Arachnida: Opiliones: Assamiidae and Uphalangodidae")

Total Page:16

File Type:pdf, Size:1020Kb

Arachnida: Opiliones: Assamiidae and Uphalangodidae ------------------------------------ - -"- DOI: 10.18195/issn.0313-122x.64.2001.153-158 Records of the Western Austral/an Museum Supplement No. 64: 153-158 (2001). Two new cave-dwelling harvestmen from Western Australia (Arachnida: Opiliones: Assamiidae and uPhalangodidae") William A. Shear Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia 23943, USA. Abstract - Two new species of laniatorid harvestmen have been collected in the biologically significant caves of the Cape Range Peninsula, Western Australia. Dampetnls isolatus sp. novo (Assamiidae) has reduced eyes but is otherwise not especially adapted for a subterranean life; it has been collected in several Cape Range caves. Glennhuntia glennhunti gen. et sp. novo ("Phalangodidae") is a minute, highly evolved troglobite known only from Camerons Cave. Both species are likely rainforest relics. Some notes are provided on the Australian fauna of the harvestman Infraorder Grassatores. INTRODUCTION unknown (compared to its potential richness) at the Hunt (1991) noted that fewer than 200 species of time he began. He recognized the two species the arachnid order Opiliones (harvestmen, described below as new and determined the phalangids) had been described from Australia, a assamiid as a species of Dampetrus Karsch. I'm number he estimated to be no more than 20% of the honoured to be able to dedicate this brief paper to total fauna. Indeed, Hunt himself was the first and his memory last productive resident harvestman specialist in Australia, who had personally described a substantial portion of those species. His untimely SYSTEMATICS demise put an end to a succession of fine papers on the systematics of several Australian taxa, most Family Assamiidae Sorensen notably the Triaenonychidae, Neopilionidae and Subfamily Dampetrinae Sorensen Megalopsalididae. While taking notice of the richness of the Genus Dampetrus Karsch Australian fauna of the laniatorid infraorder Dampetrus isolatus sp. novo Grassatores, Hunt published little on them. Four Figures 1-3 families of the infraorder, Assamiidae, Podoctidae, Zalmoxidae and "Phalangodidae" have been Material Examined recorded from Australia. Four zalmoxid species, all in the genus Zalmoxis Sorensen, are known from Halo type Queensland, New South Wales, and the Kimberley 0, cave C-345, Cape Range peninsula, Western Plateau of northern Western Australia. Austribal- Australia, Australia, 22°05'S, 113°59'E, 6 September onius Roewer, with a single named species, is the 1989, R.D. Brooks (WAM T40676). only podoctid genus. The Assamiidae of Australia are dealt with in the remarks below under the Para types description of the new species, and likewise the Australia: Western Australia: Cape Range "phalangodids" under the description of peninsula: 1 <;(, cave C-103, 22°07'S, 113°59'E, 19 Glennhuntia glennhunti. August 1989, M. East (WAM T40675); 1 <;(, cave Specimens are deposited in the Western C-167, 22°09'S, 114°00'E, 21 July 1991, S. Brooks Australian Museum (WAM), Perth, and I thank (WAM 92/2125). Mark Harvey for making them available to me for study. Comments from two anonymous reviewers Other Specimens materially improved the manuscript. Australia: Western Australia: Early instar Glenn Hunt (1944-1999), whom I knew only assamiid specimens were taken in the following through correspondence, had produced a series of caves in the Cape Range, but because of their outstanding systematic papers on Australian immaturity, cannot be assigned to this species with opilionids, working on a fauna that was almost certainty: 1 juvenile, Cave C-187, 22°09'S, 114°00'E, 154 W.A. Shear 20 June 1989, M.S. Harvey (WAM T40672); 1 larger, spine-like granule at each summit. Area 2 juvenile, Cave C-65, 22°06'S, 114°oo'E, 27 June 1989, likewise. Area 3 narrower, swellings low, but with W.F. Hurnphreys (WAM T40673); 1 juvenile, Cave two large granules. Area 4 similar to 3, but C-179 (Wombat Hole Cave), 22°06'S, 113°58'E, 7 additional granule anterior to pair also enlarged. July 1989, R.D. Brooks (WAM T40674); 1 juvenile, Posterior margin of scute with 12-14 enlarged, Cave C-271, 22°OO'S, 114°04'E, 8 July 1998, R.D. acute, spine-like granules; posterior margins of Brooks (WAM T40679). free tergites similar. Chelicerae (Figure 2) robust, not sexually Diagnosis dimorphic, basal article with pronounced crest of Dampetrus isolatus differs from previously enlarged granules. Palpus (Figure 3) with described species of the genus in the strong trochanter bearing single large spine; femur with mesolateral spines of the palpal patella. While these ventral row of 9 spines, seventh and ninth from spines are present on some other Dampetrus, they base smaller than others, femur armed distolaterally are only about one-third the size of those of the new with large spine; patella with two large mesal species. spines, each bearing short macroseta, with two much smaller lateral spines, small mesoapical tubercle; tibia with two mesolateral macrosetae Description borne on low