Red Alder (Alnus Rubra Bong.)

Total Page:16

File Type:pdf, Size:1020Kb

Red Alder (Alnus Rubra Bong.) &]Forest An American Wood .S Service . Red United States Department of Agriculture Alder FS-215 Red alder is the most common hard­ wood in the Pacific Northwest and the largest of the American alders. It is a fast-growing, pioneer species and has nitrogen-fixing nodules on its roots. The wood is diffuse-porous, moderately light. and soft. It has excellent turning and polishing characteristics and takes glue, paint, and stain well. Major uses are for furniture, cabinets, and pallets, but substantial amounts are also used to make paper. F-320966 An American Wood Red Alder (Alnus mbra Bong.) Constance A. Harrington' Distribution The range of red alder extends from southern California Oatitude 340 N.) to southeastern Alaska (600 N.) (fig. 1). Red alder is not commonly found east of the Cascade or Sierra Nevada / Ranges, although there are several " isolated populations in northern Idaho. The species develops best at low eleva­ ; tions (below 1,500 ft) in northern / / Oregon, Washington, and British Co­ I lumbia. In the central part of its range, / scattered trees occur as high as 3,300 feet, but most stands are below 2,500 / I feet. o Red aIder grows in humid or superhumid climatic conditions. Throughout the tree's range, annual precipitation varies from 16 to 220 inches, with most faIling as rain during winter. Low winter temperatures and / lack of precipitation during the growing / season appear to be the main limits to So the range of the species. For good tree development, annual precipitation / ! should exceed 25 inches, or tree roots should have access to ground water. The best stands grow on deep, weIl­ ! I drained loams or sandy loarns of alluvial or volcanic origin. Red alder / tolerates poorly drained conditions and some flooding during the growing season; consequently, stands on wet or f poorly drained soils are common. It I often occurs as a component of mixed . stands that include Douglas-fir J' I (Pseudotsuga men::.iesii), western hemlock (Tsuga heterophylla), western redcedar (Thuja pUcata), grand fir (Abies grandis), black cottonwood (Populus trichocarpa), bigleaf maple (Acer macrophyllum), and willow (Salix). / o ! I I I I I • I ii ' I . j I Research Forester, U.S. Department of o 200 400 6O 'LOMETERS Agriculture, Forest Service, Southern Station, Monticello, Ark. Figure I-Natural range of red alder. F-532737 2 An American Wood Description and Growth On good sites, red alder can attain heights of 100 to 130 feet and diameters of 22 to 30 inches. In closed stands, the trees typically have clear, slightly tapered boles and narrow, domelike crowns. The light-gray bark is thin and smooth. Red alder forms extensive, fibrous root systems. The roots have numerous nitrogen-fixing nodules, which are,a symbiotic associa­ tion between the tree and beneficial bacteria belonging to the genus Frankia. The leaves are dark green and oval or elliptic, with both coarse and fine teeth. They generally range from 2 to 6 inches long (fig. 2). Red alder is a prolific and consistent seed producer. Moderate seed crops are produced almost annually, with bumper crops occurring every 3 to 5 years. The seeds are small, light, winged nuts. There are 23,000 to 86,000 seeds per ounce, and wind dissemination is quite effective. The seeds are borne in Figure 2-Red alder: leaves and conelike strobiles. F-532727 small, woody, conelike strobiles 0.4 to 1.3 inches long and 0.3 to 0. 6 inch taller than 30 feet at age 5, 50 feet at Animal damage is not usually a prob­ wide. Most of the seed is shed in late age 10, and 75 feet at age 20. lem in red alder stands. Occasional fall and early winter. browsing by black-tailed deer Red alder is a relatively short-lived (Odocoileus hemionus columbianus), Seed germination and seedling growth species. It matures at about 60 to 70 girdling of small stems by mountain is best on moist mineral soil with full years of age and maximum age is about beaver (Aplodontia mfa) or meadow sunlight. The species is an aggressive 100 years. Maximum cubic volume of mice (Microtus spp.), and bole damage pioneer on avalanche paths, road cuts, about 7,500 cubic feet per acre is at­ by sapsuckers (Sphyrapicus van'us) log landings, skid trails, and other tained at age 50 to 70 years in pure have been observed. areas where mineral soil has been stands. Most of the alder volume, freshly exposed. Clearcutting and large however, is in mixed stands where Climatic factors can damage red alder. group selection are the most reasonable growth and yield are quite variable. Mortality and top damage may occur regeneration systems. Young red alder after ice storms or unseasonable frosts. sprouts prolifically when cut; however, Red alder is fairly free of insect and Fire