully recorded and reconstructed and were used very 2003 and culminated in 2008 with completion of the initial efficiently for initial timing adjustments. ATLAS detector configuration. The muon chambers were the last component to be installed in July. In parallel with the Following the LHC incident on 19 September, the full detector installation process, testing and consolidation work for the on- has essentially been in continuous operation in cosmic-ray data and off-detector electronics and power supplies were important collection mode. These runs are very valuable for improving activities, and the detector systems were gradually brought into monitoring and data-quality procedures, as well as for initial operation, calibrated, and tested with cosmic data. global alignments and calibrations. 16 | CERN The central barrel and one endcap of the CMS experiment with the LHC pipe connecting the two. CMS, the heavy-weight detector The year began with the lowering of the last two of eleven CMS (Compact Muon Solenoid), like ATLAS, is a general- massive iron disks and wheels, marking the completion of eight purpose detector used to study a large range of physical years of assembly in the SX5 surface building. Also, the magnet phenomena produced by particle collisions at the LHC. In a ancillaries were brought down from the surface, reinstalled, unique strategy, the detector was assembled above ground and commissioned. The cooldown of the CMS solenoid to the concurrently with the excavation of the underground cavern. nominal temperature of 4.5 K was achieved at the beginning The CMS Collaboration consists of over 2500 scientists and of August. Final closure and commissioning of the detector, engineers from over 180 institutes in 38 countries. beam pipe, and trigger electronics proceeded throughout the summer, including installation of the last major element, the The main volume of the CMS detector is a cylinder, 21 m long endcap electromagnetic calorimeter. Commissioning of all and 16 m in diameter, weighing in total 12 500 t. The tracking elements using the final data-acquisition system (with 1/8 of volume is defined by a cylinder of length 6 m and a diameter the ultimate online computing power) took place in parallel of 2.6 m. About 210 m2 of silicon microstrip detectors (around with extensive tests of reconstruction and physics analysis 10 million channels) provide the required granularity and software and of the Worldwide LHC Computing Grid. precision in the bulk of the tracking volume; pixel detectors placed close to the interaction region improve measurements of In early September, after almost 20 years of design and the track impact parameters and allow accurate reconstruction construction, CMS started taking data with LHC beams. of secondary vertices. The tracking system is placed inside the The solenoid and the inner tracking system were switched off huge superconducting magnet, 13 m long and 6 m in diameter, awaiting stable beams. The rest of the detector subsystems which will operate at 3.8 T. The magnet is used to determine took good-quality data and reacted quickly to changing beam the momentum of charged particles from the curved paths conditions. Measurements of the fringe fields in the cavern they follow in the magnetic field. The magnet return yoke acts showed them to be higher than expected. To understand fully as the principal support structure for all the detector elements. and mitigate the adverse effects, the collaboration decided Muons are identified and measured in four identical muon to slow the schedule for bringing the field to 3.8 T. This was stations inserted in the return yoke. Each muon station consists reached a few days after the incident on 19 September. This of many planes of aluminium drift tubes in the barrel region same magnetic field was then used for the one month of data and cathode-strip chambers in the endcap region. taking with cosmic rays that followed the failure in the LHC. 2008 | 17 The large cavern that hosts the LHCb detector 100 m underground. The experiment was then shut down for annual maintenance consists of two coils, both weighing 27 t, mounted inside a of the cooling and other services, installation of the pre-shower 1 450 t steel frame. subdetector, and repairs of various elements. The calorimeter system — a sandwich-like structure, with LHCb, tracking down antimatter alternating layers of metal and polystyrene plates — is LHCb’s The main purpose of the Large Hadron Collider beauty main way of identifying neutral particles, such as photons.
