The Theory of Ruled Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
1 on the Design and Invariants of a Ruled Surface Ferhat Taş Ph.D
On the Design and Invariants of a Ruled Surface Ferhat Taş Ph.D., Research Assistant. Department of Mathematics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul,Turkey. [email protected] ABSTRACT This paper deals with a kind of design of a ruled surface. It combines concepts from the fields of computer aided geometric design and kinematics. A dual unit spherical Bézier- like curve on the dual unit sphere (DUS) is obtained with respect the control points by a new method. So, with the aid of Study [1] transference principle, a dual unit spherical Bézier-like curve corresponds to a ruled surface. Furthermore, closed ruled surfaces are determined via control points and integral invariants of these surfaces are investigated. The results are illustrated by examples. Key Words: Kinematics, Bézier curves, E. Study’s map, Spherical interpolation. Classification: 53A17-53A25 1 Introduction Many scientists like mechanical engineers, computer scientists and mathematicians are interested in ruled surfaces because the surfaces are widely using in mechanics, robotics and some other industrial areas. Some of them have investigated its differential geometric properties and the others, its representation mathematically for the design of these surfaces. Study [1] used dual numbers and dual vectors in his research on the geometry of lines and kinematics in the 3-dimensional space. He showed that there 1 exists a one-to-one correspondence between the position vectors of DUS and the directed lines of space 3. So, a one-parameter motion of a point on DUS corresponds to a ruled surface in 3-dimensionalℝ real space. Hoschek [2] found integral invariants for characterizing the closed ruled surfaces. -
OBJ (Application/Pdf)
THE PROJECTIVE DIFFERENTIAL GEOMETRY OF RULED SURFACES A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE BY WILLIAM ALBERT JONES, JR. DEPARTMENT OF MATHEMATICS ATLANTA, GEORGIA AUGUST 1949 t-lii f£l ACKNOWLEDGMENTS A special expression of appreciation is due Mr. C. B. Dansby, my advisor, whose wise tolerant counsel and broad vision have been of inestimable value in making this thesis a success. The Author ii TABLE OP CONTENTS Chapter Page I. INTRODUCTION 1 1. Historical Sketch 1 2. The General Aim of this Study. 1 3. Methods of Approach... 1 II. FUNDAMENTAL CONCEPTS PRECEDING THE STUDY OP RULED SURFACES 3 1. A Linear Space of n-dimens ions 3 2. A Ruled Surface Defined 3 3. Elements of the Theory of Analytic Surfaces 3 4. Developable Surfaces. 13 III. FOUNDATIONS FOR THE THEORY OF RULED SURFACES IN Sn# 18 1. The Parametric Vector Equation of a Ruled Surface 16 2. Osculating Linear Spaces of a Ruled Surface 22 IV. RULED SURFACES IN ORDINARY SPACE, S3 25 1. The Differential Equations of a Ruled Surface 25 2. The Transformation of the Dependent Variables. 26 3. The Transformation of the Parameter 37 V. CONCLUSIONS 47 BIBLIOGRAPHY 51 üi LIST OF FIGURES Figure Page 1. A Proper Analytic Surface 5 2. The Locus of the Tangent Lines to Any Curve at a Point Px of a Surface 10 3. The Developable Surface 14 4. The Non-developable Ruled Surface 19 5. The Transformed Ruled Surface 27a CHAPTER I INTRODUCTION 1. -
Hyperbolic Monopoles and Rational Normal Curves
HYPERBOLIC MONOPOLES AND RATIONAL NORMAL CURVES Nigel Hitchin (Oxford) Edinburgh April 20th 2009 204 Research Notes A NOTE ON THE TANGENTS OF A TWISTED CUBIC B Y M. F. ATIYAH Communicated by J. A. TODD Received 8 May 1951 1. Consider a rational normal cubic C3. In the Klein representation of the lines of $3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of a rational normal quartic O4. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves. 2. C4 lies on a Veronese surface V, which represents the congruence of chords of O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of tangents of O3 is a developable, consecutive tangents intersect, and therefore the tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric determining the same polarity as C4 (2). We note also that the tangents to C4 correspond in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating planes. 3. We shall prove that the surface U, which is the locus of points of intersection of pairs of osculating planes of C4, is the projection of the Veronese surface V from L, the pole of 2, on to 2. Let P denote a point of C3, and t, n the tangent line and osculating plane at P, and let T, T, w denote the same for the corresponding point of C4. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Classical Algebraic Geometry
