Onions and Other Vegetable Alliums J.L

Total Page:16

File Type:pdf, Size:1020Kb

Onions and Other Vegetable Alliums J.L CROP PRODUCTION SCIENCE IN HORTICULTURE SERIES Series Editors: Jeff Atherton, Professor of Tropical Horticulture, University of the West Indies, Barbados, and Alun Rees, Horticultural Consultant and former Editor, Journal of Horticultural Science and Biotechnology. This series examines economically important horticultural crops selected from the major production systems in temperate, subtropical and tropical climatic areas. Systems represented range from open field and plantation sites to protected plastic and glass houses, growing rooms and laboratories. Emphasis is placed on the scientific principles underlying crop production practices rather than on providing empirical recipes for uncritical acceptance. Scientific understanding provides the key to both reasoned choice of practice and the solution of future problems. Students and staff at universities and colleges throughout the world involved in courses in horticulture, as well as in agriculture, plant science, food science and applied biology at degree, diploma or certificate level will welcome this series as a succinct and readable source of information. The books will also be invaluable to progressive growers, advisers and end-product users requiring an authoritative, but brief, scientific introduction to particular crops or systems. Keen gardeners wishing to understand the scientific basis of recommended practices will also find the series very useful. The authors are all internationally renowned experts with extensive experience of their subjects. Each volume follows a common format covering all aspects of production, from background physiology and breeding, to propagation and planting, through husbandry and crop protection, to harvesting, handling and storage. Selective references are included to direct the reader to further information on specific topics. Titles Available: 1. Ornamental Bulbs, Corms and Tubers A.R. Rees 2. Citrus F.S. Davies and L.G. Albrigo 3. Onions and Other Vegetable Alliums J.L. Brewster 4. Ornamental Bedding Plants A.M. Armitage 5. Bananas and Plantains J.C. Robinson 6. Cucurbits R.W. Robinson and D.S. Decker-Walters 7. Tropical Fruits H.Y. Nakasone and R.E. Paull 8. Coffee, Cocoa and Tea K.C. Willson 9. Lettuce, Endive and Chicory E.J. Ryder 10. Carrots and Related Vegetable Umbelliferae V.E. Rubatzky, C.F. Quiros and P.W. Simon 11. Strawberries J.F. Hancock 12. Peppers: Vegetable and Spice Capsicums P.W. Bosland and E.J. Votava 13. Tomatoes E. Heuvelink 14. Vegetable Brassicas and Related Crucifers G. Dixon 15. Onions and Other Vegetable Alliums, 2nd Edition J.L. Brewster This page intentionally left blank ONIONS AND OTHER VEGETABLE ALLIUMS, 2ND EDITION James L. Brewster Formerly at Horticulture Research International (now known as Warwick HRI), Wellesbourne, Warwick CV35 9EF, UK CABI is a trading name of CAB International CABI Head Office CABI North American Office Nosworthy Way 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © J.L. Brewster 2008. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Brewster, James L. Onions and other vegetable alliums / J.L. Brewster. -- 2nd ed. p. cm. -- (Crop production science in horticulture series ; 15) Includes bibliographical references and index. ISBN 978-1-84593-399-9 (alk. paper) 1. Onions. 2. Allium. I. Title. II. Series: Crop production science in horticulture ; 15. SB341.B74 2008 635Ј.25--dc22 2007045092 ISBN: 978 1 84593 399 9 Typeset by Columns Design Ltd, Reading, UK. Printed and bound in the UK by Biddles Ltd, King’s Lynn. CONTENTS PREFACE ix 1 THE CLASSIFICATION, ORIGINS, DISTRIBUTION AND ECONOMIC IMPORTANCE OF THE MAJOR VEGETABLE CROPS 1 Classification of Alliums 1 Distribution and Ecology 4 The Types, History and Evolution of the Edible Crops 5 Economic Importance 22 2 THE STRUCTURE OF EDIBLE ALLIUMS 27 Visible Growth Stages 27 Outline of the Overall Plant Structure 27 The Structure of the Vegetative Shoot Apex 32 Stem Structure 33 Bulb Structure 36 Foliage Leaf Structure 39 The Root System 40 Inflorescence and Flower Structure and Development 45 Seeds 47 3 THE GENETICS AND PLANT BREEDING OF ALLIUM CROPS 51 Introduction 51 The Chromosomes 52 Breeding Systems 54 Genetics 56 v vi Contents Genetic Linkage Maps 59 Genomics 64 Hybrid Vigour 65 Genetic Male Sterility and Hybrid Breeding 65 Techniques of Breeding and Cultivar Improvement 67 Pollination Control in Breeding 73 Breeding Objectives in Edible Alliums 73 Selection Methods and Environmental Influences 75 Genetic Transformation of Alliums 77 Breeding for Disease and Pest Resistance 79 Conclusions 83 4 PHYSIOLOGY OF CROP GROWTH, DEVELOPMENT AND YIELD 85 Fundamental Determinants of Yield 85 Agronomic Factors Influencing Bulb Onion Yields 90 Seed Viability, Germination and Emergence 93 Vegetative Growth 116 Onion Bulbing 123 Models for Onion Growth and Bulbing 