<<

InternationalReview,Vol.45,2003,p.575–595. Copyright©2003byV.H.Winston&Son,Inc.Allrightsreserved.

HowLaramide-AgeHydrationofNorthAmericanLithosphere bytheFarallonSlabControlledSubsequentActivity intheWesternUnitedStates

EUGENEHUMPHREYS,1 DepartmentofGeologicalSciences,UniversityofOregon,Eugene,Oregon97403

ERINHESSLER,2 DepartmentofGeologicalSciences,UniversityofOregon,Eugene,Oregon97403

KENNETHDUEKER, DepartmentofGeologyand,Universityof,Laramie,Wyoming82071

G.LANGFARMER, DepartmentofGeologicalSciences,Universityof,Boulder,Colorado80309

ERICERSLEV, DepartmentofEarthResources,ColoradoStateUniversity,FortCollins,Colorado80523

ANDTANYAATWATER DepartmentofGeologicalSciences,Universityof,SantaBarbara,California93106

Abstract

StartingwiththeLaramideandcontinuingthroughthe,theU.S.Cordilleran orogenisunusualforitswidth,ofuplift,andstyleoftectonicandmagmaticactivity.We presentteleseismictomographyevidenceforathicknessofmodifiedNorthAmericalithosphere 200kmbeneathColoradoand>100kmbeneathNew.Existingexplanationsforupliftor cannotaccommodatelithospherethisthick.Imagedmantlestructureislowinseismic velocityroughlybeneaththeRockyMountainsofColoradoandNewMexico,andhighinvelocityto theeastandwest,beneaththetectonicallyintactGreatPlainsandColoradoPlateau.Structureinter- naltothelow-velocityvolumehasaNEgrainsuggestiveofinfluencebyinherited sutures.Weconcludethatthehigh-velocityuppermantleisPrecambrianlithosphere,andthelow- velocityvolumeispartiallymoltenPrecambrianNorthAmericamantle. Wesuggest,asothershave,thattheFarallonslabwasincontactwiththelithospherebeneath mostofthewesternU.S.duringtheLaramideorogeny.Wefurthersuggestthatslabde-watering undertheincreasinglycoolconditionsofslabcontactwithNorthAmericahydratedthebaseofthe continentallithosphere,causingasteadyregionalupliftofthewesternU.S.duringthe.Imagedlow-velocityuppermantleisattributedtohydration-inducedlithosphericmelting beneathmuchofthesouthernRockyMountains.Laramide-agemagmaticascentheatedandweak- enedthelithosphere,whichinturnallowedhorizontalshorteningtooccurinthemantlebeneaththe regionofLaramidethrustinginthesouthernRockyMountains.SubsequentFarallonslabremoval resultedinadditionalupliftthroughunloading.Italsotriggeredvigorousmagmatism,especially wheremadecontactwiththehydratedandrelativelythinandfertilelithosphereof whatnowistheBasinandRange.Thismantlenowisdry,depletedofbasalticcomponents,hot, buoyant,andweak.

1Correspondingauthor;email:[email protected] 2Presentaddress:IllinoisStateWaterDistrict,Champaign,IL.

0020-6814/03/671/575-21$10.00 575 576 HUMPHREYSETAL.

Introduction andmeltingbeneaththeColoradoRockyMoun- tains.Meltascentadvectivelyheatedandweakened ROCKYMOUNTAINTECTONISM,widespreadTertiary thelithosphere,allowingcontractionalfailure volcanism,andupliftofthewesternUnitedStates beneaththeRockyMountainsandcreationofseis- areimportantgeologiceventsoccurringwithinthe micallyslowvelocitiesbeneaththeColoradoRocky interiorofNorthAmericawithnoobviouscause.As Mountainstodepthsof 200km.Post-Laramide such,placingtheseactivitiesinaplatetectoniccon- volcanismintheRockyMountainsandBasinand textappealstounusualbehavior,andtheircauses Rangeisattributedtoslabremovalandtheresulting remaincontroversial.The~70–45MaLaramide asthenosphericcontactwiththebaseofthehydrated orogenyiscentraltodiscussionsofthisactivity.This lithosphere.Theexceptionallyvigorousmagmatism orogenyisattributed,insomefashion,torapidsub- intheBasinandRangeisthoughttobearesultofits ductionoftheFarallonslabbeneathNorthAmerica. relativelythinandfertilelithosphere.Buoyancyin ConeyandReynolds(1977),notingacessationof magmaticallyactiveareasnowissuppliedbyther- Sierraarcmagmatismandaneast-migrating malexpansionandbasaltdepletionofthemantle. frontofmagmaticinitiationimmediatelypriortoand duringtheLaramide,suggestFarallonslabflatten- Regionallithosphericsetting ingbeneaththewesternU.S.Slab-flatteningmodels aremadeattractivebytheoccurrenceofsimilar Figure1Aisamapofuppermantleseismic behaviorinareaswheretheNazca“flatslab”sub- velocitystructureforthewesternUnitedStatesand ductsbeneathSouthAmerica(CahillandIsacks, nearbyregions.Theeasternpartofourstudyarea 1992),andbytheirabilitytoassociateRockyMoun- liesoverthewesternmarginofahigh-velocityman- taincontraction,westernU.S.uplift,andtheevolv- tle“cratonicroot”(Jordan,1979)thatextends ingpatternofmagmatismtoplatetectonic deeplybeneaththeArchean(incentral)and processes.Inparticular,volcanismisattributedto (inthenorth-centralU.S.)crust(Grand, propagationof-relatedarc-likevolcan- 1994;vanderLeeandNolet,1997).Incontrast, ismassociatedwithslabflatteningfollowedbyroll mostofthewesternU.S.overliesthenorthernextent back(ConeyandReynolds,1977).Uplift,which ofalarge,low-velocityvolumethatlooselycorre- cannotbeentirelysupportedbycrustalthickening lateswiththeEastPacificRise(Grand,1994).The (Sheehanetal.,1995;Spencer,1996),isattributed contrastbetweenthehigh-velocitycratonicmantle tomechanicalthinningofthelithospherebythe andthelow-velocitywesternU.S.mantleisamong Farallonslab(Humphreys,1995;Spencer,1996). thegreatesttobefound.Yetthe100–200kmwave- Inthispaper,wepresentevidencethatlitho- lengthmantlestructureimagedbeneaththewestern spherebeneathmuchoftheColoradoRockyMoun- U.S.(Fig.1A)isveryheterogeneous,withstrong tainsis200kmthickandbeneaththeNewMexico localvelocitycontraststhatareasgreatasthatseen RockyMountainsis>100kmthick,makingarc-like acrossthecontinentasawhole(Humphreysand magmatismandlithosphericthinningunlikely Dueker,1994a). explanationsforvolcanismanduplift.Thefactthat Ourseismicinvestigationspansthetransition noconvincingexplanationhasemergedforthe betweenthewesternU.S.uppermantleandthecra- Laramideorogenyandbroadupliftofthewestern tonicuppermantle.Thistransitionisnotsimple U.S.suggeststheactivityofimportantprocesses (LeeandGrand,1996;Henstocketal.,1998;van that haveremainedoutsidethedomainofnormal derLeeandNolet,1997).UsingS-wavedata consideration. recordedbythesamebroadbandseismometersthat WepresentanexplanationforwesternU.S. weuseinourP-wavestudy,LeeandGrand(1996) uplift,Laramidecontraction,andvoluminousmid- foundmantlebeneathcentralColoradotobevery Tertiarymagmatism.Weexpendtheflat-slabmodel slow.InNewMexico,Slacketal.(1996)andSpence byincorporatingslabde-wateringtohydrateNorth andGross(1990)foundlowvelocitiesbeneaththe Americalithosphereundertherelativelycoolcondi- Jemezvolcanictrendthataremoreprominentthat tionsthatwouldbeexpectedduringslabcontact anylow-velocitystructurebeneaththeRioGrand (Dumitruetal.,1991;Spencer,1996).Itisthe .OurimageofP-wavevelocity(Vp)providesa hydrationofNorthAmericalithospheretowhichwe resolvedimageofuppermantlestructureinthearea attributedecreaseddensityandupliftofthickwest- oftransitiontothecraton,andhelpsdefinethe ernU.S.lithosphereasfareastastheGreatPlains, structureinternaltothistransition. LARAMIDE-AGEHYDRATION 577

FIG.1.SeismicvelocityandsurfaceheatflowofthewesternU.S.region.Blacklinesdelineatephysoigraphicprov- inces,andgreylinesshowplateboundaries.A.Compositeimageofseismicvelocitystructureat100kmdepth.The continental-scaleimageisfromthemulti-bounceS-wavemodelingofGrand(1997),andvelocityhasbeenscaledby0.5 toprovideabackgroundestimateofP-wavevelocity.Resolutionofthisimageis~300km.Overprintingthisimageare fiveP-waveinversionsofregionalarraydata:theWashington–Oregon,California–southernNevada,andIdaho–– westernWyomingimagesofHumphreysandDueker(1994a),thenorthernArizona–NewMexicoimageofSlacketal. (1996),andtheColorado–NewMexicoimagefromourstudy.Toadjustfordifferencesinaveragevelocitybeneatheach studyarea,resultsfromindividualinversionshavebeenshiftedbytheadditionofaconstanttothedelaytimesofeach dataset.Adjustmentsaredeterminedbyminimizingdifferencesinvelocitywhereinversionsoverlap,andwiththeback- groundimage.BecausemostwesternU.S.uppermantleisslow,mostoftheregionalimageshavebeenmadeslower.Time adjustmentsare:northernArizona–NewMexico,0.3s;California–southernNevada,0.4s;easternIdaho–Utah,0.2s; Washington–Oregon,0.4s;Colorado,0.0s.B.Surfaceheatflow.Datahavebeeninterpolatedtoarectangularmeshand smoothedtoeliminatewavelengthsgreaterthanabout250km.Thestrongsimilarityofthepatternofheatflowwithupper mantleseismicvelocityandwithCenozoicvolcanism(ChristensonandYeats,1992)suggeststhatnear-verticalascentof mantlemeltatdepth(redareasinA)leadstovolcanismandhighheatflowatthesurface.Dataarefromtheheatflow datarepositoryatwww.heatflow.und.edu. 578 HUMPHREYSETAL.