CLASSICAL ALGEBRAIC GEOMETRY Daniel Plaumann Universität Konstanz Summer A brief inaccurate history of algebraic geometry - Projective geometry. Emergence of ’analytic’geometry with cartesian coordinates, as opposed to ’synthetic’(axiomatic) geometry in the style of Euclid. (Celebrities: Plücker, Hesse, Cayley) - Complex analytic geometry. Powerful new tools for the study of geo- metric problems over C.(Celebrities: Abel, Jacobi, Riemann) - Classical school. Perfected the use of existing tools without any ’dog- matic’approach. (Celebrities: Castelnuovo, Segre, Severi, M. Noether) - Algebraization. Development of modern algebraic foundations (’com- mutative ring theory’) for algebraic geometry. (Celebrities: Hilbert, E. Noether, Zariski) from Modern algebraic geometry. All-encompassing abstract frameworks (schemes, stacks), greatly widening the scope of algebraic geometry. (Celebrities: Weil, Serre, Grothendieck, Deligne, Mumford) from Computational algebraic geometry Symbolic computation and dis- crete methods, many new applications. (Celebrities: Buchberger) Literature Primary source [Ha] J. Harris, Algebraic Geometry: A first course. Springer GTM () Classical algebraic geometry [BCGB] M. C. Beltrametti, E. Carletti, D. Gallarati, G. Monti Bragadin. Lectures on Curves, Sur- faces and Projective Varieties. A classical view of algebraic geometry. EMS Textbooks (translated from Italian) () [Do] I. Dolgachev. Classical Algebraic Geometry. A modern view. Cambridge UP () Algorithmic algebraic geometry [CLO] D. Cox, J. Little, D. -
Geometry of Algebraic Curves
Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2. -
Approximation by Ruled Surfaces
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS ELSEVIER Journal of Computational and Applied Mathematics 102 (1999) 143-156 Approximation by ruled surfaces Horng-Yang Chen, Helmut Pottmann* Institut fiir Geometrie, Teehnische UniversiEit Wien, Wiedner Hauptstrafle 8-10, A-1040 Vienna, Austria Received 19 December 1997; received in revised form 22 May 1998 Abstract Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in architectural design, reverse engineering, wire electric discharge machining and NC milling. (~) 1999 Elsevier Science B.V. All rights reserved. Keywords." Computer-aided design; NC milling; Wire EDM; Reverse engineering; Line geometry; Ruled surface; Surface approximation I. Introduction Ruled surfaces are formed by a one-parameter set of lines and have been investigated extensively in classical geometry [6, 7]. Because of their simple generation, these surfaces arise in a variety of applications including CAD, architectural design [1], wire electric discharge machining (EDM) [12, 16] and NC milling with a cylindrical cutter. In the latter case and in wire EDM, when considering the thickness of the cutting wire, the axis of the moving tool runs on a ruled surface ~, whereas the tool itself generates under peripheral milling or wire EDM an offset of • (for properties of ruled surface offsets, see [11]). For all these applications the following question is interesting: Given a surface, how well may it be approximated by a ruled surface? In case of the existence of a sufficiently close fit, the ruled surface (or an offset of it in case of NC milling with a cylindrical cutter) may replace the original design in order to guarantee simplified production or higher accuracy in manufacturing. -
Flecnodal and LIE-Curves of Ruled Surfaces
Flecnodal and LIE-curves of ruled surfaces Dissertation Zur Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Ashraf Khattab geboren am 12. März 1971 in Alexandria Gutachter: Prof. Dr. G. Weiss, TU Dresden Prof. Dr. G. Stamou, Aristoteles Universität Thessaloniki Prof. Dr. W. Hanna, Ain Shams Universität Kairo Eingereicht am: 13.07.2005 Tag der Disputation: 25.11.2005 Acknowledgements I wish to express my deep sense of gratitude to my supervisor Prof. Dr. G. Weiss for suggesting this problem to me and for his invaluable guidance and help during this research. I am very grateful for his strong interest and steady encouragement. I benefit a lot not only from his intuition and readiness for discussing problems, but also his way of approaching problems in a structured way had a great influence on me. I would like also to thank him as he is the one who led me to the study of line geometry, which gave me an access into a large store of unresolved problems. I am also grateful to Prof. Dr. W. Hanna, who made me from the beginning interested in geometry as a branch of mathematics and who gave me the opportunity to come to Germany to study under the supervision of Prof. Dr. Weiss in TU Dresden, where he himself before 40 years had made his Ph.D. study. My thanks also are due to some people, without whose help the research would probably not have been finished and published: Prof. Dr. -