135 Physiology and Environmental Control of Flowering 138 Interrelations of Growth, Flowering and Bulbing in Onion 149 Shallots 151 Wakegi Onion 152 Garlic 156 Leek 160 Japanese Bunching Onion 166 Rakkyo 168 Chives 168 Chinese Chives 169 Concluding Remarks 169 5 INTERACTIONS WITH OTHER ORGANISMS: WEEDS, PESTS, DISEASES AND SYMBIONTS 171 Introduction 171 Weeds and Weed Control 173 Arthropod Pests 186 Nematode Pests 198 Viral Diseases 201 Bacterial Diseases 209 Contents vii Fungal Leaf Diseases 216 Fungal Diseases Infecting from the Soil 231 Fungal Diseases of Stored Bulbs 240 Mycorrhizal Fungi 246 6 AGRONOMY AND CROP PRODUCTION 251 Onion Production 251 Seed Production 293 Garlic Production 299 Leek Production 300 Japanese Bunching Onion Production 306 Chive Production 307 Chinese Chives Production 307 7 CROP STORAGE AND DORMANCY 309 Bulb Crop Storage and Dormancy 309 Garlic Dormancy and Storage 341 Leek Storage 342 Green Onion Storage 344 8 BIOCHEMISTRY, HEALTH BENEFITS AND FOOD SCIENCE OF ALLIUMS 347 The Biochemistry of Flavour 347 Carbohydrate Biochemistry 356 Flavonoids 361 Medicinal Effects of Alliums 364 Processed Products from Alliums 370 REFERENCES 373 INDEX 413 The colour plate section can be found following p. 212 This page intentionally left blank PREFACE A number of people, including lecturers, researchers and seed company staff, have told me that they found the first edition of this book useful. This is the best reward for writing such a book. A lot of new allium science has been published since the first edition and progress has been rapid, particularly in the fields of genetics, plant breeding and plant pathology, where the techniques of molecular biology have had great impact. So, an attempt at an update was clearly worthwhile. Shortly before writing the first edition I had co-edited the multi-author Onions and Allied Crops with Haim Rabinowitch, so up to date reviews by experts in the relevant science were to hand and familiar to me. For this edition, I have had to resort more to the original research literature, although the reviews by contributors to Rabinowitch and Currah’s (2002) Allium Crop Science: Recent Advances were key sources for many topics. A book of this breadth cannot attempt to be an exhaustive review of the research literature and, inevitably, in choosing what research to mention, there is some bias to what I am familiar with, notably towards work from Wellesbourne, from the UK and what is published in English. I apologize to those who have done interesting work which is not mentioned but, nevertheless, I hope the book gives a reasonable overview of the current scientific understanding about the vegetable alliums. I hope this second edition will help to raise and maintain awareness of the huge and continuing achievement of allium scientists in discovering so much fascinating and useful information about these crops. These researchers are the real heroes and heroines behind this book. I hope I have not misrepresented their work by error, omission or misplaced emphasis. The aim of the book is to introduce the scientific principles that underlie production practices, rather than to give detailed instruction on how to produce allium crops. If the crop technologist has an understanding of the basic principles fundamental to his craft he/she should be better able to adapt his/her methods to changing circumstances and opportunities, and better be able to understand and cope with any abnormal or unusual problems that he/she encounters. Understanding of principles should also improve his/her ix x Preface judgement in deciding between possible alternative techniques. Furthermore, the details of production methods change as new products, legislation or market conditions arise, whereas the underlying principles remain true and relevant, although of course our knowledge of principles improves and increases as science progresses. It may seem over-ambitious to cover the wide range of science closely relevant to allium production, but one advantage of such an undertaking is that it reveals connections between different aspects of the underlying science and, sometimes, conflicts in the recommendations for practice coming from them. Furthermore, the crop grower has to embody the integral of all the underlying science in his/her production methods. The book is obviously aimed at students and professionals with a special interest in the allium vegetables, but I hope it might interest the occasional, more general, reader. On my first day as an undergraduate agricultural student at Wye College, UK, I remember the then Principal, Dunstan Skilbeck, remarking in his intro- ductory talk to new students, that the studies they were about to embark on were not only a source of practically applicable information but also offered a ‘window’ into many fields of knowledge; a possibility particularly well provided for by broadly based courses like agriculture or horticulture.