Geologicoverview Thenext(andfinal)eventtostronglyaffectthe Proterozoicaccretionof~NE-trendingarc-like ColoradoPlateauandsouthernRockyMountains terrainsontotheArcheanWyomingprovince(Karl- (includingtheArcheanWyomingprovince)wasthe stromandBowring,1993)createdaheterogeneous Laramideorogeny,althoughthelithosphereof continentallandmasspossessingastrongnortheast- southernNewMexicowasmodifiedat~200Maby erlygrainthathasexpresseditselfrepeatedly thedevelopmentofaNW-trendingmagmaticarc throughgeologictime(Henstocketal.,1998;Karl- (Reynolds,1980).Presumably,southernNewMex- stromandHumphreys,1998).Mantlemodelages icolithospherewaslessthan~90kmthickoverthe andequilibrationdepthsofxenolithsindicatethat durationofarcmagmatism—i.e.,itwasthinenough westernU.S.crustalprovinceswereunderlainby topermitslabdehydrationat~90kmdepthtocause mantlelithosphereofcorrespondingages,andthat asthenosphericmelting. thisassociationpersiststothepresentinmostareas Laramidethrustfaultingandcrustalshortening (LivaccariandPerry,1993).Followingaperiodof occurredastherelativelyundeformedColoradoPla- stability,riftingofthecontinentoccurredat~600 teaumovednortheastrelativetostableNorthAmer- Maalongazonethattrendsnorththroughcentral ica(Hamilton,1989;Varga,1993).Magmatismwas Nevada(Burchfieletal.,1992).Onceestablished, widespreadbutsparseovermostofthewesternU.S. thenortherly-orientedcontinentalmarginprogres- interiorduringLaramidetime(Christensonand sivelydevelopedoverpreexistingstructures(Karl- Yeats,1992).IntheregionofLaramide-agebase- stromandHumphreys,1998). ment-coreduplifts,themostmagmaticallyactive Paleozoicsubsidenceoftheyoungcontinental areawastheColoradoMineralBelt,trendingnorth- marginoutboard(west)ofaslope-boundingflexural eastfromnearnortheasternArizonaacrosstherange hingelineindicateslithosphericthinningandsubse- oftheColoradoRockyMountains(Mutschleretal., quentcreationofthermallithosphere(Sleepand 1987). Snell,1976)toathicknessof~125kmbeneathwhat SubsequenttotheLaramideorogeny,theColo- nowistheeasternhalfofthenorthernBasinand radoPlateau—RockyMountain—GreatPlains Rangeprovince(Bondetal.,1989).Thislithosphere regionexperiencedminororogeniccollapseand isexpectedtobemorefertilethanthebasalt- widespread,moderatelevelsofmagmatism,muchof depletedmantleoftheunthinnedProterozoiclitho- itdistributedinthevicinityoftheColoradoMineral sphereeastofthehingeline.Theshortwavelengthof Belt;exceptionstothisweretheoccurrenceoflarge- hingelineflexureimpliesaweaklithosphereat volumemagmatismstartingat~37MaintheSan ~600Maalongthezonethatnowdefinesthewest- JuanMountainsareaofsouthwesternColorado,and ernmarginoftheColoradoPlateau(Bondetal., modestbutobviousextensionoftheRioGrande 1989).Incomparison,flexureeastofthehingeline Rift.TheNE-trendingJemezvolcanictrend,which wasrelativelylonginwavelengthandminorin corsscutstheN-trendingRioGrandeRift,has amplitude(StewartandSuczek,1977;Jordan, becomemagmaticallyactiveinthelast~10m.y. 1981),expressingamorerigidcontinentbeneath (ChristensonandYeats,1992).MuchofhighestCol- theColoradoPlateauandRockyMountainsatthis oradostillpreservestheerosionalsurfacecreatedby time.Kimberlitessampledalithospherethatwas theendoftheLaramide,andthehighRockyMoun- thickbeneaththeeasternRockyMountainsnearthe tainvalleysareprimarilyaresultofPliestocene Colorado-WyomingstatelineduringtheSilurian glaciation(SmallandAnderson,1998).Information andDevonian(Eggleretal.,1987).Following,the onthetimingofuplift(discussedbelow)indicates Pennsylvanian-agedAncestralRockyMountain thatimportantcontributionstoupliftoccurredboth orogenyfaultedandupliftedcrustacrossmostof duringandfollowingtheLaramideorogeny. NewMexico,ColoradoandUtah,probablyresulting Thus,poorlyunderstoodLaramide-ageprocesses fromsubductionorcollisionalongthesoutheast(Ye actedtodrivetectonismandmagmatismfarinboard etal.,1996)marginofthecontinent.Conspicuously, ofthecontinentalmargin,andnow,~50m.y.after Archeanlithospherewasavoidedinthisorogeny. thepresumedcausativeevent,theresultinghigh Theeffectsofthisorogenyonthelithosphereare elevationsshownosignsoffalling.Subduction- not clear,althoughitisthefirsteventcapable relatedPelona-typeschistofLaramideagecropout of stronglyaffectingtheColoradoRockyMountains insoutheasternCaliforniaandsouthwestern andColoradoPlateaulithospheresincethe Arizona,andindicatethatNorthAmericanlitho- Precambrian. spherewasrelativelythinintheseareasduringthe LARAMIDE-AGEHYDRATION 579

Laramide.ColoradoPlateauxenolithsfrom~140km shouldcauseanextremeshallowingofsubduction depth(Smith,2000),a~200kmthicklithosphere angle.ThissupportstheConeyandReynolds(1977) beneaththesouthernRockyMountains(thisstudy; suggestionthatmagmaticpropagationresultedfrom Duekeretal.,2001)and~250kmthicklithosphere progressiveFarallonslabshallowing.Duringthe beneaththecentralU.S.craton(Grand,1994)sug- Laramideorogeny,thelithospherewasrefrigerated gestaFarallonslabwithadipof~15betweensouth- frombelowintheGreatBasin(Dumitruetal.,1991) westernArizonaandthecentralColoradoPlateau, andthecentralColoradoPlateau(RiterandSmith, perhapsshallowingbeneaththesouthernRocky 1996;Smith2000),anoccurrenceattributedtothe Mountains. presenceoftheFarallonslabatthebaseofNorth TherelativestabilityoftheRockyMountains America.Similarly,basalcoolingoftheSierra andtheColoradoPlateaustandsinmarkedcontrast NevadabytheFarallonslabhasbeenusedto tothepervasiveandvigorousmagmatismandexten- explaintheverylowheatflowcurrentlyobserved sionthatoccurredsouthandwestofthisregion,in throughoutmostoftheSierraNevada(seeFig.1B) theareasnowoccupiedbytheBasinandRange (Dumitru,1990;SaltusandLachenbruch,1991), (ConeyandHarms,1984;ChristensenandYeats, andthecreationofalithospherethereof~200km 1992). thicknessbytheendoftheLaramideorog- ThenetresultofCenozoicactivityhasbeenthe eny(Farmeretal.,2002).Inaddition,lowmantle creationofahigh-standinglandmassovermostof heatflowintothecrustat~60Maisrequiredto westernU.S.thatiscomposedofdistinctivetectonic explainthemagmatismofGreatBasinmid-crust, provinces.TheseincludethegreatlyextendedBasin whichwasentirelycrustalinorigin(Patino-Douceet andRangecrusttothewestandsouthoftherela- al.,1990).Thisintervalwithcoolcrustwasfollowed tivelycoherentColoradoPlateauandsouthern bytheextremelyenergetic“ignimbriteflareup” RockyMountains,whichthemselvesboundthe (Coney,1980),whoseinitiationpropagatedregularly tiltedandintactGreatPlains.TheRockyMountains acrossboththesouthernandnorthernBasinand aredistinguishedfromtheColoradoPlateauby Range(ChristensenandYeats,1992). higheraverageelevationandgreatermagnitudeof crustalshorteningandmountainbuildingduringthe Theignimbriticmagmatismrepresentsasudden Laramideorogeny.TheColoradoPlateauandRocky changefromconditionswithlowmantleheatflow MountainlithosphereinUtahandWyomingcur- andnoevidencefortransferintothecrust,to rentlyismuchstrongerthanthatoftheBasinand veryhotconditionswithgreatvolumesofbasalt Range,asrevealedbyflexuralstrengthstudies(For- transferredintothecrust(Johnson,1991;Perryet syth,1985;LowryandSmith,1995). al.,1993).Thisremarkablemagmatictransition seemstorequirethecoolingeffectsoftheFarallon Evidencefor“flat-slab”subductionduringthe slabcontactwithNorthAmericaduringtheLara- Laramideorogeny mide,andaprogressiveFarallonslabremovaland Theblocky,thrust-boundedRockyMountain exposureofbasalNorthAmericatohotasthenos- upliftsarethemostobviousmanifestationofthe pheretoexplainthemassandthermalbudgetofthe Laramideorogeny.Awiderangeofcauseshave ignimbriteflareup(Humphreys,1995).Althoughthe beensuggestedforthisfaulting,includingbasal crustalweltcreatedbySevier-ageshorteningwould contactoftheFarallonslab.Withoutadditionalevi- tendtodrivecontinentalextension(Coneyand dence,itisnotpossibletoarguethat,amongthevar- Harms,1984),itdoesnotappeartobethecauseof iousmodels,Farallonslabcontactwastheactual magmatism:whereresolvedincentralNevada,mag- causeforRockyMountainfaulting. matismprecededextension(Gansetal.,1989);and MoreconvincingistheevolutionofwesternU.S. themagmaticfrontwasnearlyperpendiculartothe magmatismpreceding,during,andaftertheLara- regionaldirectionofextension,whichseems mideorogeny.Pre-Laramidevolcanismmigrated unlikelyifmagmatismwasasimpleconsequenceof eastacrossthewesternUnitedStates,reachingas extension(ArmstrongandWard,1991).Theignim- fareastaswesternSouthDakotaduringtheLara- briteflareupwasnearlyoverbeforethe“slab-free mideorogeny,andleavingtheonce-vigorousSierra window”begantoopeninconjunctionwiththe Nevadaarcquiescent.Jerrard(1986)calculated growthoftransformmarginalongCalifornia(Dick- thatanincreasinglyrapidFarallonsubductionrate ensonandSnyder,1979),andthuscreationofthis andyoungingslabage(Engebretsonetal.,1988) windowwasnotthecauseofignimbriticactivity. 580 HUMPHREYSETAL.