Recommended publications
  • Detection of Cosmic Rays at the LHC Detection of Cosmic Rays at the LHC
    Particle and Astroparticle Physics at the Large Hadron Collider --Hadronic Interactions-- Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore November 15th 2019 Outline • Introduction on the LHC and LHC physics program • LHC results for Astroparticle physics • Measurements of event characteristics at 13 TeV • Forward measurements • Cosmic ray measurements • LHC and light ions? • Summary The LHC Machine and Experiments MoEDAL LHCf FASER totem CM energy → Run-1: (2010-2012) 7/8 TeV Run-2: (2015-2018) 13 TeV -> Now 8 experiments Run-2 starts proton-proton Run-2 finished 24/10/18 6:00am 2018 2010-2012: Run-1 at 7/8 TeV CM energy Collected ~ 27 fb-1 2015-2018: Run-2 at 13 TeV CM Energy Collected ~ 140 fb-1 2021-2023/24 : Run-3 Expect ⇨ 14 TeV CM Energy and ~ 200/300 fb-1 The LHC is also a Heavy Ion Collider ALICE Data taking during the HI run • All experiments take AA or pA data (except TOTEM) Expected for Run-3: in addition short pO and OO runs ⇨ pO certainly of interest for Cosmic Ray Physics Community! 4 10 years of LHC Operation • LHC: 7 TeV in March 2010 ->The highest energy in the lab! • LHC @ 13 TeV from 2015 onwards March 30 2010 …waiting.. • Most important highlight so far: …since 4:00 am The discovery of a Higgs boson • Many results on Standard Model process measurements, QCD and particle production, top-physics, b-physics, heavy ion physics, searches, Higgs physics • Waiting for the next discovery… -> Searches beyond the Standard Model 12:58 7 TeV collisions!!! New Physics Hunters
    [Show full text]
  • Laboratori Nazionali Di Frascati
    International Committee for Future Accelerators Sponsored by the Particles and Fields Commission of IUPAP Beam Dynamics Newsletter No. 51 Issue Editor: S. Chattopadhyay Editor in Chief: W. Chou April 2010 3 Contents 1 FOREWORD ........................................................................................................ 11 1.1 FROM THE CHAIRMAN ............................................................................................. 11 1.2 FROM THE EDITOR .................................................................................................. 12 2 INTERNATIONAL LINEAR COLLIDER (ILC) ............................................ 14 2.1 FIFTH INTERNATIONAL ACCELERATOR SCHOOL FOR LINEAR COLLIDERS ............... 14 3 THEME SECTION: ACCELERATOR SCIENCE AND TECHNOLOGY IN THE UK ................................................................................................................ 20 3.1 OVERVIEW – AN EMERGING PARADIGM OF COLLABORATION BETWEEN UNIVERSITIES, NATIONAL FACILITIES AND INDUSTRY ............................................ 20 3.1.1 Introduction .................................................................................................. 20 3.1.2 Mission of UK Accelerator Science and Technology .................................. 20 3.1.3 The Model: Integrated Accelerator Community and Stakeholders .............. 21 3.1.4 The Research Program Driven by Science ................................................... 21 3.1.4.1 Research Focus: Current ..............................................................
    [Show full text]
  • Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN”
    DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this.
    [Show full text]
  • Fn Ee Rw Ms I
    F N E E R W M S I FERMILAB AU.S. DEPARTMENT OF E NERGY L ABORATORY Frascati 8 Photo by Judy Jackson Volume 22 INSIDE: Friday, December 3, 1999 Number 23 2 WhatÕs Next? f 6 Proviso West Career Day 12 The Doctor Is In 14 Talk of the Lab What’s Next by Sharon Butler ? Europe wants one. Japan wants one. The PHYSICISTS AT U.S. wants one, tooÑa 20-mile linear collider with an energy level in the range of 0.5 to 1.5 trillion electron volts and a luminosity of 1034sec-1cm-2, FERMILAB AND enough to probe the realm of the Higgs boson and the putative supersymmetric particles. ItÕs already been dubbed the Next Linear Collider. Prototype of a typical segment of the accelerator THROUGHOUT But, concedes Fermilab Director Mike Witherell, structure in a U.S. NLC. Òthe path to a decision to build a linear collider in THE WORLD ARE this country willÉbe a long and complicated one.Ó As the first order of business, he said: ÒThe U.S. particle physics community must be able to say that the NLC would be of CONTEMPLATING overwhelming scientific importance, of highest priority for the field and worth the investment for both construction and operation.Ó Reaching that level of commitment requires a solid understanding of the BUILDING A capabilities of such a machine, its cost and its physics promise. Which is, in part, the reason why Fermilab joined the U.S. NLC collaboration last summer. POWERFUL NEW ÒOf all the possibilities for future facilitiesÑan electron-positron linear collider, a muon storage ring, or a very large hadron colliderÑthe linear collider is the closest to having a proposal for a real machine on the table,Ó said Steve LINEAR COLLIDER Holmes, associate director for accelerators at Fermilab.
    [Show full text]
  • The Very Forward CASTOR Calorimeter of the CMS Experiment
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration .
    [Show full text]
  • Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN
    DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) CERN-THESIS-2018-033 25/04/2018 Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this.