Recommended publications
  • Sarimsakta Düşük Sicaklikta Farkli Ifade Olan Protein Profillerinin Belirlenmesi
    SARIMSAKTA DÜŞÜK SICAKLIKTA FARKLI İFADE OLAN PROTEİN PROFİLLERİNİN BELİRLENMESİ Aybüke İL T.C. BURSA ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SARIMSAKTA DÜŞÜK SICAKLIKTA FARKLI İFADE OLAN PROTEİN PROFİLLERİNİN BELİRLENMESİ AYBÜKE İL 0000-0001-9762-3703 PROF. DR. MERYEM İPEK DANIŞMAN YÜKSEK LİSANS TEZİ BAHÇE BİTKİLERİ ANABİLİM DALI BURSA- 2019 Her Hakkı Saklıdır ÖZET Yüksek Lisans Tezi SARIMSAKTA DÜŞÜK SICAKLIKTA FARKLI İFADE OLAN PROTEİN PROFİLLERİNİN BELİRLENMESİ Aybüke İL Uludağ Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı Danışman: Prof. Dr. Meryem İPEK Sarımsağın insan sağlığı açısından önemi giderek artmasından dolayı üretimi ve tüketimi son yıllarda önemli seviyede artmıştır. Vegetatif yollarla üretimi yapılan bu bitki türü için diş dormansisi büyük önem taşımaktadır. Bu yüksek lisans tez çalışmasının amacı, sarımsak dişlerinde düşük sıcaklık ve oda sıcaklığı koşullarında farklı depolama sürelerinde farklı ifade olan protein profillerinin SDS-PAGE analizi yöntemiyle belirlenmesidir. Tez çalışmasında Kastamonu ve PI515971 sarımsak genotipleri 4ºC ve 21ºC depolama sıcaklığında 0 (kontrol grubu), 4, 8 ve 12 hafta süre ile depolanmıştır. SDS-PAGE analizi sonuçlarına göre PI515971 genotipinde 4ºC’de yaklaşık 13, 17, 19, 20, 22, 28, 30, 33, 38 ve 44 kDa ağırlığında ve 21ºC’de ise yaklaşık 13, 22, 28, 30, 33, 38 kDa ağırlığında olan proteinlerin farklı ifade olduğu belirlenmiştir. Kastamonu genotipinde 4ºC düşük sıcaklıkta yaklaşık 13, 22, 30, 38, 45 ve 64 kDa ağırlığında proteinlerin depolama sıcaklığına ve depolama sürelerine göre ifade düzeylerinde farklılıklar belirlenmiştir. Elde edilen bu sonuçlara göre sarımsakta dormansinin kırılmasında önemli rolü olan düşük sıcaklığın protein profillerini etkilediği belirlenmiştir. Ayrıca denemede toplam çözünebilir protein (TÇP) içeriğindeki değişimler de belirlenmiştir. TÇP içeriği 4ºC’de depolamada her iki genotipte de istatiksel olarak önemli düzeyde artarken 21ºC’de depolamada PI515971’de artmış, Kastamonu genotipinde ise değişmemiştir.
    [Show full text]
  • Janis Ruksans, Dr.Biol.H.C. Late Summer/Autumn 2006 Bulb Nursery Box 2, P.O
    Janis Ruksans, Dr.biol.h.c. Late summer/autumn 2006 Bulb Nursery Box 2, P.O. ROZULA LV-4150 Cesis distr. LATVIA /fax +371 – 41-33-223 +371 - 941-84-40, 41-00-326 All prices for single bulb E-mail: [email protected] in EURO Dear friends! New Year and new gardening season comes and my new catalogue goes to you. It is a little shorter than usually - not for shortage of items includable (with pain in heart I striped out many names) but this summer I want to rebuild my bulb shed and it will limit my possibilities to harvest bulbs and to work with them. Last summer was very busy year. I rebuilt one of my greenhouses - it was very nervous process due shortage of workers (three teams were changed), I was forced to dig out all bulbs, to change soil - but now working in it is much more comfortable. I and my wife Guna organized for the first time “Open door days” and we had 18 visitors from Britain, arranged programm including lectures, visits of gardens, museum, nature, Opera etc. All visitors were very satisfied with visit. Sorry, this season we can’t to arrange OPEN DOOR DAYS due my lecture tour in North America and expedition plans. But I’m planning repeat such days in future, too. Last season Mrs. Kristl Walek from Canada (Gardens North – Seeds from the world) in her catalogue revealed the fact that I had been bearing in my mind an idea about a book on bulbs and my experience with them.