is rare because flammable debris coppice regeneration is not likely when disease problems, especially when is scarce in most red alder stands. trees of pole- or saw-log size are young (up to age 40 or 50) and unin­ Windthrow is not common in forest harvested. jured. Fomes igniarius, a white heart stands; however, trees can be blown rot, is probably the major cause of cull over along cutting boundaries or where Height growth of young red alder in older trees. Insect pests are not established root systems have been seedlings is exceptionally rapid. On usually a major concern, but serious undercut by flooding or erosion. favorable sites, they can grow 3 feet or outbreaks of tent caterpillars more the first year; and on all but the (Malacosoma disstrla and M. califor­ The commercial value of red alder has poorest sites, they pass breast height nicum), sawflies (Eriocampa ovata and traditionally been lower than that of its (4.5 ft) the second year. Maximum Hemichroa crocea), and flea beetles associated conifers; consequently, most height growth is usually from 2 to 5 (Altica ambiens and Pyrrhalta punc­ forest managers have tried to eliminate years, but is still excellent after that tipennis) can cause substantial growth alder from conifer stands. However, re­ age. On the best sites, trees can be reduction. cent increases in the value of red alder 3 An American Wood wood and new appreciation of the board feet. Since the early 1950's, Characteristics and Properties species' ability to add nitrogen and lumber production has rapidly in­ organic matter to the soil have resulted creased; in 1980. it was a little more Red alder wood is almost white when in greater interest in managing alder. than 200 million board feet. freshly cut but quickly changes to a light tan or light brown with a yellow or reddish tinge when exposed to the Common Names Red alder has been used for pulpwood air. Heartwood is fonned only in trees since the early 1950's. Although the of advanced age, and there is no visible The species is most commonly called amount used for pulpwood by both boundary between heartwood and red alder, western alder, or just alder. local and foreign mills has been in­ sapwood. Other names !lsed, particularly in the creasing tremendously, there is a great past, are Oregon alder and Pacific deal of annual fluctuation in use. Both Red alder wood is classified as diffuse­ coast alder. the demand and the price paid for alder porous, which means that the pores in chips follow irregular, boom-or-bust the wood do not varv much in size cycles. Most of the fluctuation is Related Commercial Species with changes in seasnal growth rates. caused by changes in the availability of The pores are fairly small and hard to conifer chips, and this is closely tied to Red alder is usually marketed by itself. see without magnification (tig. 3). The the market for structural materials. Some forest inventory figures group the wood has two types of rays: narrow or Pacific coast hardwoods. Although red simple rays, which are closely spaced alder is the primary species, black cot­ When conifer chips become less and not visible without a hand lens, tonwood, bigleaf maple, Oregon ash available, more red alder chips are and broad or aggregate rays, which (Fra;'Cinus latifolia), and varieties of used. This substantially affects the occur at irregular and often wide inter­ paper birch (Betula papyrifera) are amount of red alder that is harvested vals. The annual growth rings include a sometimes included in figures for and chipped. Foreign markets for red wide band of earlywood (wood formed western Washington and Oregon; black alder have been large, but generally er­ at the beginning of the growing season) cottonwood, paper birch varieties, ratic and short lived. In 1980, well and a comparatively narrow band of balsam poplar (Populus balsamifera), over half the alder that was chipped latewood. The rings can be difficult to and quaking aspen (Populus was exported to Japan and Korea. Use distinguish in very fresh wood, but tremuloides) are sometimes included in of red alder for pulping is expected to usually become more distinct with ex­ figures for coastal Alaska. increase; however, annual production posure to air, when the latewood figures will probably remain erratic. becomes visible as fine brown or red­ dish brown lines. Red alder has fine, Supply uniform, straight grain and very smooth Recently, a small, but increasing, texture. When the aggregate rays are The total volume of red alder growing amount of red alder has been used for present in a piece of wood, they form stock in the United States in 1977 was plywood and veneer. In 1980, about 12 an attractive pattern; however, because 7.0 billion cubic feet. Net volume of million board feet was used by the the aggregate rays are irregularly U.S.