    [Show full text]
  • Jan/Feb 2015
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 5 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 5 CERN Courier – digital edition Welcome to the digital edition of the January/February 2015 issue of CERN Courier. CMS and the The coming year at CERN will see the restart of the LHC for Run 2. As the meticulous preparations for running the machine at a new high energy near their end on all fronts, the LHC experiment collaborations continue LHC Run 1 legacy to glean as much new knowledge as possible from the Run 1 data. Other labs are also working towards a bright future, for example at TRIUMF in Canada, where a new flagship facility for research with rare isotopes is taking shape. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. TRIUMF TRIBUTE CERN & Canada’s new Emilio Picasso and research facility his enthusiasm SOCIETY EDITOR: CHRISTINE SUTTON, CERN for rare isotopes for physics The thinking behind DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p26 p19 a new foundation p50 CERNCOURIER www. V OLUME 5 5 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 5 CERN Courier January/February 2015 Contents 4 COMPLETE SOLUTIONS Covering current developments in high-energy Which do you want to engage? physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]
  • Across the Ocean, Yet Close to Home by Katie Yurkewicz
    Across the ocean, yet close to home By Katie Yurkewicz Among the 10,000 people from around the world who are working on the Large Hadron Collider, 1000 hail from universities and national labs in the United States. The Large Hadron Collider is the world’s next-generation and students from almost 60 nations. More than 1000 of particle accelerator. Arguably the most ambitious scien- these hail from 93 universities and national laboratories tific endeavor ever undertaken, the $8.7 billion project at in the United States. Researchers from US institutions have CERN, the European particle physics lab in Geneva, made vital contributions to all aspects of LHC construction, Switzerland, has been in the works for more than two and are now looking forward to the next phase, when they decades. When it begins operating in mid-2008, scien- will see collisions begin, watch data start flowing, and spend tists predict that its very-high-energy collisions will yield many a sleepless night searching for the tracks of particles extraordinary discoveries about the nature of the whose existence would transform our understanding of the physical universe. universe. The LHC project has two equally important aspects: the collider itself and its six particle detectors, each one a Putting the C in LHC self-contained experiment. The collider, nearing completion The heart of the LHC project is the collider itself, and the in a 27-kilometer ring deep below the Swiss-French border, heart of the collider is a series of thousands of super- will accelerate two beams of protons in opposite directions conducting magnets.
    [Show full text]
  • The Totem and Atlas/Alfa Experiments a Word from the Director-General
    Issue No. 38-39/2016 - Monday 19 September 2016 CERN Bulletin More articles at: http://bulletin.cern.ch DE-SQUEEZE THE BEAMS: THE TOTEM AND ATLAS/ALFA EXPERIMENTS A WORD FROM THE DIRECTOR-GENERAL A special week-long proton–proton run with larger beam sizes at the interaction point is THERE’S MORE TO PARTICLE PHYSICS AT CERN intended to probe the p-p elastic scattering regime at small angles. THAN COLLIDERS CERN’s scientific programme must be compelling, unique, diverse, and integrated into the global landscape of particle physics. One of the Laboratory’s primary goals is to provide a diverse range of excellent physics opportunities and to put its unique facilities to optimum use, maximising the scientific return. (Continued on page 2) In this issue Nicola Turini, deputy spokesperson for TOTEM, in front of one of the experiment’s ‘Roman Pot’ detectors in the LHC tunnel. (Photo: Maximilien Brice/CERN) NEWS Usually, the motto of the LHC is “maximum beams are, and the more parallel the beams are De-squeeze the beams: the luminosity”. But for a few days per year, the LHC when they arrive at the interaction point. For TOTEM and ATLAS/ALFA experiments 1 ignores its motto to run at very low luminosity this special run, the beta-star had to be raised There’s more to particle physics for the forward experiments. This week, the to 2.5 km (whereas in normal runs it is as small at CERN than colliders 1 LHC will provide the TOTEM and ATLAS/ALFA as 0.4 m).