    [Show full text]
  • Antimicrobial Activity Test of Genus Allium: a Review
    Fadhilah Arifa et al. Int. Res. J. Pharm. 2020, 11 (12) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Review Article ANTIMICROBIAL ACTIVITY TEST OF GENUS ALLIUM: A REVIEW Fadhilah Arifa, Anzharni Fajrina*, Aried Eriadi, Ridho Asra School of Pharmaceutical Science (STIFARM) Padang, Indonesia *Corresponding Author Email: [email protected] Article Received on: 4/12/20 Approved for publication: 31/12/20 DOI: 10.7897/2230-8407.1112102 ABSTRACT The genus Allium plants are often used by people as a food flavoring. These plants are also used for medicinal purposes. The genus Allium plants are known to inhibit the growth of microorganisms such as bacteria, fungi, viruses, and parasites by having the Allicin, Ajoene main compounds, and secondary metabolites. This review article describes plants from the genus Allium that have antimicrobial potential. In the writing process, this review article used literature study techniques by finding literature in the form of official books, national journals, and international journals in the last 10 years (2010-2020). The literature search in writing this review article was conducted through online media search with keywords as follows: antimicrobial, Allium, and inhibition zone diameter. The search for the main references in this review article was done through Google Scholar, ScienceDirect, Reserachgate, and other published journals. Some plants of the genus Allium such as Allium ascalonicum, Allium cepa, Allium chinense, Allium porrum, Allium roseum, Allium sativum, Allium staticiforme, Allium subhirsutum, Allium tuberosum, Allium tuncelianum, and Allium wallichii showed antimicrobial activity. The potential antimicrobial activity of each part of the plant depends on the solvent used, the concentration and levels of secondary metabolites contained therein.
    [Show full text]
  • Organosulfur Compounds of Allium Tuncelianum (Kollmann) Ozhatay, B.Mathew & Şiraneci Extracts by Spme/Gc-Ms and Determining Their Cytotoxic Effect on Hela Cells
    ORGANOSULFUR COMPOUNDS OF ALLIUM TUNCELIANUM (KOLLMANN) OZHATAY, B.MATHEW & ŞIRANECI EXTRACTS BY SPME/GC-MS AND DETERMINING THEIR CYTOTOXIC EFFECT ON HELA CELLS 1YUSUF CAN GERCEK, 2GIZEM AKMAN, 3HANDE MORGIL, 4MAHMUT CALISKAN, 5GUL CEVAHIR OZ 1,3,4,5Istanbul University Biology Department, Botany Division, Istanbul, Turkey 2Istanbul University Biology Department, Zoology Division, Istanbul, Turkey E-mail: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] Abstract- Allium tuncelianum (Kollmann) Özhatay, B.Mathew & Şiraneci, known as Tunceli garlic, is an endemic species native to Turkey and distributed only in and around Tunceli district. Tunceli garlic was identified as a subspecies of A. macrochaetum Boiss. et Hausskn., however, following studies identified it as a different species, and it was named as A. tuncelianum. Because its chemical structure is similar to cultivated garlic (A. sativum), it is collected from the mountains, and sold/ used as a commercial product with the name “Rock Garlic” by local people. The plant is important in terms of being endemic and placed in the group of Vulnerable Plants in Red Data Book of Turkish Plants. In the present study, organosulfur compounds, categorized in volatile fatty acids, of the plant, Allium tuncelianum were extracted with solid phase micro extraction (SPME/PDMS) method and analyzed with Gas Chromatography-Mass Spectroscopy device. As a result of the analysis, diallyl disulphide compound was determined to be major compound at the rate of %50.51. Later on, cytotoxic activity of plant extracts was determined on HeLa cells originating from human cervical carcinoma and it was found that 72 h, 0,5 mg/ml concentration led 30 percent of the cells to apoptosis.