Recommended publications
  • Technical Note 37: Identification, Ecology, Use, and Culture of Sitka
    TECHNICAL NOTES _____________________________________________________________________________________________ US DEPT. OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE Portland, OR April 2005 PLANT MATERIALS No. 37 Identification, Ecology, Use and Culture of Sitka Alder Dale C. Darris, Conservation Agronomist, Corvallis Plant Materials Center Introduction Sitka alder [Alnus viridis (Vill.) Lam. & DC. subsp. sinuata (Regel) A.& D. Löve] is a native deciduous shrub or small tree that grows to height of 20 ft, occasionally taller. Although a non-crop species, it has several characteristics useful for reclamation, forestry, and erosion control. The species is known for abundant leaf litter production, the fixation of atmospheric nitrogen in association with Frankia bacteria, and a strong fibrous root system. Where locally abundant, it naturally colonizes landslide chutes, areas of stream scour and deposition, soil slumps, and other drastic disturbances resulting in exposed minerals soils. These characteristics make Sitka alder particularly useful for streambank stabilization and soil building on impoverished sites. In addition, its low height and early slowdown in growth rate makes it potentially more desirable than red alder (Alnus rubra) to interplant with conifers such as Douglas fir (Pseudotsuga menzieii) and lodgepole pine (Pinus contorta) where soil fertility is moderate to low. However, high densities can hinder forest regeneration efforts. The species may also be useful as a fast growing shrub row in field windbreaks. Sitka alder is most abundant at mid to subalpine elevations. Low elevation seed sources (below 100 m) are uncommon but probably provide the best material for reclamation and erosion control projects on valley floors and terraces. Distribution and Identification Sitka alder (Alnus viridis subsp. sinuata) is a native deciduous shrub or small tree that grows to a height of 1-6 m (3-19 ft) in the mountains and 6-12 m (19-37ft) at low elevations.
    [Show full text]
  • Bigleaf Maple Decline in Western Washington
    Bigleaf Maple Decline in Western Washington Jacob J. Betzen A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2018 Committee: Patrick Tobin Gregory Ettl Brian Harvey Robert Harrison Program Authorized to Offer Degree: Environmental and Forest Sciences © Copyright 2018 Jacob Betzen University of Washington Abstract Bigleaf Maple Decline in Western Washington Jacob J. Betzen Chair of the Supervisory Committee: Professor Patrick Tobin School of Environmental and Forest Sciences Bigleaf maple (Acer macrophyllum Pursh) is a prominent component of the urban and suburban landscape in Western Washington, which lies at the heart of the native range of A. macrophyllum. Acer macrophyllum performs many important ecological, economic, and cultural functions, and its decline in the region could have cascading impacts. In 2011, increases in A. macrophyllum mortality were documented throughout the distributional range of the species. Symptoms of this decline included a systemic loss of vigor, loss of transpiration, and a reduction in photosynthetic potential, but did not display any signs or symptoms indicative of a specific causative agent. No pathogenic microbes, insects, or other biotic agents were initially implicated in causing or predisposing A. macrophyllum to decline. In my thesis research, I quantified the spatial extent and severity of A. macrophyllum decline in the urban, suburban, and wildland forests of western Washington, identified potential abiotic and biotic disturbance agents that are contributing to the decline, and conducted a dendrochronological analysis to ascertain the timing of the decline. I surveyed 22 sites that were previously reported as containing declining A. macrophyllum, and sampled 156 individual A.