spines, long distal lateral spine with Male macroseta nearly equal its length, subtended by Scute length 3.0 mm, greatest scute width 2.1 small setose tubercle, series of five lateral spines mm, total length about 3.7 mm. Colour uniform with 3 proximal to major spine, 2 distal, tarsus with deep orange. Anterior margin of scute with five two lateral and two mesal macrosetae on low spines, two lateral on each side and one median tubercles, lateral margin with six additional spines, spine; lateral spines subequal to median spine, claw sickle-shaped, nearly as long as tarsus. angled slightly lateral (Figure 1). Row of 7-8 Legs typical of Dampetrus. Fourth coxae densely pointed granules just posterior to marginal spines. covered in blunt, elongate granules. Tarsal articles: Scute lateral margins diverging posteriorly to scute 6 (3), 12, 6, 7. area four; slightly rebordered, with submarginal Unfortunately the penis of the only male was lost row of granules; sharp angle in margin opposite during the dissection process. eye tubercle. Eye tubercle 0.4 mm wide, 0.15 mm long, low, with 3 or 4 indistinct acute granules Female over each eye. Eyes small, lightly pigmented. Scute length 2.75 mm, greatest scute width 2.0 Carapace area with scattered granules. Scute area mm, total length about 3.1 mm. Otherwise as 1 with paired low, densely granular swellings, described for male. Figures 1-3 Dampetrus isolatus sp. nov., male: 1, dorsal view; 2, chelicera, lateral view; 3, palpus, mesal view. Scale lines: 1.0 mm (Figure 1), 0.5 mm (Figures 2, 3). New cave-dwelling harvestmen 155 Remarks that can be well circumscribed, with the removal of Eleven species of Australian assamiids have been the originally discordant elements that have been described and another three undescribed species separated as the family Tricommatidae Roewer. have been noted (Hunt, 1991). These fourteen The family is easily distinguished from all others species are unevenly distributed among seven by 4-8 marginal spines on the front edge of the genera: Dampetrus has seven species and the genera carapace (Figure 1). The raptorial palpi (Figure 3), Euwintonius Roewer, Dampetrellus Roewer, often rather small and held crossed-over, are of the Eudampetrus Roewer, Cardwella Roewer, Octobunlls "grabber" type, with a sickle-like claw closing Roewer, Metamermeris Roewer and Anjolus against a spiny tarsus, which in turn closes against Goodnight and Goodnight are monotypic (of these the spiny tibia, particularly a distinctive, large, genera, it would appear from descriptions and distolateral spined process. The patella may be illustrations that only Metamermeris may be distinct unspined or bear two large spines, and the femur from Dampetms). carries a row of strong ventral spines that give it a The five named Dampetrus species were serrate appearance. Martens (1977) provided a surveyed and illustrated by Forster (1949, 1955). codified system for describing the palpal spination All are from eastern Australia (Queensland, New and noted that the assamiids he studied had a South Wales), except for the type species, unique structure in the male penis called a Dampetrus australis Karsch, which was recorded by "Stacheltrichter": a coarsely scaly, eversible funnel its describer (Karsch, 1880) as being from "Western surrounding the glans spine. Only a few forms have Australia," without further detail. Forster (1955) been examined for this particular feature, but it has found that Karsch's two cotype specimens actually been illustrated by Kauri (1985) for African species represented two species, the nominal one, and one and by Suzuki (1970, 1985) for southeast Asian later named by Sorensen (1886) as D. granulatus species. While the noted combination of carapace, Sorensen. Both of these species are found in palpal and genitalic characters will pick out Queensland and have not been collected since in assamiids, only the genitalic character can be Western Australia, so the questions originally regarded as reliable on its own - carapace spines or raised by Roewer (1923) about the provenance of the palpal configuration occur separately in some Karsch's original material remain. By "Western obvious non-assamiids. Australia" Karsch may not have been referring to Almost nothing has been published on phylogeny the present state of Western Australia, but to a of Dampetrus or of the Assamiidae. Originally, western section of Queensland. In any case, two assamiids were supposed to be close to the undescribed species of Dampetrus have turned up Podoctidae, another predominantly southeast Asian in the Kimberley Plateau (Hunt, 1991), so the group, but Adriano Kury (personal communication, genus does actually occur within the boundaries 2000) has tentatively allied them with the of the state, though these records are more than Stygnopsidae, Cosmetidae and Gonyleptidae of 1500 kilometres from the localities where the new Middle America. Roewer (1935) divided the family species described below was collected. into subfamilies, but these have proven to be highly The family Assamiidae was set up by Sorensen in artificial and probably do not represent 1884.