    [Show full text]
  • Organosulfur Compounds of Allium Tuncelianum (Kollmann) Ozhatay, B.Mathew & Şiraneci Extracts by Spme/Gc-Ms and Determining Their Cytotoxic Effect on Hela Cells
    International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume-5, Issue-2, Aprl.-2017 http://iraj.in ORGANOSULFUR COMPOUNDS OF ALLIUM TUNCELIANUM (KOLLMANN) OZHATAY, B.MATHEW & ŞIRANECI EXTRACTS BY SPME/GC-MS AND DETERMINING THEIR CYTOTOXIC EFFECT ON HELA CELLS 1YUSUF CAN GERCEK, 2GIZEM AKMAN, 3HANDE MORGIL, 4MAHMUT CALISKAN, 5GUL CEVAHIR OZ 1,3,4,5Istanbul University Biology Department, Botany Division, Istanbul, Turkey 2Istanbul University Biology Department, Zoology Division, Istanbul, Turkey E-mail: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] Abstract- Allium tuncelianum (Kollmann) Özhatay, B.Mathew & Şiraneci, known as Tunceli garlic, is an endemic species native to Turkey and distributed only in and around Tunceli district. Tunceli garlic was identified as a subspecies of A. macrochaetum Boiss. et Hausskn., however, following studies identified it as a different species, and it was named as A. tuncelianum. Because its chemical structure is similar to cultivated garlic (A. sativum), it is collected from the mountains, and sold/ used as a commercial product with the name “Rock Garlic” by local people. The plant is important in terms of being endemic and placed in the group of Vulnerable Plants in Red Data Book of Turkish Plants. In the present study, organosulfur compounds, categorized in volatile fatty acids, of the plant, Allium tuncelianum were extracted with solid phase micro extraction (SPME/PDMS) method and analyzed with Gas Chromatography-Mass Spectroscopy device. As a result of the analysis, diallyl disulphide compound was determined to be major compound at the rate of %50.51.
    [Show full text]
  • T.C. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dali
    T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI ALLIUM TUNCELIANUM ‘DA IN VITRO KÜLTÜR OLUŞTURULMASI VE REJENERANTLARIN KARAKTERİZE EDİLMESİ YÜKSEK LİSANS TEZİ ZEYNEP ERGÜN DENİZLİ, 2019 T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI ALLIUM TUNCELIANUM ‘DA IN VITRO KÜLTÜR OLUŞTURULMASI VE REJENERANTLARIN KARAKTERİZE EDİLMESİ YÜKSEK LİSANS TEZİ ZEYNEP ERGÜN DENİZLİ, 2019 Bu tez çalışması Pamukkale Üniversitesi Bitki Genetiği ve Tarımsal Biyoteknoloji Uygulama ve Araştırma Merkezi tarafından desteklenmiştir. ÖZET ALLIUM TUNCELIANUM ‘DA IN VITRO KÜLTÜR OLUŞTURULMASI VE REJENERANTLARIN KARAKTERİZE EDİLMESİ YÜKSEK LİSANS TEZİ ZEYNEP ERGÜN PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİYOLOJİ ANABİLİM DALI (TEZ DANIŞMANI: PROF. DR. FEVZİYE ÇELEBİ TOPRAK) DENİZLİ, 2019 Bu tezde Tunceli ilinin belirli bölgelerinde, özellikle Munzur (Mercan) Dağları eteklerinde yer alan Tunceli’nin Ovacık ve Pülümür ilçelerinde yaygın olarak yetişen, endemik bir bitki türü olan Allium tuncelianum’da in vitro kültür oluşturulması ve rejenerantların karakterize edilmesi araştırılmıştır. Çalışmada, Tunceli Pertek’ten (tarla koşullarında yetiştirilen: AT) ve Pülümür’den (doğal olarak dağda yetişen: ATP) temin edilen A. tuncelianum’a ait iki hat kullanılmıştır. Besi yeri olarak BDS (A0, A50, A75, A100, A40, A450, A4100) ve MS (F, F2, F3, F4, F6, F7, F9, F10, F11, F12, F13, F14) temelli farklı konsantrasyonlarda şeker (0, 25, 50, 75, 100 g) ve bitki büyüme hormonları içeren (2,4-D, NAA, BAP ve 2İP) 19 çeşit besi yeri kullanılmıştır. Bu çalışmada 18.414 tanesi açmamış 20.064 çiçek tomurcuğu kültüre alınmıştır. İki hat için kullanılan 19 çeşit besi yerinin altı tanesine (A100, A450, A4100, F4, F9 ve F14) ekilen tomurcuklar ginogenesise, dokuz tanesine (A50, A75, A100, F6, F7, F9, F11, F12, F14) ekilen tomurcuklar somatik sürgün gelişimine cevap vermiştir.