    [Show full text]
  • TREES HAVE HIGHER LONGITUDINAL GROWTH STRAINS in THEIR STEMS THAN in THEIR ROOTS in the Secondary Xylem of Trees, Each Wood Cell
    a3q14 Int. 1. Plant Sci. 158(4):418-423. 1997. © 1997 by The University of Chicago. All rights reserved. 1058-5893/97/5804-0003$03.00 TREES HAVE HIGHER LONGITUDINAL GROWTH STRAINS IN THEIR STEMS THAN IN THEIR ROOTS BARBARA L. GARTNER Department of Forest Products, Oregon State University, Corvallis, Oregon 97 33 1-7402 Longitudinal growth strains develop in woody tissues during cell-wall formation. This study compares stems, which have a mechanical role and experience longitudinal stresses, and nonstructural roots, which have little mechanical role and experience few or no longitudinal stresses, to test the hypothesis that growth strains are produced in stems of straight trees as an adaptive feature for mechanical loads. I measured growth strains in one stem (at breast height) and one nonstructural root (beyond the zone of rapid taper and/or beyond a major change in root direction) for 13-15 individuals of each of four tree species, Pseudotsuga menziesii, Thuja heterophylla, Acer macrophyllum, and Alnus rubra. Forty-seven of the 54 individuals had higher strains in their stems than in their roots (4.3 ± 0.3 x 10- 4 and 1.5 ± 0.3 x 10-4, respectively). Growth strain was two to five times higher for stems than roots. The modulus of elasticity (MOE) in bending was also higher in stem tissues (from literature values) than in root tissue (from this study). Calculated growth stresses, the product of growth strain and MOE, averaged 6-11 times higher in stems than roots for the four species. The higher strain and stress in stems than roots indicate that the strains and stresses are adaptive features that are produced in response to, or in "anticipation," of mechanical loads.
    [Show full text]
  • Nitrogen Transformations in Soils Beneath Red Alder and Conifers
    From Biology of Alder ERTY OF: Proceedings of Northwest Scientific Association Annual Mee t4■::::),...;ADE HEAD EXPERIMENTAL FOREST April 14-15, 1967 Published 1968 AND SCENIC RESEARCH AREA OTIS, OREGON Nitrogen transformations in soils beneath red alder and conifers W. B. Bollen, Abstract Oregon State University Corvallis, Oregon Transformations of nitrogen in organic matter in the soil are essential to and plant nutrition because nitrogen in the form of proteins and other organic K. C. Lu compounds is not directly available. These compounds must undergo Forestry Sciences Laboratory microbial decomposition to liberate nitrogen as ammonium (NH -I-4) and Pacific Northwest Forest nitrate (NO3 ), which can then be absorbed by plant roots. and Range Experiment Station Nitrogen transformations, particularly nitrification, are rapid in soils under Corvallis, Oregon coastal Oregon stands of red alder (Alnus rubra Bong.); conifers — Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla Raf) Sarg.), and Sitka spruce (Picea sitchensis (Bong.) Carr.); and mixed stands of alder and conifers. Nitrification is especially rapid in the F layer beneath alder stands despite a very low pH. These findings are from a study of contributions to the nitrogen economy by red alder conducted at Cascade Head Experimental Forest near Otis, Oregon (Chen, 1965). 1 Procedures Ammonifying capacity of the different samples was compared by testing duplicate 50-g portions, ovendry basis, of each with peptone equivalent to 1,000 ppm nitrogen. These samples, and samples of untreated soil, were incubated for 35 days at 28 C. Moisture was adjusted to 50 percent of the water- holding capacity. At the close of incubation, each sample was analyzed for NH+4, NO-2, and NO-3 nitrogen and for pH.
    [Show full text]
  • BIGLEAF MAPLE Evening Grosbeaks, Chipmunks, Mice, and a Variety of Birds
    Plant Guide Wildlife: The seeds provide food for squirrels, BIGLEAF MAPLE evening grosbeaks, chipmunks, mice, and a variety of birds. Elk and deer browse the young twigs, leaves, Acer macrophyllum Pursh and saplings. Plant Symbol = ACMA3 Agroforestry: Bigleaf maple can be planted on sites Contributed By: USDA NRCS National Plant Data infected with laminated rot for site rehabilitation. It Center can also accelerate nutrient cycling, site productivity, revegetate disturbed riparian areas, and contribute to long-term sustainability. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status, such as, state noxious status, and wetland indicator values. Description General: Maple Family (Aceraceae). Bigleaf maple is a native, long-lived medium to large sized deciduous tree that often grows to eighty feet tall. The leaves are simple, opposite, and very large between fifteen to thirty centimeters wide and almost as long (Farrar 1995). The flowers are yellow, Brother Alfred Brousseau © Saint Mary's College fragrant, and produced in noddling racemes @ CalPhotos appearing with the leaves in April or May. The fruit is paired, 2.5 - 4 centimeters long, and brown with Alternative Names stiff yellowish hair. The bark is smooth and gray- Oregon maple, broad leaf maple, big-leaf maple brown on young stems, becoming red-brown and deeply fissured, and broken into scales on the surface Uses (Preston 1989). Ethnobotanic: The inner bark was often dried and ground into a powder and then used as a thickener in Distribution: Acer macrophyllum is distributed soups or mixed with cereals when mixing bread.