Thespatialpatternandtimingofverticalmotions upliftwascausedbylower-crustalflowfrombeneath acrossthewesternUnitedStatesalsoindicateFaral- crustthickenedduringtheSevierorogenyto lonslabflatteningandsubsequentremovalfrom beneaththeColoradoPlateau,RockyMountains, beneathNorthAmerica.Theonlyavailableexplana- andGreatPlains.Althoughthismodelcanexplain tionforpre-Laramidesubsidence—asevidencedby thepersistenceofuplift,theproposedflowwouldtilt the“inlandseaway”—isthatdynamic theColoradoPlateautotheeastanddecorrelatethe suctionassociatedwiththeloadoftheflattening lowercrustwiththeuppercrust.Weknowofnoevi- FarallonslabpulledthewesternhalfoftheU.S. denceforeastwardColoradoPlateautilting,andin down(Mitrovicaetal.,1989;Gurnis,1992). thecentralColoradoPlateau,lower-crustalxeno- Althoughthereisstrongevidenceforsignicantcon- lithsfromeithersideofaninferredsuture(probable tributionstotheupliftbothduringandafterthe Yavapai-Mazatizal)showsthatthesutureispre- Laramideorogeny,thishistoryisnotwellcon- servedinthelowercrust(Wendlandtetal.,1993; strained.Theinlandseawayretreatedduringthe Selverstoneetal.,1999).Furthermore,nowestward earlypartoftheLaramideorogenyastheRocky flowoccurredastheBasinandRangefellbelowthe Mountainsrose.GregoryandChase(1994)and heightoftheColoradoPlateau,andearthquakesare Wolfeetal.(1998)interpretleafmorphologydatato observeddeepinthelowercrustbeneaththeColo- indicatethatelevationshadattainedheightssimilar radoPlateau(WongandHumphrey,1989),implying tothosefoundtodaybytheendoftheLaramide thatthiscrustcurrentlyisstrong.Thisisconsistent orogeny.Thisconclusionissupportedbyoxygen withflexuralstrengthstudies(Forsyth,1985;Lowry isotopicevidence(DettmanandLohmann,2000). andSmith,1995).Allthispointstoacool,viscous, Otherauthors,however,concludethatmostofthe andlargelyintactlowercrustbeneaththeColorado upliftoccurredfollowingtheLaramideorogeny. Plateau. Pedersonetal.(2002)suggest1.8kmofisostatic Becausecrustalthickeningisinadequateto ColoradoPlateausurfaceupliftsincepre-Laramide accountformuchmorethanhalfofpresent-day times,withmuchofthisoccurringaftertheLara- uplift(Sheehanetal.,1995),andbecause>1kmof mideorogeny.Significantpost-Laramideupliftof ColoradoPlateauandGreatPlainsupliftopccurred theColoradoPlateauisinferredbySahagianetal. inthenearabsenceofcrustalshortening(atleastas (2002),whoreportanacceleratinguplifttothe expressedatthesurface),itcommonlyisthought present.Similarly,muchoftheupliftandtiltingof thatthemantleloadbeneathwesternNorthAmerica theGreatPlainsappearstohaveoccurredsincethe hasbeenreducedbysomeprocessrelatedtoLara- middle(Helleretal.,2003).Thus, mideorpost-Laramideactivity.Spencer(1996)sug- althoughthecauseandhistoryofupliftisnot gested~1.2kmofColoradoPlateauupliftwas resolved,itisremarkablethattheportionofthe causedbyreductionofmantlebuoyancy,whichhe westernU.S.thoughttohaveexperiencedFarallon attributedtoamechanicalthinningofNorthAmer- slabcontact(basedontheextentofLaramidemag- icalithospherebyaFarallonslabincontactwith matismandtectonism)isthebroadareanowstand- NorthAmerica,andthesubsequentremovalofthe inghigh. denseslab.Helleretal.(2003)suggestedupliftwas drivenbyacombinationofslabunloading,ayoung Previoussuggestionsforthecauses influxofrelativelybuoyantsublithosphericmantle, ofupliftandcontraction andprocessesassociatedwithRioGranderifting. Bird(1984,1988)suggestedthattheFarallon MostsuggestionsforthecauseofRockyMoun- platemechanicallyremovedwesternU.S.mantle taincontractionseemunlikelyinthecontextofa lithosphereandtransportedBasinandRangelower thickmantlelithosphere.MaxsonandTickoff crusttobeneaththeGreatPlains,therebyproviding (1996)appealedtoplatebucklinginresponseto therequiredbuoyancyacrossthewesternU.S.How- collisionalactivityatthewesternplatemargin,but ever,theisotopiccharacterofpost-Laramidemag- theamplitudeandwavelengthofsuchbucklingis massuggestspreservationofNorthAmericamantle notconsistentwithathicklithosphere.Bird(1984, lithospherebeneathcrustofthesameage(e.g.,Ben- 1988)andEganandUrquhart(1993)invokeda nettandDePaolo,1987),therebyrenderingunlikely shearthickeningofthelowercrustdrivenbyeast- thewholesaleremovalofNorthAmericalithosphere wardtransportofthemantlelithosphere.Thein- duringtheLaramide(LivaccariandPerry,1993). placenatureofthemantlelithosphereindicatesthat MacQuarryandChase(2000)havesuggestedthat thismechanismisimprobable(LivaccariandPerry, LARAMIDE-AGEHYDRATION 581

1993).Livaccari(1991)suggestedthatthenorth- helpdefinecentralWyomingasarelativelyfast trendingzoneofthickcrustcreatedbytheSevier uppermantleprovince. orogenyprovidedaneastwardpushontheandWyomingthatdrovecontractioninthe Seismicresults RockyMountains.However,thisupper-crustalpush Tomographicinversionofthecombineddataset couldnotdeformathicklithospherewithoutexten- providesanimageofVpstructureintheupper~450 sivelower-crustaldecoupling,whichseemsespe- kmofmantlebeneathColorado,NewMexico,and ciallydifficultacrossthebroadandstrongColorado adjacentportionsofArizona,Kansas,Texas,Utah, Plateau.Also,aneast-directedpushwouldnot andWyoming.Weapproximatethisvolumeby accountforapparentright-lateralLaramidedefor- dividingitinto1830kmthicklayers,anddividing mationintheNewMexicoRockyMountains(Karl- eachlayerintoblocks25×25kminEWandNS stromandDaniel,1993;Cather,1999),andthe dimension.Weenforcehorizontalsmoothingsothat generallyENE-WSWorientationofslipvectorson theeffectivehorizontalresolutionis~75km. Laramide-agefaultsinColorado,Utah,andWyo- Figure2showstheobservedstation-average ming(Erslev,1993). delays,thecrustalcorrectionscalculatedfrominde- pendentinformationonelevation,sedimentbasin thickness(Woodward,1988),andcrustalthickness SeismicInvestigation (Kelleretal.,1998),andthestation-averagedelays thatresultfromapplicationofthesecorrections.The Weinvertacompositedatasetforuppermantle effectofthecrustalcorrectionsisseentoberela- velocitystructurebeneathportionsofthesouthern tivelyminor.Thedelayscorrectedforcrustalstruc- RockyMountains,GreatPlains,ColoradoPlateau, turearethedatainputtothetomographicinversion. andRioGrandeRift.Thesedataconsistofteleseis- Inadditiontotheestimatedstationcorrections, micarrivaltimesfromseverallinearraysdeployed event,array,andstationstaticsarecalculatedand intheNewMexicoarea,the1992RockyMountain appliedduringinversion,asdescribedinthe Front(RMF)seismicdeployment,andthe2000 Appendix.Thereductionindatascatterresulting ContinentalDynamicsoftheRockyMountains fromtheapplicationofstaticsissmall.Datainver- (CDROM)line-arraydeploymentsacrosstheWyo- sionproducesstructurethatreducesdataRMSby ming—ColoradoandColorado—NewMexicobor- 54%(from0.39sto0.18s)for79%ofdatavariance. ders(Fig.2A).TheolderdatafromNewMexicoare Thepercentresidualreductioniscomparableto fromfourpreviouslypublishedseismicstudies, thosefoundinotherwesternU.S.studies(Hum- whichwerecollectedaspartofacollaborativeeffort phreysandDueker,1994a).Thetraveltimesthat bytheUniversityofCalifornia,LosAngeles,the remainunexplainedmayresultfromstructureofa U.S.GeologicalSurvey,theLosAlamosNational smallerscalethancanberesolved,andmayalsobe Laboratory,andtheUniversityofKarlsruhetostudy affectedbyaheterogeneousanisotropystructure theuppermantleassociatedwiththeRioGrande beneaththearea(SchuttandHumphreys,2001). Rift(HaldermanandDavis,1991;Davisetal., Theresidualsaremuchgreaterthanpickingerror, 1993;Parkeretal.,1984;SpenceandGross,1990; andtheyarenotaconsequenceoftherelatively Slacketal.,1996).Thesedatawererecordedbyver- sparsestationspacing,whichwouldresultinabet- tical-componentseismometersthatprovided terfittothedata. teleseismicdataatfrequenciesnear1Hz,from Asdescribedbelow,arangeofstructures whichhigh-qualityP-wavetravel-timepickswere explainsthedataequallywell.Allofthesestruc- madebythoseinvolvedinthepriorstudies.Useof turesaresimilarinmap-viewtothedelaypattern theP-wavetravel-timeresidualsfromtheRMFand seeninFigure2D,butdifferinthedepthdistribu- CDROMarrays,whicharederivedfrombroadband tionofstructure.Figure3showsatomographic seismometersprovidedbytheIRISPASCALpro- modelforuppermantleVpstructureproduced gram,arenew.Discussionofthenewdataandtheir undertheconstraintthataslittlestructureaspossi- processingarefoundintheAppendix,asisdiscus- bleliesbeneath200km.Theprofilelinesshownon sionoftheirjoint-datainversion.InFigure2,we thebottompanelofFigure3indicatetheprofiles alsoshowtheaveragedelaysforYellowstonearray throughthisstructureshowninFigure4.Thisisour stations.Althoughdatafromthesestationsarenot bestoverallrepresentationoftheactualstructure usedintomographicinversion,thestationdelays basedontestingexplainedbelow.Large-magnitude 582 HUMPHREYSETAL.

FIG.2.Travel-timeinformationforseismicstations.A.Stationlocationsforthethreeseismicarraysusedinourstudy andtheWyomingportionoftheYellowstonearray.B.Averageobservedtraveltimedelaytoeachstation.C.Stationtravel timecorrectionsforthecombinedeffectofelevation,sediment,andcrustalthickness.D.Averagecorrectedtraveltimes toeachstation.Thecorrectedtraveltimesarethedatausedintomographicinversion.Thesetimesrepresenttheeffects ofvariationsinuppermantlevelocity,withearlyarrivalshavingpropagatedthroughrelativelyfastuppermantle.The basicpatternofmantlestructureiseasilyseen;regionsofslowwavepropagationliebeneathcentralNewMexico,central Colorado,andYellowstone(innorthwestWyoming)andfasterregionslietotheeastandwest,andincentralWyoming. Arrivalstotheeasternmoststationareveryearly,indicatingthepresenceofalargethicknessoffastuppermantlebelow thissite. variationinVpisseen,andimagedstructuresdefine teau.Correlationsbetweenimagedmantlestructure low-velocityvolumesbeneaththeRockyMountains andregionsdefinedgeologicallyarestrong.Visu- inColoradoandbeneaththeJemezvolcanictrendin ally,imagedstructuresvaryinwavelengthfrom NewMexico,andhigh-velocityvolumesbeneaththe ~100kmto800km.Thelongerwavelengthstruc- GreatPlains(i.e.,beneatheasternNewMexicoand turesdefineanorth-trendingvolumeoflow-velocity westernKansasandTexas)andtheColoradoPla- mantlebeneaththesouthernRockyMountains LARAMIDE-AGEHYDRATION 583

FIG.3.TomographicimageofP-wavevelocitystructure. Prominentvolumesofmantlewithslowpropagationspeedare imagedbeneaththeJemezvolcanictrendandbeneathwest- centralColorado.Theprofilelinesinthebottompanellocate threeprofilesshowninFigure4;thebottomleftthreepanels inFigure4areprofilesthroughthisimage.Linesonthetop threepanelsshowthemainprovinceboundaries.Colorsym- bols:solidblack=ColoradoPlateautothewestandLaramide fronttotheeast(Milleretal.,1992);theRockyMountainslie betweenthesetwolines;dashedblackline=RioGrandeRift, ayoungriftthattrendsnorththroughtheRockyMountains; solidyellow=ColoradoMineralBelttothenorth(Milleretal., 1992),whichislargelyofLaramideage,andJemezvolcanic fieldtothesouth(ChristiansenandYeats,1992),whichis youngerthantheRockyMountainsandRioGrandeRift.The suturebetweenArchean(Ar)andProterozoic(Pr)crustis shownwithadashedgreylineonthesecondpaneldown.

tectonicprovince.Long-wavelengthVpstructure generallycorrelateswiththeS-wavevelocitystruc- tureimagedbyLeeandGrand(1996).But,because theVpdatasetpermitsresolutionofsmaller-scale uppermantlestructures,transitionsbetweenlow andhighvelocitytotheeastandwestofthearemoredistinctanddetailedinform. Onascaleof200–400km,anoverallNE-oriented grainisobserved,whichincludestheJemezvolca- nictrendandtheColoradoMineralBelt.These trendslargelyarecomprisedofsmaller,moreequi- dimensionalbodies.Featuresofwavelengthsshorter than~100kmmayexist,butremainpoorly resolved.Beforeinterpretingtheseresults,we examineresolutionofthetomographicimage. Resolutionofimagedstructures Asistypicalofteleseismicstudies,horizontal resolutionisgood,anduncertaintyisgreatestinthe verticaldirection.Therelativelypoordepthresolu- tiontendstocreateverticallyblurredstructuresof diminishedVpamplitude.Becauseoftheseprob- lems,muchofourefforthasbeendirectedtoward understandingthepossibledepthlimitsofstructure. Twodistinctaspectsofdataqualityaffectinver- sionquality:errorsinestimatingarrivaltimesand qualityoftherayset(thenumberofraysandtheir geometricdiversity).Timingerrorsusuallyposeno seriousproblembecausetraveltimesarepicked withrelativelyhighaccuracy,andtheseerrorstend tobesymmetricalintheirdistribution.Thenegligi- bleeffectsoftimingerrorsareconfirmedbyadding randomnoisetothetravel-timedataattwicethe magnitudeoftheestimatedpickingerrors,and 584 HUMPHREYSETAL.