    [Show full text]
  • National Program 301 Plant Genetic Resources, Genomics, and Genetics Improvement
    APPENDIX 1 National Program 301 Plant Genetic Resources, Genomics, and Genetics Improvement ACCOMPLISHMENT REPORT 2006 – 2011 Research Projects in National Program 301* [By Action Plan Component and Problem Statement] Component 1: Plant and Microbial Genetic Resource Management Problem Statement 1A: Efficiently and Effectively Manage Plant and Microbial Genetic Resources. 1230-21000-133-00D EDUCATION AND VISITOR SERVICES AT THE U.S. NATIONAL ARBORETUM – Nancy Luria (P); U.S. National Arboretum, Washington, D.C. 1230-21000-135-00D ESTABLISH PUBLIC DISPLAY GARDENS FOR WOODY AND HERBACEOUS LANDSCAPE PLANTS – Scott Aker (P); U.S. National Arboretum, Washington, D.C. 1230-21000-137-00D GENETIC RESOURCES, EVALUATION, AND INFORMATION MANAGEMENT OF WOODY LANDSCAPE PLANT GERMPLASM – Richard Olsen (P), Kevin Conrad, and Mark Roh; U.S. National Arboretum, Washington, D.C. 1275-21000-226-00D NATIONAL RHIZOBIUM GERMPLASM RESOURCE COLLECTION, GENETIC RESOURCE MANAGEMENT, SYSTEMATICS, AND BIOINFORMATICS – Peter Van Berkum (P); Beltsville, Maryland 1275-21000-227-00D PLANT EXPLORATIONS TO ACQUIRE CROP GENETIC RESOURCES – Karen Williams (P) and Edward Garvey; Beltsville, Maryland 1275-21000-228-00D EXCHANGE OF CROP GENETIC RESOURCES AND ASSOCIATED DOCUMENTATION FOR THE U.S. NATIONAL PLANT GERMPLASM SYSTEM – Edward Garvey (p), John Wiersema, and Karen Williams; Beltsville, Maryland 1275-21220-226-00D OPERATING AND DEVELOPING THE GERMPLASM RESOURCES INFORMATION NETWORK FOR THE U.S. GENETIC RESOURCES PROGRAM – Gary Kinard (P); Beltsville, Maryland 1275-22000-268-00D THE U.S. NATIONAL FUNGUS COLLECTIONS AND DEVELOPMENT OF ON-LINE RESOURCES ABOUT FUNGI – Amy Rossman (P); Beltsville, Maryland * Because of the nature of their research, many NP 301 projects contribute to multiple Problem Statements and are listed accordingly.
    [Show full text]
  • The Pharmaceutical and Chemical Journal, 2018, 5(3):72-79 Research
    The Pharmaceutical and Chemical Journal, 2018, 5(3):72-79 Available online www.tpcj.org ISSN: 2349-7092 Research Article CODEN(USA): PCJHBA Essential Oil Composition and Polen Morphology of Local Endemic Allium tuncelianum from Munzur Valley in Turkey Ebru Yuce Babacan1, Gülden Dogan2, Azize Demirpolat3, Eyüp Bagci2 1Munzur University, Pertek Sakine Genç Vocation School, Food Processing Department, Tunceli, Turkey 2Firat University, Science Faculty, Biology Department, Elazig, Turkey 3Bingöl University, Department of Animal and Vegetable Production, Bingöl, Turkey Abstract Tunceli is a province that has different kind plants and large biodiversity and also there are more endemic and local endemic species. It has also consist of more medicinal and aromatic plants naturally grown. The essential oil from plants has more widely used for different purposes. The essential ois of wild-growing Allium tuncelianum from Munzur Valley in Turkey was obtained by hydrodistillation and analyzed by GC and GC-MS. In the oil of the Allium tuncelianum were characterized 1-propene 3,3- thiobis (21.2%), disulfide di-2-propenyl (12.9%), trisulfide di-2-propenyl (21.2%), diallyl tetrasulphide (17.35%) and linoleic acid ethyl ester (6.2%) as the main constituents. The light and scanning electron microscope results showed that the pollen grain Allium tuncelianum is monads, oblate (P/E= 1.39), monosulcate. The exine sculpturing is rugulate-perforate. The sulcus extends to the proximal side of pollen. Keywords Allium tuncelianum, GC-MS, Munzur Valley, Essential oil, pollen morphlogy Introduction Turkey is very rich in plant species due to it location on Euro- Siberian, Mediterranean and Iran-Turan phytogeographic regions.