    [Show full text]
  • Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems
    Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Sims, L., Goheen, E., Kanaskie, A., & Hansen, E. (2015). Alder canopy dieback and damage in western Oregon riparian ecosystems. Northwest Science, 89(1), 34-46. doi:10.3955/046.089.0103 10.3955/046.089.0103 Northwest Scientific Association Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Laura Sims,1, 2 Department of Botany and Plant Pathology, Oregon State University, 1085 Cordley Hall, Corvallis, Oregon 97331 Ellen Goheen, USDA Forest Service, J. Herbert Stone Nursery, Central Point, Oregon 97502 Alan Kanaskie, Oregon Department of Forestry, 2600 State Street, Salem, Oregon 97310 and Everett Hansen, Department of Botany and Plant Pathology, 1085 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Alder Canopy Dieback and Damage in Western Oregon Riparian Ecosystems Abstract We gathered baseline data to assess alder tree damage in western Oregon riparian ecosystems. We sought to determine if Phytophthora-type cankers found in Europe or the pathogen Phytophthora alni subsp. alni, which represent a major threat to alder forests in the Pacific Northwest, were present in the study area. Damage was evaluated in 88 transects; information was recorded on damage type (pathogen, insect or wound) and damage location. We evaluated 1445 red alder (Alnus rubra), 682 white alder (Alnus rhombifolia) and 181 thinleaf alder (Alnus incana spp. tenuifolia) trees. We tested the correlation between canopy dieback and canker symptoms because canopy dieback is an important symptom of Phytophthora disease of alder in Europe. We calculated the odds that alder canopy dieback was associated with Phytophthora-type cankers or other biotic cankers.
    [Show full text]
  • RED ALDER Northwest Extracted a Red Dye from the Inner Bark, Which Was Used to Dye Fishnets
    Plant Guide and hair. The native Americans of the Pacific RED ALDER Northwest extracted a red dye from the inner bark, which was used to dye fishnets. Oregon tribes used Alnus rubra Bong. the innerbark to make a reddish-brown dye for basket Plant Symbol = ALRU2 decorations (Murphey 1959). Yellow dye made from red alder catkins was used to color quills. Contributed by: USDA NRCS National Plant Data Center A mixture of red alder sap and charcoal was used by the Cree and Woodland tribes for sealing seams in canoes and as a softener for bending boards for toboggans (Moerman 1998). Wood and fiber: Red alder wood is used in the production of wooden products such as food dishes, furniture, sashes, doors, millwork, cabinets, paneling and brush handles. It is also used in fiber-based products such as tissue and writing paper. In Washington and Oregon, it was largely used for smoking salmon. The Indians of Alaska used the hallowed trunks for canoes (Sargent 1933). Medicinal: The North American Indians used the bark to treat many complaints such a headaches, rheumatic pains, internal injuries, and diarrhea (Moerman 1998). The Salinan used an extract of the bark of alder trees to treat cholera, stomach cramps, and stomachaches (Heinsen 1972). The extract was made with 20 parts water to 1 part fresh or aged bark. The bark contains salicin, a chemical similar to aspirin (Uchytil 1989). Infusions made from the bark of red alders were taken to treat anemia, colds, congestion, and to © Tony Morosco relieve pain. Bark infusions were taken as a laxative @ CalFlora and to regulate menstruation.
    [Show full text]
  • Brotherella Roellii (Renauld & Cardot) M
    Brotherella roellii (Renauld & Cardot) M. Fleisch. Roll's golden log moss Sematophyllaceae status: State Threatened, USFS strategic rank: G3 / SH General Description: Shiny golden to yellowish green moss forming thin, small carpets. Stems lying flat, creeping, branching irregularly, 0.5-3 cm x 0.5-1 mm. Leaves 0.8-1.2 mm long, often turned to one side, ovate-lanceolate, tip pointed, concave. Costa lacking, or double and very short. Alar cells strongly inflated. Outer layer of stem cells (cortical cells) are inflated, colorless, transparent, and larger than the interior cells. There is often a row of enlarged cells extending across the leaf base. Reproductive Characteristics: Produces male and female sex organs on the same plant but in separate locations. Seta 0.6-1 cm long. Capsule erect to somewhat inclined, straight or slightly asymmetric. Urn 1-1.5 mm long. Operculum long and narrow, up to 1 mm long. Identification Tips: Hypnum circinale is a similar species that often grows in the same habitat. However, it is a larger moss, dull grayish to bluish green in color, with longer leaves (up to 2.2 mm) that are slightly to strongly curved nearly into a circle. It has only a few slightly inflated quadrate to rectangular, alar cells; its cortical cells are small and thick-walled. In contrast, B. roellii has strongly inflated alar cells, and large, thin-walled, inflated cortical cells. Range: Endemic to southwestern B.C. and WA. Habitat/Ecology: Forms small, glossy, green to golden yellow mats, usually on old logs and other rotten wood; also © Judy Harpel on the bases of red alder (Alnus rubra) and other hardwood trees.