FIG.4.ProfilesofP-wavevelocitystructureresultingfrominversionsofrealdata(leftcolumn)andsyntheticdelays (rightcolumn)squeezedwithinvariousdepthranges.Mapviewofthesyntheticstructureisshownintheupperright panel.Themagnitudeofthesyntheticstructureis±5%invelocity,anditextendsfrom50–200kmindepth(shownwith dashedlinesinprofiles).Inversionisforced(“squeezed”)tobewithinthedepthrangefrom50kmtothedepthindicated withgreenlines,andthenthisconstraintisrelaxed.Onlyifinformationexistsforsignificantamountsofstructureto greaterdepthwillstructurebeimagedbelowthegreenline. LARAMIDE-AGEHYDRATION 585

noticingnosignificanteffectsonthemodeled structureiscreatedafterrelaxation;ifpre-relaxation structure. residualsarerandomvalues,thenessentiallyno Withourrayset,asistypicalinteleseismic newstructureiscreated.Onlyifabettermodel tomography,imperfectimagingisalmostentirelythe exists(inaleastsquaressense)isthepost-relax- resultofhavinginsufficientraycoveragetoresolve ationstructuredifferentfromthepre-relaxation thestructuresofinterest;thatis,themodeltypically structure,andthisisrecognizedbytheinclusionof hasdegreesoffreedomthattheavailabledatacan- significantstructurebeneath200km.Thisisause- notresolve.Asaresult,asuiteofmodelsexiststhat fultestbecausewearespecificaboutthehypothesis accountforthedataequallywell.Thepractical (i.e.,doesanystructureneedtoexistbeneath200 effectsofthisare:(1)additionalconstraintsmustbe kmtosatisfythedata?),butweareunspecificabout providedontheinversioninordertoobtainasingle thestructurebeingtested(i.e.,welettheinversion modelasarepresentativeimage;and(2)withoutall findthebeststructureabove200kmwithoutneedto acceptablemodelsavailableforinvestigation,itis knowinadvanceaboutthenatureofthisstructure). difficulttoknowjustwhatmodelfeaturesare Wehaveinvertedourdataunderasuiteof requiredbythedataandwhatclassofpossiblefea- squeezingconstraints.Wealsohavecreatedasim- turesareinconsistentwiththedata. pleteststructurethatissimilartothestructure Theeffectsofimperfectresolutionoftenare imagedwiththeactualdata,calculateddelaytimes examinedwithtestsinwhichtheactualraysetis usingtheraysetoftheactualdatabutwithtravel tracedthroughateststructure(e.g.,asingleanoma- timesdeterminedwiththeteststructure,and lousblockoracheckerboardpattern)togeneratea invertedthesedelaystocomparetheresultingimag- setofhypotheticaldelays,andthesedelaysare ingbehaviortothatoftheactualdata.Thesetests invertedasdata.Thesetestsareusefulindemon- arecalledsynthetictests.Synthetictestswiththe stratingrelativedifferencesinresolvingpower,but depthconstraintlocateddeeperthanthebaseofthe theiruseislimitedbecauseeachtestrepresentsthe teststructureproduceimagedstructurethatis investigationofbutasingle,preconceivedstructure. falsely“streaked”downtothedepthofthecon- Itisespeciallydifficulttousesuchteststoargue straint,andoncetheconstraintisremovedthereis thatotherclassesofacceptablestructuredonot notendencytofalselyimagestructurebeneaththe exist. constraintdepth.Figure4showssqueezeteststhat Inthispaper,weareespeciallyinterestedin havebeenappliedtotheactualdataandtosynthetic understandinghowdeepthestructuremustextend, delays.Thesyntheticteststructureextendsfrom50 i.e.,wewouldliketoknowwhatistheshallowest to200kmandhasthelateraldistributionshownat structurethatcanexplainthetravel-timedelays. thetopofFigure4.Squeezingexperimentswith “Squeezing”experimentsareusedtotesttheneed depthconstraintsof150and200kmhavebeen forstructurebeneathspecifieddepths(Saltzerand usedtotesttheneedforstructurebeneaththese Humphreys,1997).Thegeneralprincipleisto depths.Thesynthetictestsshowthatwhenthe hypothesistestfortheacceptabilityofadepthcon- depthconstraintisplacedabovethebaseofthetest straintbytestingifanyinformationinthedatais structure,coherentstructureisproducedbeneath significantlyincontradictionwiththeconstraint. thedepthconstraintoncetheconstraintisrelaxed Forexample,datacanbeinvertedinanormalfash- (e.g.,Fig.4,rightcolumn,boxlabeled“Squeezedto ionexceptthatstructureisconstrainedtotheupper 150km”).Thisindicatesthattheresidualsresult- 200km;thenthisconstraintisrelaxedandinver- ingfromthedepth-constrainedinversiondocontain sioniscontinuedwithadditionaliterations.Thefirst informationthatstructureexistsatdepthsgreater partofthisprocedurehastheeffectoffindinga thanthedepthconstraint. least-squaresbestmodelintheupper200km,and Inversionsofactualdatashowbehaviorsimilar yieldsthetravel-timeresidualswithrespecttothis tothatofthesynthetictestexamples.Thethreepro- model.Withcontinuediterationfollowingrelaxation fileschoseninFigure4crossstructureswiththe ofthedepthconstraint,theresiduals(whicharethe strongestlateralvariations,wherethebestinforma- timesthatcannotbeexplainedbythemodelinthe tionondepthresolutionoccurs.Figure4showsthat upper200km)areinvertedforstructureinthe withadepthconstraintof150km,structuredeeper upper450km(inthisinstance)andtheresulting thanthisisproducedbeneaththeprominentlow- modelupdateisaddedtotheoriginalmodel.Ifall velocitystructureinColorado(ProfilesAandB) pre-relaxationresidualswerezero,thennonew oncethedepthconstraintisremoved.Thisdown- 586 HUMPHREYSETAL.

wardstreakingbehaviorisremarkablysimilartothe tionsinVpimplytemperaturevariationsof>500°C synthetictestcase(showntotherightofthedata (usingvelocity-temperaturescalingrelationsof caseinFig.4).Whenthedepthconstraintis200 Karato,1993andassumingaverageQp>100).This km,onlyasmallamountofstreakingoccurs,andthe temperaturerangeprobablyisgreaterthanreason- streakingisverysimilartothatseeninthesynthetic ableformantleat100–150kmdepth,whichsug- case(inwhichtheteststructureextendsto200km). geststhattheverylowseismicvelocitiesrequirethe Weconcludefromtheseteststhatlateralvariationin presenceofsomemelt.Forinstance,~1%melt structureisrequiredtodepthsof~200kmbeneath couldberesponsiblefortheslowest4%ofthe Colorado.ThebehaviorisdifferentforProfileC, imagedvelocityrange(usingtheVp-meltrelations whichcrossesastronglow-velocitystructure ofHammondandHumphreys,2000),leavingamore beneaththeJemezlineamentnearJemezcaldera.In reasonable2–4%rangeinVptobeattributedto thiscase,streakingbelowthedepthconstraintis temperaturevariations.Aseismicallybasedargu- clearonlywhenthesqueezingdepthisbroughtupto mentforinterstitialmeltisstrongestbeneathColo- 100km(uppermostcrosssectionshowninFig.4). radoatdepths>150km,wherelargevariationsin Fromthisbehavior,weconcludethatlateralvaria- seismicvelocityoccur,yetlargetemperaturevaria- tioninstructureisrequiredtodepthsslightly tionsatthesedepthsareunlikely.Drymeltingat greaterthan100kmbeneathcentralNewMexico. thesedepthsisnotthoughttobepossible,implying Duekeretal.(2001)presentedatomographic meltinginthepresenceoffluidsuchaswater(Itoet imageofthisregionthatmadeuseofthesamedata al.,1999). thatweuse.However,theydidnotspecifically addressthedepthextentofimagedfeatures,and Hydrationhypothesis theirimageshavedeepstructuresthatourtests Ourhypothesisforregionalevolutionofthewest- showarenotrequiredbythedata. ernUnitedStatesfortheperiod25–100Ma,illus- tratedinFigure5,isamodificationoftheflat-slab Discussion modelproposedbyConeyandReynolds(1977).It includesthehydrationofNorthAmericabytheflat- Uppermantlephysicalstate subductingFarallonslabtoprovideasubduction- Themainstructuresimagedarelow-velocityvol- relatedmechanismforthewesternU.S.evolutionof umesthatextendapproximatelyverticallytodepths elevation,tectonism,andmagmatism. of>100kmbeneathcentralNewMexicoandto200 Uplift.Regionalchangesinelevationrequire kmbeneathcentralColorado.Locallythesefeatures negativebuoyancytobebroadlydistributedbeneath correlatestronglywiththeareasofmajorTertiary theCretaceousinlandseawaypriortotheLaramide magmatism(ChristiansenandYeats,1992)andhigh orogeny,followedbytransformationtopositive heatflow(Fig.1),andinamoreregionalsensethey buoyancybeneaththesameregionduringandafter correspondwiththeProterozoicportionofthesouth- theLaramideorogeny.Theregionalpre-Laramide ernRockyMountains(Figs.1and3).Theseassoci- downwarpisattributedtothesuctionthatsupported ationssuggestthatthelow-velocitymantleis theshallowingFarallonplate,asdiscussedbyGur- partiallymolten,thatthecreationofthelow-velocity nis(1992)andMitrovicaetal.(1989).Upliftduring mantleisrelatedtotheLaramideorogeny,andthat theLaramideorogenyisattributedtoacombination theArcheanlithosphereresistedmelting. ofcrustalthickeningintheRockyMountainarea,a Toaddresstheseissuesmorethoroughly,weuse regionalunloadingcausedbytheyoungingofthe relationsthatrelateuppermantleseismicvelocityto Faralonslab,andlithospherede-densification physicalstate.PossiblecausesforvariationinVp owingtothecreationoflow-densityhydrousminer- arevariationintemperature,partialmeltcontent, als.Water(andothervolatilecomponents)issup- andcomposition.Thecompositionalchangeconsid- pliedbydehydrationoftheFarallonslaband eredmostimportantisthatowingtobasaltdeple- associatedsediments,butduringflat-slabsubduc- tion.Becausethishasverylittleeffectonseismic tionthecreationofhydrousconditionsdoesnotlead velocity(HumphreysandDueker,1994b;Jordan, tomantlemeltingbecausethevapor-richmantleis 1979),thelowseismicvelocitiesarethoughtto neverexposedtoahotasthenosphericmantle resultfromthecombinedeffectsofrelativelyhigh wedge;instead,itiskeptcoolbyitscontactwith temperatureandthepresenceofinterstitialmelt.If NorthAmericanlithosphereandthewaterreactsto attributedsolelytotemperature,theimagedvaria- createhydrousphases.Althoughphaserelationsare LARAMIDE-AGEHYDRATION 587