    [Show full text]
  • Subnuclear Physics: Past, Present and Future
    the Pontifical academy of ScienceS International Symposium on Subnuclear Physics: Past, Present and Future 30 Octobe r- 2 November 2011 • Casina Pio IV Introduction p . 3 Programme p. 4 List of Participants p. 8 Biographies of Participants p. 11 Memorandum p. 20 em ad ia c S a c i e a n i t c i i a f i r t V n m o P VatICaN CIty 2011 H.H. Benedict XVI in the garden of the Basilica di Santa Maria degli angeli e dei Martiri with the statue of “Galilei Divine Man” donated to the Basilica by CCaSt of Beijing. he great Galileo said that God wrote the book of nature in the form of the language of mathematics. He was convinced that God has given us two tbooks: the book of Sacred Scripture and the book of nature. and the lan - guage of nature – this was his conviction – is mathematics, so it is a language of God, a language of the Creator. Encounter of His Holiness Benedict XVI with the Youth , St Peter’s Square, thursday, 6 april 2006. n the last century, man certainly made more progress – if not always in his knowledge of himself and of God, then certainly in his knowledge of the macro- Iand microcosms – than in the entire previous history of humanity. ... Scientists do not create the world; they learn about it and attempt to imitate it, following the laws and intelligibility that nature manifests to us. the scientist’s experience as a human being is therefore that of perceiving a constant, a law, a logos that he has not created but that he has instead observed: in fact, it leads us to admit the existence of an all-powerful Reason, which is other than that of man, and which sustains the world.
    [Show full text]
  • Particel Physiks 2009
    ª 2009 particle physics physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association particle 2009ª The Helmholtz Association contributes to solving approximately 3 billion euros, the Helmholtz major challenges facing society, science and Association is Germany’s largest scientific Highlights industry with top scientific achievements in six organisation. Its work follows in the tradition of research areas: Energy, Earth and Environment, the great natural scientist Hermann von Helm- and Annual Report Health, Key Technologies, Structure of Matter, holtz (1821-1894). Transport and Space. With 30 000 employees in 16 research centres and an annual budget of www.helmholtz.de Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association Imprint publishing and contact: editing: Deutsches Elektronen-Synchrotron DESY Manfred Fleischer, Matthias Kasemann A Research Centre of the Helmholtz Association layout: Heike Becker, Britta Liebaug Hamburg location: Notkestr. 85, 22607 Hamburg, Germany printing: Heigener Europrint GmbH, Hamburg Tel.: +49 40 8998-0, Fax: +49 40 8998-3282 [email protected] copy deadline: 30 April 2010 Zeuthen location: Platanenallee 6, 15738 Zeuthen, Germany editorial Note: Tel.: +49 33762 7-70, Fax: +49 33762 7-7413 The authors of the individual scientific contributions published [email protected] in this report are fully responsible for the contents. www.desy.de ISBN 978-3-935702-45-4 Cover Reproduction including extracts is permitted subject to crediting the source. Computer simulation of the decay of a Higgs particle in a high-energy physics detector. This report is neither for sale nor may be resold. particle physics 2009ª Highlights and Annual Report 2 | Contents contentsª º introduction 4 º News and events 9 º research topics 23 º committees and references 99 Contents | 3 the year 2009 at Desyª Chairman’s foreword The year 2009 marks not only the 50th anniversary of DESY but also the year 2 after the shutdown of HERA.
    [Show full text]
  • Study of Diffraction with the ATLAS Detector at The
    Th`esede doctorat de l’Universit´eParis 11 et de l’Institut de Physique Nucléaire de l’Académie Polonaise des Sciences sp´ecialit´e Champs, Particules, Mati`ere pr´esent´eepar Rafa lSTASZEWSKI pour obtenir les grades de docteur de l’Universit´eParis 11 et de l’Institut de Physique Nucléaire de l’Académie Polonaise des Sciences Study of Diffraction with the ATLAS detector at the LHC Th`esesoutenu le 24 Septembre 2012 devant le jury compos´ede: Etienne AUGE(´ pr´esident) Marco BRUSCHI (rapporteur) Janusz CHWASTOWSKI (directeur de th`ese) Alan MARTIN (rapporteur) Christophe ROYON (directeur de th`ese) Robi PESCHANSKI Antoni SZCZUREK Th`esepr´epar´ee au Service de Physique des Particules du CEA de Saclay et `al’Institut de Physique Nucléaire de l’Académie Polonaise des Sciences de Cracovie The thesis is devoted to the study of diffractive physics with the ATLAS de- tector at the LHC. After a short introduction to diffractive physics including soft and hard diffraction, we discuss diffractive exclusive production at the LHC which is particularly interesting for Higgs and jet production. The QCD mechanism de- scribed by the Khoze Martin Ryskin and the CHIDe models are elucidated in detail. The uncertainties on these models are still large and a new possible exclusive jet measurement at the LHC will allow to reduce the uncertainty on diffarctive Higgs boson production to a factor 2 to 3. An additional measurement of exclusive pion production pp → pπ+π−p allows to constrain further exclusive model relying on the use of the ALFA stations, which are used in the ATLAS Experiment for detection of protons scattered in elastic and diffractive interactions.
    [Show full text]