Recommended publications
  • Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
    Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Zootaxa 1325: 5–6 (2006) ISSN 1175-5326 (Print Edition) ZOOTAXA 1325 Copyright © 2006 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1325: 5–6 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1325 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Ornithology, Arachnology and Asian Mountain Ranges —A Tribute to the Work of Prof. Dr Jochen Martens Table of contents Aves 7 The Palaearctic Titmouse Species (Aves: Paridae: Parus sensu lato)—A current survey SIEGFRIED ECK (Germany, deceased) 55 Characterization of a secondary contact zone of the Great Tit Parus major and the Japanese Tit Parus minor (Aves: Passeriformes) in Far Eastern Siberia with DNA markers. LAURA KVIST & SEPPO RYTKÖNEN (Finland) 75 Remarks on biology, vocalisations and systematics of Urocynchramus pylzowi Przewalski (Aves, Passeriformes) AXEL GEBAUER, MARTIN KAISER & CHRISTINE WASSMANN (Germany) 99 Song dialects as diagnostic characters—acoustic differentiation of the Canary Island Goldcrest subspecies Regulus regulus teneriffae Seebohm 1883 and R. r. ellenthalerae Päckert et al. 2006 (Aves: Passeriformes: Regulidae) MARTIN PÄCKERT (Germany) 117 The taxonomic status of the Italian Sparrow—Passer italiae (Vieillot 1817): Speciation by stabilised hybridisation? A critical analysis TILL TÖPFER (Germany) Opiliones 147 A new Umbopilio species from Assam, NE India (Opiliones: Sclerosomatidae: Gagrellinae) LEOŠ KLIMEŠ (Czech Republic) 157 Geographic variation of chromosomes and somatic morphology in the Japanese polymorphic species Leiobunum hiraiwai (Arachnida: Opiliones: Sclerosomatidae) NOBUO TSURUSAKI (Japan) 191 Martensolasma jocheni, a new genus and species of harvestman from Mexico (Opiliones: Nemastomatidae: Ortholasmatinae) WILLIAM A. SHEAR (USA) 199 Marayniocus martensi, a new genus and a new species of Peruvian harvestmen (Arachnida: Opiliones: Gonyleptidae) LUIS E. ACOSTA (Argentina) 211 A new Tricommatinae from the montane savanna of São Paulo (Opiliones: Laniatores: Gonyleptidae) ADRIANO B.
    [Show full text]
  • Arachnologische Mitteilungen 45: 40-44 Karlsruhe, Juni 2013
    Arachnologische Mitteilungen 45: 40-44 Karlsruhe, Juni 2013 A tropical invader, Coleosoma floridanum, spotted for the first time in Slovakia and the Czech Republic (Araneae, Theridiidae) Anna Šestáková, Jana Christophoryová & Stanislav Korenko doi: 10.5431/aramit4509 Abstract. The pantropical theridiid spider Coleosoma floridanum Banks, 1900 was recorded for the first time in Slo- vakia and in the Czech Republic. Both sexes and juveniles were collected in some numbers in heated greenhouses with high humidity. A description and photographs of the species are provided. Keywords: botanical garden, comb-footed spider, faunistics, first record, greenhouse, introduced species The small genus Coleosoma consists of nine tropical derside of plant leaves; some of them (ca. 10 %) were species distributed mostly in the Indo-Malayan eco- extracted from soil samples using Tullgren funnels. zone (Platnick 2012). Except for the largest species, They were identified using Nentwig et al. (2012) and C. matinikum Barrion & Litsinger, 1995 – known only compared to the original description (Banks 1900) from males, with a total length of ca. 4.8 mm – the re- and to the other species of the genus through the maining species are of small size (ca. 2 mm). They are detailed description and figures provided by several thus easily accidently imported to other countries on authors, e.g. Bryant (1940, 1944), Levi (1959), Bar- plants carried by ships. Despite this fact, only C. flori- rion & Litsinger (1995) and Saaristo (2006). danum has so far spread to Europe. This species is Microphotographs were made using EOS Utility commonly found in packages arriving from tropics, software and a digital camera (Canon EOS 1100D) thus it has been exported over the globe and may be connected to a Zeiss Stemi 2000-C stereomicroscope.