FIG.5.HydrationhypothesisforLaramideandmid-TertiarymagmatismandtectonismandupliftofthewesternU.S. Blacklinesandpatternindicateelementsimportanttolithospherichydration:hydratedbasaltlayer(heavyblackline), subductinghydratedsediment(blackpattern),andfluidascent(wavyarrows).A.At100Ma,SierraNevadaarcmagma- tismandSevierthrustingwereactive.Thecontinentalinteriorsubmergesinresponsetoincreasingsuction(Mitrovicaet al.,1989).Paleozoicsubsidenceofthecontinentalmarginfollowingcontinentalriftingat~600Ma(Bondetal.,1989) indicatesthatPhanerozoicmantlecooledontothebaseofProterozoiclithosphere.Lithosphereofthecontinentalinterior isshown~200kmthick,asresolvedfromteleseismicseismology(Duekeretal.,2001;Fig.4).B.Rapidlysubducting andyoungingFarallonplatehasascendedtomakecontactwithNorthAmerica,quenchingSierraNevadamagmatism andcausingeastwardpropagationofmagmatismintotheRockyMountains(ConeyandReynolds,1977),andRocky Mountainthrusting.RockyMountainmagmatismandtectonismnormallywouldnotbeexpectedbecauseofthethick lithosphere.WeinvokebasalhydrationofwesternU.S.lithosphereundertheincreasinglycoolconditionsresultingfrom salbcontact(Dumitruetal.,1991)to:(1)de-densifywesternU.S.mantle;(2)causewater-richmeltingandearlyLara- mide-ageRockyMountainmagmatism;and(3)weakenthelithospherebeneaththeRockyMountains,enablingmantle shorteningwhichallowedcrustalthrusting.C.FarallonslabremovalexposesthehydratedbaseofNorthAmericato asthenosphere,causingwidespreadmagmatismthatwasespeciallyintensewherethelithospherewasrelativelyfertile andthin(Humphreys,1995);thisnowistheBasinandRange.SlabremovalunloadsNorthAmericalithosphere,and lithosphericheatingdecreasesthedensityofNorthAmerica,bothcontributingtouplift. 588 HUMPHREYSETAL.

notwellunderstoodunderthehigh-pressureand theColoradoMineralBelt.Thismeltingmusthave low-temperatureconditionsthatwearesuggesting, beenaconsequenceofactivityatthebaseofthe serpentineisacandidatewater-bearingmineral lithosphere,i.e.,atdepthsof~200km,becausepar- becauseitisstabletodepthsof150–200kmifkept tialmeltinginitiatedbyactivitywithintheinteriorof coolerthan~600°C(UlmerandTrommsdorff, stablemantlelithospheredoesnotseempossible. 1995).Phlogopitealsomaybecreated,andeven Weattributemeltingtoareductioninthesolidus freewaterispossibleunderpressure-temperature temperaturethatresultedfromhydrationofthe conditionsthatmaybeexpectedwhereslabremains NorthAmericalithospherebywatertransported incontactwithdeeplithosphere(PawleyandHollo- beneaththecontinentbythesubductingFarallon way,1993).Geochemicalevidenceforlithospheric slab. hydrationisabundant,includingthecommonoccur- Thegrosstrendofthelow-velocityanomalies renceofunusuallypotassicTertiarybasalts(that defineaN-Sstructure,withhighervelocities requiremantlemeltinginvolvingpotassium-rich presenttotheeastandwest.Moreregionalimaging amphiboleorphlogopite),phlogopite-bearingman- supportsthisview(Fig.1).Grand(1994)imaged tlexenolithswithintheTertiarybasalts,andhydrous high-velocitymantletotheeast,beneaththecraton, meltingofPrecambrianmantlelithosphere(Mut- andHumphreysandDueker(1994a)foundgener- schleretal.,1987andreferencestherein;Lopez allyhighervelocitiesbeneaththeColoradoPlateau andCameron,1997). tothewest.TheN-Strendofthezoneofupperman- AdditionalupliftfollowingtheLaramideorogeny tlethoughttobepartiallymoltensuggeststhatpres- probablyhasseveralcauses.Upliftwouldresult sureplayedaroleinenhancingwaterreleasefrom directlyfromslabremoval.Lithosphericwarming thesubductingslabasitattainedadepthof~200 causedbytheincreasingtemperatureatthebaseof km,orthatanenhancedtransferofwaterintothe thelithospherecouldalsocontributetouplift, NorthAmericalithosphereoccurredintheRocky assumingthattheassociatedcooledasthenosphere Mountainarea.Thehigherupper-mantlevelocities issweptaway.Inareaswithsignificantmagmatism, incentralWyomingthatareimpliedbyearlyarriv- anadvectivesteepeningofthegeothermwould alsthere(Figs.1Aand2D)mayindicatethatthe causeadditionallithospherewarming,andbasalt Archeanuppermantlewasrelativelyundisturbed removalfromthemantlewouldcreateasignificant bytheLaramideorogeny.Thenortheasttrendofthe compositionalbuoyancy(Humphreysand smaller-scalelow-velocityzones,andtheirlocations Dueker,1994b),althoughwaterremovedwith beneathwhatwwrethoughttobeProterozoic ascendingbasaltwouldeliminatethebuoyancycon- sutures,suggeststhatthepreferentialmeltingwasa tributionprovidedbythehydrousphases.Italsois consequenceofinheritedstructures(Karlstromand possiblethattheasthenosphereemplacedbeneath Humphreys,1998)suchasthecompositionofthe NorthAmericaduringslabremovalwasunusually suturezonesbeingmorefertilethanotherportions hotandbuoyant,asissuggestedbythefactthat ofthelowerlithosphere. westernU.S.low-velocitymantleisthenorthernpart Magmatism.Becauselithosphereisthinkinour ofapronouncedlow-velocityanomalythatoccupies studyarea,Laramideandpre-Laramidemagmatism alargevolumeofuppermantlebeneaththeEast cannotbeattributedtonormalsubductionpro- PacificRise(Grand,1994).Post–middleMiocene cesses,i.e.,towater-inducedmeltingofasthenos- uplift(Pedersonetal.,2002;Helleretal.,2003), phereresultingfromwaterreleasefroma whichmaybeaccelerating(Sahagianetal.,2002), subductingslabat~100km.WeattributeLaramide- andtheoccurrenceofJemezmagmatismonlyinthe agepartialmeltingtosolidusdepressionresulting last~10m.y.(ChristiansenandYeats,1992),maybe fromthepresenceofvolatilesatthebaseofthecon- relatedtotheanomalousEastPacificRiseupper tinentallithosphere(seealsoJamesandSacks, mantleorperhapstoadeepersource(Helleretal., 1999forasimilardiscussionappliedtothe). 2003). Presumably,mostmeltingoccurredduringinitial Upper-mantlevelocitystructure.Intheabovedis- slabcontactbecauseprolongedcontactwouldhave cussiononupper-mantlephysicalstate,weconclude cooledthebaseofthelithospherebyconduction. thattheimagedlowvelocitiesresultfromthepres- Thiscouldexplaintheeastwardpropagationofmag- enceofinterstitialmeltandfromrelativelyhigh matismacrossthewesternU.S.priortoandduring temperatures.Weenvisionthatmantlemelting theLaramideorogenythat,atagivenlocation,was beganduringtheLaramideorogeny,atleastbeneath followedbyreducedorabsentmagmaticactivity LARAMIDE-AGEHYDRATION 589

(ConeyandReynolds,1977).Thisbehavior enedmantlewouldrequireobliqueshortening includestheColoradoMineralBeltmagmatism, acrossthismantle.Withupper-crustalstrainoccur- whichexperiencedconcentratedactivityearlyinthe ringapproximatelyabovethemantlestrain,decou- Laramideorogeny(Mutschleretal.,1987),followed plingacrossthelowercrustfordistancesgreater byrelativequiescence. than~100kmisnotrequiredinourstudyarea.This Thegreatintensityofthe“ignimbriticflareup” maynotholdtruefortheRockyMountainsinWyo- (Coney,1980)anditsN-to-Spropagationacross ming,however,wheremostofthemantlelithosphere whatnowisthenorthernBasinandRange,arenot probablyremainedstrongthroughtheLaramide expectedforsimpleslabrollback.Rather,we orogeny.Ourseismicdata,wherepresent(seeFig. attributemagmatismtounusuallyhighmeltproduc- 2),shownoevidenceforaweakenedlithosphere tivitywhere,uponslabremoval,theasthenosphere exceptintheYellowstonearea,andLaramide-age madecontactwithhydratedlithospherethatwasrel- magmatismwasstronglylimitedtotheBlackHills ativelythinandfertile.Assuggestedabove,north- andAbsarokaMountainsnearthenortheasternand ernBasinandRangebasallithospherewouldbe northwesterncornersofWyoming,respectively. morefertilebecauseitiscooledasthenosphere Similarly,heatflow(Fig.1B)indicateslittlecrustal accretedduringlowerPaleozoicmarginsubsidence, heatingawayfromYellowstone.Theseobservations andhenceitwasnotinvolvedinpriormagmatism suggestthattheWyominglithospheremayhave (seeFig.5).BasinandRangelithospherewasthin- remainedstrongoverdistancesofseveralhundred nerbecauseitwasyoungerand,forthesouthern kilometers,andhencethatlithosphericshortening BasinandRange,itwasrecentlyheatedbyarcmag- mayhaveoccurredatlocationsquitedistantfrom matism.Theimportanceofbeingthinisthatadvec- theareasofcrustalshortening(whicharedistrib- tiveheatingbymagmainvasionofthelithosphereis utedacrossmostofWyoming). requiredforrapidlithosphericheating(conduction beingaslowprocess),andasthenosphericmelt(see Conclusions Itoetal.,1999,fordiscussionofvapor-induced meltingatdepthsbelowthedrysolidus),andhence GeneralagreementexiststhatRockyMountain moremeltwouldbeavailablebeneaththinner andBasinandRangetectonismandmagmatismare lithosphere. consequencesofLateCretaceousandcom- KarlstromandHumphreys(1998)suggestedthat pressionassociatedwithrapidsubduction,followed theJemeztrendisarelativelyfertilePrecambrian bypost-orogeniccollapse.Disagreementandconfu- suture,similartotheColoradoMineralBelt. sionexistregardingthenatureoftheslab-continent Althoughthismightaccountforitsrelativelyhigh couplingthatdrovecontraction,withedgeforces magmaticproductivity,itdoesnotexplainwhymag- (e.g.,MaxsonandTickoff,1996),potentialenergyof matismherehasoccurredonlyinthelast10m.y. Sevierwelt(e.g.,Livaccari,1991),andbasaltrac- (ChristiansenandYeats,1992).Duekeretal.(2001) tionsarisingfromflat-slabcontactwithabroadarea andHelleretal.(2003)suggestedthatarecent oflithosphere(e.g.,Bird,1988)havingbeensug- influxofwarmmantlemayberesponsibleforthe gested.Explanationsforthefundamentalcauseof magmatismandyoungupliftoftheregion. westernU.S.Tertiarymagmatismincludeamigrat- Contraction.Inourmodel,RockyMountaincon- ingvolcanicarc(e.g.,ConeyandReynolds,1977), tractionoccurredastheColoradoPlateauwas andextension-drivenlithosphericthinningand drivennortheast(Hamilton,1989)bybasaltractions plumeimpact(Fittonetal.,1991;Parsonetal., derivedfromFarallonslabcontactwithNorthAmer- 1994).Causeforpost-orogeniccollapsehasfocused ica(Bird,1988).Mantlestrainwasconcentratedin onatransitioninboundaryconditionatthewiden- lithospherethatwasthermallyweakenedbymag- ingtransformmargin(e.g.,Atwater,1970),gravita- maticascent.Thedistributionofpartiallymolten tionalpotentialenergy(e.g.,SonderandJones., mantleduringtheLaramideorogenyisthoughttobe 1999),andlithosphericweakeningowingtomag- similartothatimagedbeneaththeRockyMountains maticheating(e.g.,ArmstrongandWard,1991). (Fig.3).Crustalstrainarrangeditselfonavailable Thegrowingbodyofevidenceforrelativelythick pre-existingzonesoffavorablyorientedweakness NorthAmericalithosphere(SierraNevada,Farmer locatednearvolumesofconcentratedmantlestrain. etal.,2002;GreatBasin,Wangetal.,2002;Colo- TheNE-SWorientationofcontractionandthe radoPlateau,Smith,2000;andRockyMountains, northerlyorientationofthelarge-scalezoneofweak- Duekeretal.,2001;thisstudy)ischallengingmost 590 HUMPHREYSETAL.