    [Show full text]
  • Stream & Wetland Enhancement Guide
    Stream & Wetland Enhancement Guide Department of Community Development (541) 488-5305 www.ashland.or.us Stream & Wetland Enhancement Guide A healthy network of urban streams and wetlands protects water quality, reduces flood- ing impacts, provides fish and wildlife habitat, and enhances the beauty and livability of our community. You can help protect and enhance these important natural resources by learning the techniques outlined in this guide. These techniques will help you control erosion, man- age invasive plants, and cultivate a healthy, native landscape. This guide is arranged into sections to help you understand, design, plant and manage streamside vegetation. For more information about how you can protect your neighborhood streams and wet- lands, and find out about regulations pertaining to the alteration of riparian and wetland habitats contact the City of Ashland Department of Community Development at (541) 488-5305 or visit the City’s web page dedicated to Water Resources: www.ashland.or.us/waterresources Stream & Wetland Enhancement Guide Contents 1. Water Protection Zones Streams and Wetlands (pgs. 1-4) 2. Rogue Basin Native Plants (pgs. 5-6) 3. Noxious and Plants (pgs. 7-8) 4. Planting and Managing Streamside Vegetation (pgs. 9-11) 5. Planting Techniques (pg. 12) 6. Plant Protection (pg. 13) 7.Streamside Stabilization and Erosion Control (pgs. 14-16) 8. Plant Communities Riparian Woodland (pg. 17) Wetland (pg. 18) 9. Use of Herbicides (pgs. 19-20) 10. Additional Resources (pg. 21) 1. Water Resource Protection Zones - Streams A riparian area is the area of land adjacent to a stream. Healthy riparian areas reduce the chance of damaging floods, improve water quality and provide habitat and food for fish and wildlife.
    [Show full text]
  • A Guide to Priority Plant and Animal Species in Oregon Forests
    A GUIDE TO Priority Plant and Animal Species IN OREGON FORESTS A publication of the Oregon Forest Resources Institute Sponsors of the first animal and plant guidebooks included the Oregon Department of Forestry, the Oregon Department of Fish and Wildlife, the Oregon Biodiversity Information Center, Oregon State University and the Oregon State Implementation Committee, Sustainable Forestry Initiative. This update was made possible with help from the Northwest Habitat Institute, the Oregon Biodiversity Information Center, Institute for Natural Resources, Portland State University and Oregon State University. Acknowledgments: The Oregon Forest Resources Institute is grateful to the following contributors: Thomas O’Neil, Kathleen O’Neil, Malcolm Anderson and Jamie McFadden, Northwest Habitat Institute; the Integrated Habitat and Biodiversity Information System (IBIS), supported in part by the Northwest Power and Conservation Council and the Bonneville Power Administration under project #2003-072-00 and ESRI Conservation Program grants; Sue Vrilakas, Oregon Biodiversity Information Center, Institute for Natural Resources; and Dana Sanchez, Oregon State University, Mark Gourley, Starker Forests and Mike Rochelle, Weyerhaeuser Company. Edited by: Fran Cafferata Coe, Cafferata Consulting, LLC. Designed by: Sarah Craig, Word Jones © Copyright 2012 A Guide to Priority Plant and Animal Species in Oregon Forests Oregonians care about forest-dwelling wildlife and plants. This revised and updated publication is designed to assist forest landowners, land managers, students and educators in understanding how forests provide habitat for different wildlife and plant species. Keeping forestland in forestry is a great way to mitigate habitat loss resulting from development, mining and other non-forest uses. Through the use of specific forestry techniques, landowners can maintain, enhance and even create habitat for birds, mammals and amphibians while still managing lands for timber production.