    [Show full text]
  • Weitere Weberknechte I. I. Ergänzung: Der: „Weberknechte Der Erde“ , 1923
    Weitere Weberknechte I. I. Ergänzung: der: „Weberknechte der Erde“ , 1923. Yon Prof. Dr. C. Fr. Roewer. Bremen 1926. Mit Textfigur 1—54 und 1 Tafel mit 5 Figuren. Unter diesem Titel beabsichtige ich all diejenigen Opilioniden zu besprechen und in die Tabellen meiner „Weberknechte der Erde“, die ich in Folge stets mit „ W. p. “ zitieren werde, einzustellen, welche in genannter Arbeit aus dort dargelegten Gründen nicht auf­ genommen werden konnten oder inzwischen als „neue Arten“ bekannt geworden sind. Es mögen also diese und folgende Abhandlungen in dieser Zeitschrift angesehen werden als Supplemente jener Monographie, welche ich dadurch auf dem Laufenden zu erhalten bemüht sein werde. Es sollen die Familien in derselben Reihenfolge genannt werden, wie sie in den „Weberknechten der Erde“ aufgestellt wurde. Als ich 1923 meine Monographie veröffentlichen konnte, schrieb ich im Vorwort, „daß ich, soweit es mir eben möglich war, auch die seit 1914 beschriebenen Arten berücksichtigt habe; doch was in den uns feindlichen Ländern seit Kriegsausbruch vielleicht veröffentlicht wurde, steht mir nicht zur Verfügung, auch weiß ich nicht, ob dort überhaupt Arbeiten über Weberknechte erschienen sind“. Dies ist, wie jetzt bekannt, doch der Fall gewesen, und ich zähle jene 1923 nicht berücksichtigten Arbeiten hier folgend auf: 1913 Hogg, M. A., Some Falkland Island Spiders; in: Proc. Zool. Soc. London 1913, p. 37— 50, Taf. 1 u. 2. 1914 Banks, N., Notes on Some Costarica Arachnida; in: Proc. Acad. Philadelph., vol. 65, p. 676—687, Taf. 28— 30. 1916 Chamberlin, R. V., Results of the Yale Peruvian Expedition of 1911; in: Bull. Mus. Harvard, vol. 60, Nr. 6, p.
    [Show full text]
  • A Multilocus Phylogeny of Podoctidae
    Molecular Phylogenetics and Evolution 106 (2017) 164–173 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal the disutility of subfamilial nomenclature in armored harvestman systematics ⇑ Prashant P. Sharma a, , Marc A. Santiago b, Ricardo Kriebel c, Savana M. Lipps a, Perry A.C. Buenavente d, Arvin C. Diesmos d, Milan Janda e,f, Sarah L. Boyer g, Ronald M. Clouse b, Ward C. Wheeler b a Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA b Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA c Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA d Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines e Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Antigua Carretera a Pátzcuaro, 8701 Morelia, Mexico f Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic g Biology Department, Macalester College, 1600 Grand Avenue, St. Paul, MN 55105, USA article info abstract Article history: The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various Received 9 August 2016 sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of Accepted 20 September 2016 articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems Available online 21 September 2016 in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data.