oftheseexplanations,andtheratherdisconnected Atwater,T.,andStock,J.,1998,Pacific–NorthAmerica natureoftheexplanationsforactivityinthediffer- platetectonicsoftheNeogenesouthwesternUnited entwesternU.S.provincesisdisconcertingtothose States—anupdate:InternationalGeologycalReview, whoviewtheCordilleranorogenasacoherent v.40,p.375–402. process. Bennett,V.C.,andDePaolo,D.J.,1987,Proterozoic crustalhistoryofthewesternU.S.asdeterminedby Weintegrateseveralpublishedsuggestions— neodymiumisotopicmapping:GelogicalSocietyof mostimportantlythatoftheflatslab—withcon- AmericaBulletin,v.99,p.674–685. straintsprovidedbytheimagedvelocitystructure Bird,P.,1984,Laramidecrustalthickeningeventinthe beneaththeRockyMountainsandadjoiningGreat RockyMountainforelandandGreatPlains:Tectonics, PlainsandColoradoPlateautohypothesizethat v.3,p.741–758. waterprovidedbythesubductingFarallonslab ______,1988,FormationoftheRockyMountains,west- hydratedthebaseofathickwesternU.S.litho- ernUnitedStates:Acontinuumcomputermodel:Sci- sphere,providingregionalbuoyancy,limitedmag- ence,v.239,p.1501–1507. matism,andlithosphericweakeninglocalizedtothe Bond,G.C.,Kominz,M.A.,Steckler,M.S.,andGrotz- RockyMountainarea;Farallonslabremoval inger,J.P.,1989,Roleofthermalsubsidence,flexure, allowedasthenosphericcontact,whichinitiatedvig- andeustasyintheevolutionofEarlyPaleozoicpas- orousmagmatism,especiallywherehydratedlithos- sive-margincarbonateplatforms,inCravello,P.,Read, pherewasrelativelyfertileorthin,andcontributed F.,andSarge,R.,eds.,Controlsoncarbonateplatform additionalbuoyancy.Relativelygreatpotential andbasindevelopment:SEPMSpecialPublication energyofthecontinentalinteriorandtheevolving No.44,p.39–61. western-marginboundarycondition(fromacom- Burchfiel,B.C.,Cowan,D.S.,andDavis,G.A.,1992, TectonicoverviewoftheCordilleranorogeninthe pressionaltoanextensionalsubductionsetting;Jer- westernUnitedStates,inBurchfiel,B.C.,Lipman,P. rard,1986)andthentotrans-tensionaltransform W.,andZoback,M.L.,eds.,TheCordillerianOrogen: (AtwaterandStock,1998)allowedextensionto ConterminousU.S.:Boulder,CO,GeologicalSocietyof occurwheremagmatismhadgreatlyweakenedthe America,GeologyofNorthAmerica,v.G-3,p.422– lithosphere. 431. Cahill,T.A.,andIsacks,B.L.,Seismicityandshapeofthe Acknowledgments subductedNazcaPlate:JournalofGeophysical Research,v.96,p.17,503–17,529. ReviewsfromDavidCoblentz,SimonKlemperer, Cather,S.M.,1999,Implicationsof,Cretaceous, andGaryErnstimprovedthispaper,andareappre- andProterozoicpiercinglinesforLaramideoblique- ciated.ThisworkwassupportedbyNSFgrants slipfaultinginNewMexicoandrotationoftheColo- radoPlateau:GeologicalSocietyofAmericaBulletin, EAR-9725598,EAR-0106892,andEAR-0207875. v.111,p.849–868. SimomKlempererisfurtheracknowledgedforhis Christiansen,R.L.,andYeats,R.L.,1992,Post-Laramide enthusiasticeffortsinencouragingtimelyprogress. geologyoftheU.S.Cordillerianregion,inBurchfiel,B. AndaspecialthankstoGeorgeThompson,whohas C.,Lipman,P.W.,andZoback,M.L.,eds.,TheCordil- inspiredagenerationofEarthscientiststodocare- lerianOrogen:ConterminousU.S.:Boulder,CO,Geo- fulworkwhilekeepinganeyeonthelargerpicture, logicalSocietyofAmerica,GeologyofNorthAmerica: todothiswithintegrityandrespectforoneanother, v.G-3,p.261–406. andtoenjoyallofthis. Coney,P.J.,1980,Cordillerianmetamorphiccorecom- plexes:Anoverview,inCrittendon,M.D.,Coney,P.J., andDavis,G.H.,eds.,Cordillerianmetamorphiccore complexes:GeologicalSocietyofAmericaMemoir REFERENCES 153,p.7–31. Armstrong,R.L.,andWard,P.,1991,Evolvinggeographic Coney,P.,andHarms,T.,1984,Cordilleranmetamorphic patternsofCenozoicmagmatismintheNorthAmeri- corecomplexes:CenozoicextensionalrelicsofMeso- canCordillera:Thetemporalandspatialassociationof zoiccompression:Geology,v.12,p.550–554. magmatismandmetamorphiccorecomplexes:Journal Coney,P.J.,andReynolds,S.J.,1977,Flatteningofthe ofGeophysicalResearch,v.96,p.13,201–13,224. Farallonslab:Nature,v.270,p.403–406. Atwater,T.,1970,Implicationsofplatetectonicsforthe Davis,P.M.,Slack,P.,Dahlheim,H.A.,Green,W.V., CenozoictectonicevolutionofwesternNorthAmerica: Meyer,R.P.,Achauer,U.,Glahn,A.,andGranet,M., GeologicalSocietyofAmericaBulletin,v.81,p. 1993,Teleseismictomographyofcontinentalrift 3513–3536. zones,inIyer,H.M.,andHirahara,K.,eds.,Seismic LARAMIDE-AGEHYDRATION 591

tomography:Theoryandpractice:London,UK,Black- casestudyfromtheeasternGreatBasin:Geological well. SocietyofAmericaSpecialPaper233,53p. Dickenson,W.R.,andSnyder,W.S.,1979,Geometryof Grand,S.P.,1994,Mantleshearstructurebeneaththe subductedslabsrelatedtotheSanAndreastransform: Americasandsurroundingoceans:JournalofGeo- JournalofGeology,v.87,p.609–627. physicalResearch,v.99,p.11,591–11,621. Dettman,D.L.,andLohmann,K.C.,2000,Oxygeniso- Gregory,K.,andChase,C.,1994,Tectonicandclimatic topeevidenceforhigh-altitudesnowintheLaramide influencesofalateEocenelow-relief,high-levelgeo- RockyMountainsofNorthAmericaduringtheLate morphicsurface,Colorado:JournalofGeophysical CretaceousandPalaeogene:Geology,v.28,p.243– Research,v.99,p.20,141-20,160. 246. Gurnis,M.,1992,Rapidcontinentalsubsidencefollowing Dueker,K.,Yuan,H.,andZurek,B.,2001,Thick-struc- theinitiationandevolutionofsubduction:Nature,v. turedProterozoiclithosphereoftheRockyMountain 255,p.1556–1558. region:GSAToday,v.11,p.4–9. Halderman,T.P.,andDavis,P.M.,1991,Teleseismicesti- Dumitru,T.A.,1990,SubnormalCenozoicgeothermal matesofasthenosphericQbeneaththeRioGrande gradientsintheextinctSierraNevadamagmaticarc: andEastAfricanriftzones:JournalofGeophysical ConsequencesofLaramideandpost-Laramideshal- Research,v.10,p.10,113–10,128. low-anglesubduction:JournalofGeophysical Hamilton,W.B.,1989,Crustalgeologicprocessesofthe Research,v.95,p.4925–4941. UnitedStates,inPakiser,L.C.,andMooney,W.D., Dumitru,T.A.,Gans,P.B.,Foster,D.A.,andMiller,E.L., eds.,GeophysicalframeworkofthecontinentalUnited 1991,RefrigerationofthewesternCordilleranlithos- States:GeologicalSocietyofAmericaMemoir172,p. phereduringLaramideshallow-anglesubduction: 743–781. Geology,v.19,p.1145–1148. Hammond,W.C.,andHumphreys,E.D.,2000,Upper Egan,S.S.,andUrquhart,J.M.,1993,Numericalmodel- mantleseismicwavevelocity:Theeffectofrealistic ingoflithosphereshortening:ApplicationtotheLara- partialmeltgeometries:JournalofGeophysical mideorogenicprovince,westernUSA:, Research,v.105,p.10,975–10,999. v.221,p.385–411. Heller,P.L.,Dueker,K.,andMcMillan,M.,2003,Post- Eggler,D.H.,McCallum,M.E.,andKirkley,M.B.,1987, Paleozoicalluvialgraveltransportasevidenceofcon- Kimberlite-transportednodulesfromColorado-Wyo- tinentaltiltingintheU.S.Cordillera:GeologicalSoci- ming:Aerecordofenrichmentofshallowportionsof etyofAmericaBulletin,inpress. aninfertilelithosphere:GeologicalSocietyofAmerica Henstock,T.,andtheDeepProbeWorkingGroup,1998, SpecialPaper215,p.77–90. ProbingtheArcheanandProterozoiclithosphereof Engebretson,D.C.,Cox,A.,andGordon,R.G.,1988, westernNorthAmerica:GSAToday,v.8,p.1–17. Relativemotionsbetweenoceanicandcontinental Humphreys,E.D.,1995,Post-Laramideremovalofthe platesinthePacificBasin:GeologicalSocietyof Farallonslab,westernUnitedStates:Geology,v.23,p. America,SpecialPaperno.206,59p. 987–990. Erslev,E.A.,1993,Thrusts,backthrusts,anddetachment Humphreys,E.D.,andClayton,R.W.,1988,Adaptation ofLaramideforelandarches,inSchmidt,C.J.,Chase, oftomographicreconstructiontoseismictravel-time R.,andErslev,E.A.,eds.,Laramidebasementdefor- problems:JournalofGeophysicalResearch,v.93,p. mationintheRockyMountainforelandofthewestern 1073–1085. UnitedStates:GeologicalSocietyofAmericaSpecial Humphreys,E.D.,andDueker,K.G.,1994a,Western Paper280,p.125–146. U.S.uppermantlestructure:JournalofGeophysical Farmer,G.L.,Glazner,A.F.,andManley,C.R.,2002,Did Research,v.99,p.9615–9634. delaminationtriggerlateCenozoicpotassicvolcanism ______,1994b,PhysicalstateofthewesternU.S.upper inthesouthernSierraSevada,California?:Geological mantle:JournalofGeophysicalResearch,v.99,p. SocietyofAmericaBulletin,v.115,p.754–768. 9635,9650. Fitton,J.G.,James,D.,andLeeman,W.P.,1991,Basic Ito,G.,Shen,Y.,Hirth,G.,andWolfe,C.,1999,Mantle magmatismassociatedwithLateCenozoicextensionin flow,melting,anddehydrationoftheIcelandmantle thewesternUnitedStates:Compositionalvariationin plume:EarthandPlanetaryScienceLetters,v.165,p. spaceandtime:Thetemporalandspatialassociation 81–96. ofmagmatismandmetamorphiccorecomplexes:Jour- James,D.E.,andSacks,I.S.,1999,Cenozoicformationof nalofGeophysicalResearch,v.96,p.13,693–13,711. theCentralAndes:AGeophysicalPerspective,in Forsyth,D.,1985,Subsurfaceloadingandestimatesofthe Skinner,B.J.,ed.,Geologyandoredepositsofthe flexuralrigidityofcontinentallithosphere:Journalof CentralAndes:SocietyofEconomicGeologistsSpe- GeophysicalResearch,v.90,p.12,623–12,632. cialPublicationNo.7,p.1–25. Gans,P.,Mahood,G.,andSchermer,E.,1989,Synexten- Jerrard,R.D.,1986,Relationsamongsubductionparam- sionalmagmatismintheBasinandRangeprovince:A eters:ReviewsofGeophysics,v.24,p.217–284. 592 HUMPHREYSETAL.