    [Show full text]
  • Nieuwe Oogst
    NIEUWE OOGST CATALOGUS 2019 NIJSSEN BULBS HEEMSTEDE WWW.NIJSSENBULBS.NL Afbeelding omslag: Allium ‘Mount Everest’, zie pagina 24. Fotografie: Gert-Pieter Nijssen en vele enthousiaste kwekers, waarvoor mijn dank. Deze uitgave kwam tot stand door samenwerking tussen: Tekst: Gert-Pieter Nijssen en archief Peter C. Nijssen Lithografie/Produktie: LNO drukkerij, Zierikzee. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke wijze ook, zonder voorafgaande toestemming van Nijssen Bulbs Heemstede. Lichte kleurafwijkingen van foto’s en eventuele zet- of drukfouten in de catalogus voorbehouden. Een bezoek aan ons plantencentrum in Heemstede is altijd de moeite waard. Adres: Sportparklaan 25A, 2103 VR Heemstede. Voor actuele openingstijden kijk op: www.nijssenbulbs.nl Maakt u gebruik van het openbaar vervoer: Vanaf station Heemstede-Aerdenhout, stadsbus 4 richting Heemstede. Na ongeveer zes minuten uitstappen bij halte Glipperdreef/Begraafplaats. Nog ongeveer vijf minuten lopen in zuidelijke richting, na ong. 200 meter linksaf, de Sportparklaan in. Het plantencentrum bevindt zich aan de linkerzijde, schuin tegenover het zwembad. Algemene voorwaarden Nijssen Bulbs Heemstede Deze kunt u raadplegen op www.nijssenbulbs.nl, maar sturen wij u ook, op verzoek, kosteloos toe. Prijs catalogus ¤ 10.00 voor Nederland, overige landen binnen de E.U. ¤ 15.00 Bol- en Knolgewassen Een Nieuwe Oogst Nijssen Bulbs Heemstede Bijzondere bol- en knolgewassen Sportparklaan 25a 2103 VR HEEMSTEDE Tel.: 023 - 5471056 Correspondentie-adres: Postbus 653 2100 AR HEEMSTEDE www.nijssenbulbs.nl [email protected] Catalogus 2019 Catalogus 1 Bij-vriendelijke bloembollenpakketten Het belang van biodiversiteit en planten in de tuin waarvan o.a.
    [Show full text]
  • Personal PDF File
    CURRICULUM VITAE Name : Gülnur Surname : EKŞİ BONA Date of birth : 03.02.1981 Place of birth : Sinop Mobile : 0 544 320 96 25 E- mail : [email protected] EDUCATION 2013-2018 : PhD, Ankara University, Pharmacy Faculty Pharmaceutical Botany Department Thesis: Investigations in Terms of Pharmaceutical Botany on Taxa Belonging to Brevispatha Section of Allium L. Genus Growing in Turkey. 2010-2013 : Msc, Ankara University, Pharmacy Faculty Pharmaceutical Botany Department Thesis: A Morphological and Ethnobotanical Study on the Endemic Species of the (Sect. Allium) Allium L. in Turkey. 1999-2004 : Undergraduate, Hacettepe University, Education Faculty, Biology (German) 1996-1999 : Sinop Anatolian Teachers Training High School Language : English (87.75 German (83.75) PUBLICATIONS 1. EKŞİ G, KOYUNCU M, GENCLER ÖZKAN AM (2016) Allium ekimianum: a new species (Amaryllidaceae) from Turkey. PhytoKeys, 62: 83–93. DOI: http://dx.doi.org/10.3897/phytokeys.62.7796 2. EKŞİ G, KOYUNCU M, BONA M (2015) Allium phanerantherum subsp. involucratum (Amaryllidaceae), a new subspecies from Turkey. Bangladesh J. Plant Taxon. 22(2): 143-146. DOI: http://dx.doi.org/10.3329/bjpt.v22i2.26076 3. KOYUNCU M, EKŞİ G , GENÇLER ÖZKAN AM (2015) Vinca ispartensis (Apocynaceae), a New Species from Turkey. Annales Botanici Fennici, 52: 340-344. DOI:http://dx.doi.org/10.5735/085.052.0511 4. DUMAN H, EKŞİ G, ÖZBEK F (2017) Two new species of Allium L. Sect. Allium (Amaryllidaceae) from Turkey, Plant Systematics and Evolution, 1-21. DOI: http://dx.doi.org/10.1007/s00606-017-1437-4 5. BAKAR F, EKŞİ G (2017) Camellia sinensis L. Demirezer Ö, Ersöz T, Saraçoğlu İ, Şener B, Köroğlu A, Yalçın FN (eds.), In: FFD Monografları: Bitkiler ve Etkileri, 209-217.