    [Show full text]
  • The Role of Microhabitats in Structuring Cave Invertebrate Communities in Guatemala Gabrielle S.M
    International Journal of Speleology 49 (2) 161-169 Tampa, FL (USA) May 2020 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie The role of microhabitats in structuring cave invertebrate communities in Guatemala Gabrielle S.M. Pacheco 1*, Marconi Souza Silva 1, Enio Cano 2, and Rodrigo L. Ferreira 1 1Universidade Federal de Lavras, Departamento de Ecologia e Conservação, Setor de Biodiversidade Subterrânea, Centro de Estudos em Biologia Subterrânea, Caixa Postal 3037, CEP 37200-900, Lavras, Minas Gerais, Brasil 2Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad Universitaria, Zona 12, 01012, Guatemala City, Guatemala Abstract: Several studies have tried to elucidate the main environmental features driving invertebrate community structure in cave environments. They found that many factors influence the community structure, but rarely focused on how substrate types and heterogeneity might shape these communities. Therefore, the objective of this study was to assess which substrate features and whether or not substrate heterogeneity determines the invertebrate community structure (species richness and composition) in a set of limestone caves in Guatemala. We hypothesized that the troglobitic fauna responds differently to habitat structure regarding species richness and composition than non-troglobitic fauna because they are more specialized to live in subterranean habitats. Using 30 m2 transects, the invertebrate fauna was collected and the substrate features were measured. The results showed that community responded to the presence of guano, cobbles, boulders, and substrate heterogeneity. The positive relationship between non-troglobitic species composition with the presence of guano reinforces the importance of food resources for structuring invertebrate cave communities in Guatemalan caves.
    [Show full text]
  • Arachnida, Opiliones) at Juruti River Plateau, State of Pará, Brazil Ricardo Pinto-Da-Rocha & Alexandre B
    ARTÍCULO: A structured inventory of harvestmen (Arachnida, Opiliones) at Juruti River plateau, State of Pará, Brazil Ricardo Pinto-da-Rocha & Alexandre B. Bonaldo Abstract: The first structured inventory of harvestmen in the Brazilian Amazon Rain Forest was carried out at Juruti municipality, Pará State. The sampling protocol was done in three plots of (1 ha each) non-flooded upland forest, on the Juruti River plateau, nearly 60 km from the right margin of the Amazon river, and one plot in a floodplain forest area, at the Amazon river margin. To ensure assessment of the majority of potential habitats, seven collecting techniques were used, resulting in 466 individuals from 28 species. Each ARTÍCULO: upland site provided 16-18 species. Flooded forest habitat was A structured inventory of undersampled, and only five species were recorded. From the seven harvestmen (Arachnida: Opiliones) collecting methods employed, litter manual sorting resulted in the highest at Juruti River plateau, State of Pará, number of species per sample, and beating tray the highest ratio of Brazil individuals per sample. These two collection techniques, along with nocturnal ground search, were the most effective sampling techniques for a protocol for Ricardo Pinto da Rocha collecting harvestmen in this site. Departamento de Zoologia, Key words: Amazonian Rain Forest, Diversity, Inventory, Opiliones, Sampling protocol Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 321, Un inventario estructurado de los Opiliones (Arachnida) del altiplano 05508-900 São Paulo SP, Brazil; [email protected] del Río Juruti, Estado de Pará, Brasil Alexandre B. Bonaldo Resumen: Museu Paraense Emílio Goeldi, El primer inventario estructurado de Opiliones en la Selva Amazónica fue Coordenação de Zoologia, realizado en Juruti, Estado de Pará, Brazil.