Johnson,C.M.,1991,Large-scalecrustformationand Moiceneextension:GeologicalSocietyofAmerica lithospheremodificationbeneathmiddletolateCeno- Bulletin,v.109,p.900–914. zoiccalderasandvolcanicfields,westernNorthAmer- Lowry,A.,andSmith,R.B.,Strengthandrheologyofthe ica:JournalofGeophysicalResearch,v.96,p.13,485– westernU.S.cordillera:JournalofGeophysical 13,507. Research,v.100,p.17,947–17,963. Jordan,T.E.,1981,Thrustloadsandforelandbasinevo- MacQuarrie,N.,andChase,C.G.,2000,RaisingtheCol- lution,Cretaceous,westernUnitedStates:American oradoPlateau:Geology,v.28,p.91–94. AssociationofPetroleumGeologistsBulletin,v.65,p. Maxson,J.,andTikoff,B.,1996,Hit-and-runcollision 2506–2520. modelfortheLaramideorogeny,westernUnited Jordan,T.J.,1978,Compositionanddevelopmentofthe States:Geology,v.24,p.968–972. continentaltectosphere:Nature,v.274,p.544–548. Meyerholtz,K.A.,Pavlis,G.L.,andSzpakowski,S.A., ______,1979,Seismicvelocitiesofgarnetlherzolitesand 1989,Convolutionalquellinginseismictomography: theirgeophysicalimplications,inBoyd,F.R.,and Geophysics,v.54,p.570–580. Meyer,H.O.,eds.,Themantlesample:Inclusionsin Miller,D.M.,Nilsen,T.H.,andBilodeau,W.L.,1992, kimberlitesandothervolcanics:Washington,DC, LateCretaceoustoEarlyEocenegeologyoftheUnited AmericanGeophysicalUnion,p.1–14. StatesCordillera,inBurchfiel,B.C.,Lipman,P.W., Karato,S.,1993,Importanceofanelasticityintheinter- andZoback,M.L.,eds.,TheCordillerianOrogen: pretationofseismictomography:Geophysical ConterminousU.S.:Boulder,CO,GeologicalSocietyof ResearchLetters,v.20,p.1623–1626. America,GeologyofNorthAmerica,v.G-3,Plate6. Karlstrom,K.,andBowring,S.,1993,Proterozoicorogenic Mitrovica,J.X.,Beaumont,C.,andJarvis,G.T.,1989, historyofArizona,inSchums,R.A.,andBickford, Tiltingofcontinentalinteriorsbydynamicaleffectsof M. E.,eds.,PrecambrialoftheconterminousUnited subduction:Tectonics,v.8,p.1079–1094. States,TheGeologyofNorthAmerica:Boulder,CO, Mutschler,F.E.,Larson,E.E.,andBruce,R.M.,1987, GeologicalSocietyofAmerica,v.C-2,p.188–211. LaramideandyoungermagmatisminColorado—new Karlstrom,K.E.,andDaniel,C.G.,1993,Restorationof petrologicandtectonicvariationsonoldthemes:Colo- Laramideright-lateralstrike-slipinnorthernNew radoSchoolofMinesQuaterly,v.82,p.1–47. MexicobyusingProterozoicpiercingpoints:Tectonic Nolet,G.,1993,Solvinglargelinearizedtomographic implicationsfromtheProterozoictotheCenozoic: problems,inIyer,H.M.,andHirihara,K.,eds.,Seis- Geology,v.21,p.135–142. mictomography:Theoryandpractice:London,UK, Karlstrom,K.E.,andHumphreys,E.D.,1998,Persistent ChapmanandHall,p.227–247. influenceofProterozoicaccretionaryboundariesinthe Parker,E.C.,Davis,P.M.,Evans,J.R.,Iyer,H.M.,and tectonicevolutionofsouthwesternNorthAmerica: Olsen,K.H.,1984,Upwarpofanomalousasthenos- Interactionofcratonicgrainandmantlemodification pherebeneaththeRioGrandeRift:Nature,v.312,p. events:RockyMountainGeology,v.33,p.161–179. 354–356. Keller,G.R.,Snelson,C.M,Sheehan,A.F.,andDueker, Parson,T.,Thompson,G.A.,andSleep,N.H.,1994,Man- K.G.,1998,Geophysicalstudiesofcrustalstructurein tleplumeinfluenceonNeogeneupliftandextensionof theRockyMountainregion:Areview:RockyMoun- theUSWesternCordillera?:Geology,v.22,p.83–86. tainGeology,v.33,p.217–228. Patino-Douce,A.E.,Humphreys,E.D.,andJohnston, Kluth,C.F.,1986,PlatetectonicsoftheAncestralRocky A. D.,1990,Anatexisandmetamorphismintectoni- Mountains,inPeterson,J.A.,ed.,Paleotectonicsand callythickenedcontinentalcrustexemplifiedbythe sedimentationintheRockyMountainregion,United SevierHinterland,westernNorthAmerica:Earthand States:AmericanAssociationofPetroleumGeologists PlanetaryScienceLetters,v.97,p.290–315. Memoir41,p.353–369. Pawley,A.R.,andHolloway,J.R.,1993,Watersources Lee,D.,andGrand,S.P.,1996,Uppermantleshearstruc- forsubductionzonevolcanism:Newexperimentalcon- turebeneaththeColoradoRockyMountains:Journal straints:Science,v.260,p.664–667. ofGeophysicalResearch,v.101,p.22,233–22,244. Pederson,J.L.,Mackley,R.D.,andEddleman,J.L., Livaccari,R.F.,1991,Roleofcrustalthickeningand 2002,ColoradoPlateauupliftanderosionevaluated extensionalcollapseinthetectonicevolutionofthe withGIS:GSAToday,v.12,p.4–10. Sevier-Laramideorogeny,westernUnitedStates:Geol- Perry,F.V.,DePaolo,D.J.,andBaldridge,W.S.,1993, ogy,v.19,p.1104–1107. Neodymiumisotopicevidencefordecreasingcrustal Livaccari,R.F.,andPerry,F.V.,1993,Isotopicevidence contributionstoCenozoicignimbritesofthewestern forpreservationoftheCordillerianlithospheremantle UnitedStates:Implicationsforthethermalevolutionof duringtheSevier-Laramideorogeny:Geology,v.21,p. theCordilleriancrust:GeologicalSocietyofAmerica 719–722. Bulletin,v.105,p.872–882. Lopez,R.,andCameron,K.L.,1997,High-Mgandesites Reynolds,S.J.,1980,Geologicalframeworkofwest-cen- fromtheGilaBendMountains,southwestArizona: tralArizona:ArizonaGeologicalSocietyDegest,v.10, Evidenceforhydrousmeltingoflithosphereduring p.1–16. LARAMIDE-AGEHYDRATION 593