    [Show full text]
  • Allium Sativum) Accessions of Bangladesh
    British Biotechnology Journal 8(3): 1-12, 2015, Article no.BBJ.18619 ISSN: 2231–2927 SCIENCEDOMAIN international www.sciencedomain.org In vitro Plantlet Regeneration of Four Local Garlic (Allium sativum) Accessions of Bangladesh Sayed Raihanul Haider1, Mohammad Rashed Hossain1, Shanjida Rahman1, Shirin Sultana1, Tamanna Quddus1, Moutoshi Chakraborti1, Aunamika Hoque1, Md Hasan Shahriar1 and Md Ashraful Haque1* 1Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. Authors’ contributions This work was carried out in collaboration between all authors. Authors SRH and MRH contributed equally to this work. Authors SRH, MRH, SR and MAH designed the experiment. Authors SRH conducted the lab work and authors SR, SS, TQ, MC, AH and MHS helped in conducting the lab work, collecting the data and interpreting the results. Authors SRH and MAH analysed the data. Authors SR and MHS prepared the initial manuscript which was extensively edited by authors MRH and MAH. All authors read and approved the final manuscript. Article Information DOI: 10.9734/BBJ/2015/18619 Editor(s): (1) Mahalingam Govindaraj, ICRISAT, Patancheru, India. Reviewers: (1) B. V. Tembhurne, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Raichur, Karnataka, India. (2) Danielle Camargo Scotton, Laboratory of Plant breeding, University of São Paulo, Brazil. (3) Anonymous, Lille University of Science and Technology, France. Complete Peer review History: http://sciencedomain.org/review-history/10000 Received 1st May 2015 th Original Research Article Accepted 27 May 2015 Published 30th June 2015 ABSTRACT Aims: The genetic improvement of garlic can be achieved by biotechnological manipulations as breeding in this vegetatively propagated crop is limited.
    [Show full text]
  • Comparison of Organosulfur and Amino Acid Composition Between
    plants Article Comparison of Organosulfur and Amino Acid Composition between Triploid Onion Allium cornutum Clementi ex Visiani, 1842, and Common Onion Allium cepa L., and Evidences for Antiproliferative Activity of Their Extracts Željana Fredotovi´c 1,* , Barbara Soldo 2, Matilda Šprung 2 , Zvonimir Marijanovi´c 3 , Igor Jerkovi´c 4 and Jasna Puizina 1,* 1 Department of Biology, Faculty of Science, University of Split, R. Boškovi´ca33, 21000 Split, Croatia 2 Department of Chemistry, Faculty of Science, University of Split, R. Boškovi´ca33, 21000 Split, Croatia; [email protected] (B.S.); [email protected] (M.Š.) 3 Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovi´ca35, 21000 Split, Croatia; [email protected] 4 Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, R. Boškovi´ca35, 21000 Split, Croatia; [email protected] * Correspondence: [email protected] (Ž.F.); [email protected] (J.P.); Tel.: +385-21-619-290 (Ž.F.); +385-21-619-260 (J.P.) Received: 9 December 2019; Accepted: 10 January 2020; Published: 13 January 2020 Abstract: Species that belong to the genus Allium have been widely used for human food and traditional medicine. Their beneficial health effects, as well as the specific aroma, are associated with their bioactive chemical compounds, such as sulfur compounds and flavonoids. Gas chromatography and mass spectrometry (GC–MS) and reverse-phase high-performance liquid chromatography (reverse-phase HPLC) were used to identify organosulfur and amino acid content of triploid hybrid onion, Allium cornutum Clement ex Visiani, 1842, and common onion, Allium cepa L.
    [Show full text]