    [Show full text]
  • Assessing the Relationship Between Vegetation Structure and Harvestmen
    bioRxiv preprint doi: https://doi.org/10.1101/078220; this version posted September 28, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Assessing the Relationship Between Vegetation Structure and Harvestmen 2 Assemblage in an Amazonian Upland Forest 3 4 Pío A. Colmenares1, Fabrício B. Baccaro2 & Ana Lúcia Tourinho1 5 1. Instituto Nacional de Pesquisas da Amazônia, INPA, Coordenação de Pesquisas em 6 Biodiversidade. Avenida André Araújo, 2936, Aleixo, CEP 69011−970, Cx. Postal 478, 7 Manaus, AM, Brasil. 8 2. Departamento de Biologia, Universidade Federal do Amazonas, UFAM. Manaus, AM, 9 Brasil. 10 Corresponding author: Ana Lúcia Tourinho [email protected] 11 12 Running Title: Vegetation Structure and Harvestmen’s Relationship 13 14 Abstract 15 1. Arthropod diversity and non-flying arthropod food web are strongly influenced by 16 habitat components related to plant architecture and habitat structural complexity. 17 However, we still poorly understand the relationship between arthropod diversity and the 18 vegetation structure at different spatial scales. Here, we examined how harvestmen 19 assemblages are distributed across six local scale habitats (trees, dead trunks, palms, 20 bushes, herbs and litter), and along three proxies of vegetation structure (number of 21 palms, number of trees and litter depth) at mesoscale. 22 2. We collected harvestmen using cryptic manual search in 30 permanent plots of 250 m 23 at Reserva Ducke, Amazonas, Brazil.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • (Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil
    Biodiversity Data Journal 7: e47456 doi: 10.3897/BDJ.7.e47456 Data Paper Harvestmen occurrence database (Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil Valéria J. da Silva‡, Manoel B. Aguiar-Neto‡, Dan J. S. T. Teixeira‡, Cleverson R. M. Santos‡, Marcos Paulo Alves de Sousa‡, Timoteo M. da Silva‡, Lorran A. R. Ramos‡, Alexandre Bragio Bonaldo§ ‡ Museu Paraense Emílio Goeldi, Belém, Brazil § Laboratório de Aracnologia, Museu Paraense Emílio Goeldi, C.P. 399, 66017-970 Belém, Pará, Brazil, Belém, Brazil Corresponding author: Marcos Paulo Alves de Sousa ([email protected]), Alexandre Bragio Bonaldo ([email protected]) Academic editor: Adriano Kury Received: 19 Oct 2019 | Accepted: 20 Dec 2019 | Published: 31 Dec 2019 Citation: da Silva VJ, Aguiar-Neto MB, Teixeira DJST, Santos CRM, de Sousa MPA, da Silva TM, Ramos LAR, Bragio Bonaldo A (2019) Harvestmen occurrence database (Arachnida, Opiliones) of the Museu Paraense Emílio Goeldi, Brazil. Biodiversity Data Journal 7: e47456. https://doi.org/10.3897/BDJ.7.e47456 Abstract Background We present a dataset with information from the Opiliones collection of the Museu Paraense Emílio Goeldi, Northern Brazil. This collection currently has 6,400 specimens distributed in 13 families, 30 genera and 32 species and holotypes of four species: Imeri ajuba Coronato-Ribeiro, Pinto-da-Rocha & Rheims, 2013, Phareicranaus patauateua Pinto-da- Rocha & Bonaldo, 2011, Protimesius trocaraincola Pinto-da-Rocha, 1997 and Sickesia tremembe Pinto-da-Rocha & Carvalho, 2009. The material of the collection is exclusive from Brazil, mostly from the Amazon Region. The dataset is now available for public consultation on the Sistema de Informação sobre a Biodiversidade Brasileira (SiBBr) (https://ipt.sibbr.gov.br/goeldi/resource?r=museuparaenseemiliogoeldi-collection-aracnolo giaopiliones).
    [Show full text]
  • Arachnida: Opiliones: Laniatores)
    Zootaxa 2757: 24–28 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) New familial assignment for two harvestmen species of the infraorder Grassatores (Arachnida: Opiliones: Laniatores) ABEL PÉREZ-GONZÁLEZ Grupo de Sistemática e Biologia Evolutiva (GSE), Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), CP 119331, CEP 27910-970, Macaé, RJ, Brazil. E-mail: [email protected] Incorporating masculine genitalic characters into Opiliones taxonomy has produced important revisions in the systematics of this group of arachnids. Currently, the inclusion of penis morphology in the description of any taxon of Phalangida (harvestmen with penis: Eupnoi + Dyspnoi + Laniatores, as used in Pinto-da-Rocha et al. 2007) has become an almost “mandatory” standard (e.g. Acosta et al. 2007), and opilionologists have been working to establish the masculine genital pattern for each family (e.g., Martens 1986; subchapters in Pinto-da-Rocha & Giribet 2007). Still, in the infraorder Grassatores the diversity in penis morphology is enormous and much structure and functionality remains poorly understood. Unfortunately, for many of the described Grassatores, the genitalia are entirely unknown, and this constitutes an important impediment to reliable familial assignation (e.g., in Kury 2003, 41 genera were considered as incertae sedis). This problem is quite relevant to “phalangodid-like” genera, considering their rather homogeneous external appearance but highly diverse genitalia (Martens 1988). One of the most illustrative examples is the subfamily Tricommatinae Roewer, 1912, that has been originally described under Phalangodidae, but which has a male genitalia groundplan matching the Gonyleptoidea, a very distant superfamily (Giribet et al.
    [Show full text]