Riter,J.C.A.,andSmith,D.,1996,Xenolithconstraints subduction:JournalofGeophysicalResearch,v.101, onthethermalhistoryofthemantlebelowtheColo- p.13,595–13,609. radoPlateau:Geology,v.24,p.267–270. Stewart,J.H.,andSuczek,C.A.,1977,Cambrianand Sahagian,D.,Proussevitch,A.,andCarlson,W.,2002, LatestPrecambrianpaleogeographyandtectonicsin TimingofColoradoPlateauuplift:Initialconstraints thewesternUnitedStates,inStewart,J.H.,Stevens,C. fromvesicularbasalt-derivedpaleoele-vations:Geol- A.,andFritsche,A.E.,eds.,Paleozoicpaleographyof ogy,v.30,p.807–810. thewesternUnitedStates:PacificCoastPaleogeogra- Saltus,R.W.,andLachenbruch,A.H.,1991,Thermal phySymposium1:LosAngeles,CA,PacificSection, evolutionoftheSierraNevada:Tectonicinplicationsof SocietyofEconomicPaleontologistsandMineralo- newheatflowdata:Tectonics,v.10,p.325–344. gists,p.1–7. Saltzer,R.L.,andHumphreys,E.D.,1997,Uppermantle Ulmer,P.,andTrommsdorff,V.,1995,Serpentinestability P-wavestructureoftheeasternSnakeRiverPlainand tomantledepthsandsubductionn-relatedmagmatism: itsrelationshiptogeodynamicmodelsoftheregion: Science,v.268,p.858–861. JournalofGeophysicalResearch,v.102,p.11,829– VanDecar,J.C.,andSnieder,R.,1994,Obtainingsmooth 11,841. solutionstolarge,linear,inverseproblems:Geophys- Schutt,D.L.,andHumphreys,E.D.,2001,Evidencefora ics,v.59,p.818–829. deepasthenospherebeneathNorthAmericafrom vanderLee,S.,andNolet,G.,1997,Uppermantleveloc- westernUnitedStatesSKSsplits:Geology,v.29,p. itystructureofNorthAmerica:JournalofGeophysical 291–294. Research,v.102,p.22,815–22,838. Selverstone,J.,Pun,A.,andCondie,K.,1999,Xenolithic vanderSluis,A.,andvanderVorst,H.,1987,Numerical evidenceforProterozoiccrustalevolutionbeneaththe solutionsoflarge,sparselinearalgebraicsystemsaris- ColoradoPlateau:GeologicalSocietyofAmericaBul- ingfromtomographicproblems,inNolet,G.,ed.,Seis- letin,v.111,p.590–606. mictomography:Dordrecht,Netherlands,Reidel,p. Sheehan,A.F.,Abers,G.A.,Jones,C.H.,andLerner- 49–84. Lam,A.L.,1995,Crustalthicknessvariationsacross Varga,R.J.,1993,RockyMountainforelanduplifts:Prod- theColoradoRockyMountainsfromteleseismic uctsofarotatingstressfieldorstrainpartitioning?: receiverfunctions:JournalofGeophysicalResearch,v. Geology,v.21,p.1115–1118. 100,p.20,391–20,404. Slack,P.D.,Davis,P.M.,Baldridge,W.S.,Olsen,K.H., Wang,K.,Plank,T.,Walker,J.D.,andSmith,E.I.,2002, Glahn,A.,Achauer,U.,andSpence,W.,1996,The AmantlemeltingprofileacrosstheBasinandRange, uppermantlestructureofthecentralRioGranderift SWUSA:JournalofGeophysicalResearch,v.107,p. regionfromteleseismicPandSwavetraveltimedelays ECV5-1–ECV5-21. andattenuation:JournalofGeophysicalResearch,v. Wendlandt,E.,DePaolo,D.J.,andBaldridge,W.S.,1993, 101,p.16,003–16,023. NdandSrisotopechronostratigraphyofColoradoPla- Sleep,N.H,andSnell,N.S.,1976,Thermalcontraction teaulithosphere:Implicationsformagmaticandtec- andflexureofmid-continentandAtlanticmarginal tonicunderplatingofthecontinentalcrust:Earthand basins:GeophysicalJournaloftheRoyalAstronomical PlanetaryScienceLetters,v.116,p.23–43. Society,v.45,p.125–154. Wong,I.G.,andHumphrey,J.R.,1989,Contemporary Small,E.E.,andAnderson,R.S.,1998,relief seismicity,faulting,andthestateofstressintheColo- productioninLaramidemountainranges,western radoPlateau:GeologicalSocietyofAmericaBulletin, UnitedStates:Geology,v.26,p.123–126. v.101,p.1127–1146. Smith,D.,2000,Insightsintotheevolutionoftheupper- Wolfe,J.A.,Forest,C.E.,andMolnar,P.,1998,Paleobo- mostcontinentalmantlefromxenolithlocalitiesonand tanicalevidenceofEoceneandpaleoalti- neartheColoradoPlateauandregionalcomparisons: tudesinmidlatitudewesternNorthAmerica: JournalofGeophysicalResearch,v.105,p.16,769– GeologicalSocietyofAmericaBulletin,v.110,p. 16,781. 664–678. Sonder,L.J.,andJones,C.H.,1999,WesternUnited Woodward,L.A.,1988,TectonicmapoftheRockyMoun- Statesextension:HowtheWestwaswidened:Annual tainregionoftheUnitedStates,inSloss,L.L.,ed., ReviewsinEarthandPlanetaryScience,v.27,p.417– Sedimentarycover—NorthAmericaCraton:U.S.: 462. Boulder,CO,GeologicalSocietyofAmerica,Geology Spence,W.,andGross,R.S.,1990,Atomographic ofNorthAmerica:v.D-2,Plate2. glimpseoftheuppermantlesourceofofthe Ye,H.,Royden,L.,Burchfiel,C.,andSchuepbach,M., Jemezlineament,NewMexico:JournalofGeophysical 1996,LatePaleozoicdeformationofinteriorNorth Research,v.95,p.10,829–10,849. America:ThegreaterAnscestralRockyMountains: Spencer,J.E.,1996,UpliftoftheColoradoPlateaudueto AmericanAssociationofPetroleumGeologistsBulle- lithosphereattenuationduringLaramidelow-angle tin,v.80,p.1397–1432. 594 HUMPHREYSETAL.

Appendix:SeismicDataandAnalysis Seismicdata travel-timevarianceofthedata.Thisindicatesthat The1992RockyMountainFront(RMF)andthe themantlebeneaththestudyareaisveryhetero- 1999ContinentalDynamicsRockyMountain geneous. (CDROM)deploymentsusedbroadbandthree-com- Inversion ponent(CMG3-ESPandSTS2)seismometersmade Wethenseektheblocks’slownessperturbations availablebytheprogramforArraySeismicStudies s fromanassumeddepth-varying(one-dimen- oftheContinentalLithosphere(PASSCAL).Seis- b sional)velocitystructurebysolving mometersweredistributedovertheareaofColorado andportionsofadjoiningstates,asshowninFigure t = l s + t + t + t , 2A.About4000teleseismicP-wavearrivalswere r br b e s a collected,fromwhichdelaytimesweredetermined. b Mostbackazimuthsarerepresented,althoughNW wheret isthetraveltimeresidualforther-thray. andSEbackazimuthsaremostcommon. r Thelengthofther-thrayintheb-thblockislbr,and RoutinedataprocessingoftheRMFdatafor te,ts,andtaareevent,station,andarraystatics, travel-timeresidualsinvolveddeconvolutionofthe respectively.Aleastsquaresapproachisusedto instrument-11-responsesandphaseless0.5-2Hz solve(1).Severalsimilaralgorithmsareavailableto bandpassfiltering.Waveformsforeacheventwere obtainaleastsquaressolution,andbecausethevar- timeshiftedusingtheIASPEI91Earthmodel,and iousalgorithmsweightthedataandmodelblocks relativedeviationsfromthesepredictedarrival differently,thesolutionsdiffer.Twoinversionalgo- timesweresought.Thesedataexhibitunusually rithmsarecommonlyused:SIRT(aJacobyiteration largevariationsinwaveformacrossthearray.Asa method;HumphreysandClayton,1988)andLSQR result,cross-correlationmethodswerenotvery (aconjugategradientmethod;vanderSluisandvan effectiveatdeterminingrelativetimelagsprecisely. derVorst,1987).WeusetheSIRTalgorithm, Instead,weestimatedtravel-timedelaysbyvisual employing10iterationsandincorporatinganearest- alignmentonthefirstprominentphase.Picking neighbormodelcovariancetoprovideaspecified uncertaintyisestimatedtobe~0.15s.Theresulting degreeofmodelsmoothness.Incomparativetestsof delaysthenhadtheirmeansubtractedonanevent- thetwoinversionalgorithmsusingteleseismicdata, by-eventbasisasafirst-ordercorrectionforsource nosignificantdifferenceswerefound(Saltzerand mislocationandmantleheterogeneitiesoutsidethe Humphreys,1997).Theslownessvaluesofblocks modeledregion.Inthisform,thetravel-timedatafor withthreeorfewerhitcountsaredownweightedin eacheventexhibitupto3secondsoftraveltime theinversion,whichresultsinamodelparameter variation. weightingthatissimilartoLSQRinthepoorlyhit Thebroadbandresidualshavearoot-mean- regions(Nolet,1993). squared(RMS)valueof0.43seconds,whichis Theassumeddepth-dependentvelocitystructure largerthanmostotherwesternU.S.datasets(Hum- isusedtoguidetherayswithSnell’sLaw,and phreysandDueker,1994a).Figure2Bshowsthe becauseteleseismicraysaresteeplyinclined,ray averagedelaytoeachstation. positionisnotsensitivetoreasonablevariationsin Delayswerethencorrectedforelevation,sedi- theassumedvelocitystructure.Testsofteleseismic mentthickness,andcrustalthicknessvariations, datashowthatupdatedraytracingthroughthe obtainingatraveltimeresidualforeachray(Fig. imagedstructureproducesnovisibledifference 2D).SedimentthicknessestimatesarefromWood- (SaltzerandHumphreys,1997),evenwhenthese ward(1988),andcrustalthicknessesfromthe datahaveencounteredstronglateralvelocitygradi- receiverfunctionanalysisdeterminedateachRMF entsintheupperfewhundredkilometersofthe siteandfromrefractionstudies(Kelleretal.,1998; Earth.Eventandarraystaticswerecalculatedas Duekeretal.,2001;Rumple,pers.commun.,2002). describedinHumphreysandDueker(1994a). CrustalcorrectionsforeachsiteareshowninFigure Eventandarraystaticswerecalculatedas 2C.Thecrust-correctedresidualRmSofthedata describedinHumphreysandDueker(1994a).Event areessentiallyunchangedbytheapplicationofsta- staticseffectivelyadjusttheaveragedelayofeach tioncorrections,implyingthatsedimentandcrustal eventsothatthedelaysforeacheventareasconsis- thicknessvariationsarenotacauseforthelarge tentwiththeentiredatasetaspossible(inaleast LARAMIDE-AGEHYDRATION 595

squaressense).Arraystaticsareanalogous.These modelenergy;theinclusionoftheseconstraints statictimeshiftsarehigher-orderestimatestothe resultsinauniquemodel.Minimummodelenergy eventarrivaltimethanwereestimated(andapplied) isimplicittoSIRT.Amongallmodelsthatbest bysubtractingthemean.Stationstaticsaremeantto explainthedataandsatisfyanyimposedcon- correctforthetraveltimeeffectofstructurecloseto straints,inversionfindsthemodelofleastenergy. eachstation.However,itisnotpossibletodistin- Theothercommonlyusedconstraint,oneofmaxi- guishclearlybetweentheeffectsoflocalstructure mumsmoothness(minimumLaplacian[e.g.,VanDe- anddeeperstructure.Forourstations,wehavegood carandSnieder,1994])producessimilarimages, estimatesofcrustaldelaysfromDuekeretal. butstructuresbecomesomewhatlesslocalized. (2001),Kelleretal.(1998),andRumple(pers.com- SIRTconvergesonasolutioniteratively,soany mun.,2002).Wetakeaconservativeapproachto smoothingrelationenforcedbetweeniterations applyingstationstatics,similartoHumphreysand becomesaconstraintinthenormalsense.The Dueker(1994a)andSaltzerandHumphreys(1997). applicationofasmoothnessconstraintimposesthe AfterapplyinghalftheSIRTiterations—atapoint specifiedcovariancebetweennearbymodelparam- whereimagedstructureaccountsfordelayswelland eters(Meyerholtzetal.,1989).Weimposenearest residualsarerelativelysmall—wecalculateand horizontalneighbormodelcovariancebyusinga applyeachstationstaticat60%ofthestation’saver- nearesthorizontalneighborsmoothingfunction ageresidual. betweeniterations.Noverticalsmoothnessis Inourinversions,weimposeanearest-neighbor imposedbecauseteleseismicraysinherentlysmooth modelsmoothnessandfindthemodelofminimum structureinthisdirection.