    [Show full text]
  • Salix Sessilifolia Nutt
    Salix sessilifolia Nutt. soft-leaved willow Salicaceae - willow family status: State Sensitive, BLM sensitive, USFS sensitive rank: G4 / S2 General Description: Shrub or small tree 2-8 m tall, with a trunk up to 1 dm thick; leaves, young twigs, and capsules copiously covered with long, soft, loose, unmatted hairs, but less so with age. Stipules minute, deciduous; petioles 1-5 mm long. Leaf blades lance-shaped to oblong, (2.5) 3-7 (10) times as long as wide, the well-developed ones 3-10 x 1-3.5 cm; both sides are light green, densely hairy, soft and velvety to the touch, and have margins toothed with small, widely spaced teeth (sometimes entire). Winter buds covered with a single, nonresinous, caplike scale. Floral Characteristics: Male and female catkins borne on separate plants. C atkins develop on leafy branchlets after the leaves develop. Floral scales yellow to light yellowish green, hairy, and deciduous. Stamens 2; filaments conspicuously hairy below. Female catkins 3-5 (10) cm long; stigma lobes long and slender. Flowers May to June. Illustration by Jeanne R. Janish, ©1964 University of Washington Fruits: Capsules hairy, 3-5 mm long, occasionally 3-valved. Press Identif ication Tips: The young leaves and twigs of S. s es s ilifolia are copiously covered with soft, loose, unmatted hairs on both sides, and the leaves are 2.5-10 times as long as wide. In contrast, the young leaves and twigs of S. columbiana* are silvery from stiff, appressed hairs (rapidly becoming greener and nearly hairless), and the leaves are 5-15 (20) times as long as wide.
    [Show full text]
  • Street Tree Inventory Report Hillsdale Neighborhood August 2016 Street Tree Inventory Report: Hillsdale Neighborhood August 2016
    Street Tree Inventory Report Hillsdale Neighborhood August 2016 Street Tree Inventory Report: Hillsdale Neighborhood August 2016 Written by: Kat Davidson, Angie DiSalvo, Julie Fukuda, Jim Gersbach, Jeremy Grotbo, and Jeff Ramsey Portland Parks & Recreation Urban Forestry 503-823-4484 [email protected] http://portlandoregon.gov/parks/treeinventory Hillsdale Tree Inventory Organizers: Jim Keiter Staff Neighborhood Coordinator: Jim Gersbach Data Collection Volunteers: Dennis Alexander, Richard Anderson, William Better, Ben Brady, Brian Brady, Julia Brown, Marty Crouch, Hannah Davidson, April Ann Fong, Lise Gervais, Margaret Gossage, Karen Henell, Jim Keiter, John Mills, Pat Ruffio, Jerry Sellers, Kristin Sellers, Mimi Siekmann, Haley Smith, Nancy Swaim, Mark Turner, Loris Van Pelt, Paige Witte, and Maggie Woodward Data Entry Volunteers: Michael Brehm, Nathan Riggsby, and Eric Watson Arborist-on-Call Volunteers: Will Koomjian GIS Technical Support: Josh Darling, Portland Parks & Recreation Financial Support: Portland Parks & Recreation Cover Photos (from top left to bottom right): 1) Colorful foliage on a golden Deodar cedar (Cedrus deodara 'Aurea'). 2) The deep green leaves of a quaking aspen (Populus tremuloides). 3) Unusual peeling bark on a young madrone (Arbutus menziesii). 4) A vivid fuchsia bloom on a magnolia (Magnolia sp.) 5) The developing cone of a rare China-fir Cunninghamia( lanceolata). 6) Unusually shaped leaves on a tulip poplar (Liriodendron tulipifera). 7) The pendant foliage of a weeping giant sequoia (Sequoiadendron giganteum 'Pendulum'). 8) Multicolored scaly foliage on a variegated elkhorn cedar (Thujopsis dolobrata 'Variegata'). ver. 10/17/2016 Portland Parks & Recreation 1120 SW Fifth Avenue, Suite 1302 Portland, Oregon 97204 (503) 823-PLAY Commissioner Amanda Fritz www.PortlandParks.org Director Mike Abbaté Contents Key Findings .........................................
    [Show full text]