Equations for Point Configurations to Lie on a Rational Normal Curve
EQUATIONS FOR POINT CONFIGURATIONS TO LIE ON A RATIONAL NORMAL CURVE ALESSIO CAMINATA, NOAH GIANSIRACUSA, HAN-BOM MOON, AND LUCA SCHAFFLER Abstract. The parameter space of n ordered points in projective d-space that lie on a ra- tional normal curve admits a natural compactification by taking the Zariski closure in (Pd)n. The resulting variety was used to study the birational geometry of the moduli space M0;n of n-tuples of points in P1. In this paper we turn to a more classical question, first asked independently by both Speyer and Sturmfels: what are the defining equations? For conics, namely d = 2, we find scheme-theoretic equations revealing a determinantal structure and use this to prove some geometric properties; moreover, determining which subsets of these equations suffice set-theoretically is equivalent to a well-studied combinatorial problem. For twisted cubics, d = 3, we use the Gale transform to produce equations defining the union of two irreducible components, the compactified configuration space we want and the locus of degenerate point configurations, and we explain the challenges involved in eliminating this extra component. For d ≥ 4 we conjecture a similar situation and prove partial results in this direction. 1. Introduction Configuration spaces are central to many modern areas of geometry, topology, and physics. Rational normal curves are among the most classical objects in algebraic geometry. In this paper we explore a setting where these two realms meet: the configuration space of n ordered points in Pd that lie on a rational normal curve. This is naturally a subvariety of (Pd)n, and by taking the Zariski closure we obtain a compactification of this configuration space, which d n we call the Veronese compactification Vd;n ⊆ (P ) . -
Complex Algebraic Surfaces Class 12
COMPLEX ALGEBRAIC SURFACES CLASS 12 RAVI VAKIL CONTENTS 1. Geometric facts about a geometrically ruled surface π : S = PC E → C from geometric facts about C 2 2. The Hodge diamond of a ruled surface 2 3. The surfaces Fn 3 3.1. Getting from one Fn to another by elementary transformations 4 4. Fun with rational surfaces (beginning) 4 Last day: Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup- pose E is a rank 2 locally free sheaf on a curve C. (i) There exists an exact sequence 0 → L → E → M → 0 with L, M ∈ Pic C. Terminol- ogy: E is an extension of M by L. 0 (ii) If h (E) ≥ 1, we can take L = OC (D), with D the divisor of zeros of a section of E. (Hence D is effective, i.e. D ≥ 0.) (iii) If h0(E) ≥ 2 and deg E > 0, we can assume D > 0. (i) is the most important one. We showed that extensions 0 → L → E → M → 0 are classified by H1(C, L ⊗ M ∗). The element 0 corresponded to a splitting. If one element is a non-zero multiple of the other, they correspond to the same E, although different extensions. As an application, we proved: Proposition. Every rank 2 locally free sheaf on P1 is a direct sum of invertible sheaves. I can’t remember if I stated the implication: Every geometrically ruled surface over P1 is isomorphic to a Hirzebruch surface Fn = PP1 (OP1 ⊕ OP1 (n)) for n ≥ 0. Date: Friday, November 8. -
Geometry of Algebraic Curves
Geometry of Algebraic Curves Lectures delivered by Joe Harris Notes by Akhil Mathew Fall 2011, Harvard Contents Lecture 1 9/2 x1 Introduction 5 x2 Topics 5 x3 Basics 6 x4 Homework 11 Lecture 2 9/7 x1 Riemann surfaces associated to a polynomial 11 x2 IOUs from last time: the degree of KX , the Riemann-Hurwitz relation 13 x3 Maps to projective space 15 x4 Trefoils 16 Lecture 3 9/9 x1 The criterion for very ampleness 17 x2 Hyperelliptic curves 18 x3 Properties of projective varieties 19 x4 The adjunction formula 20 x5 Starting the course proper 21 Lecture 4 9/12 x1 Motivation 23 x2 A really horrible answer 24 x3 Plane curves birational to a given curve 25 x4 Statement of the result 26 Lecture 5 9/16 x1 Homework 27 x2 Abel's theorem 27 x3 Consequences of Abel's theorem 29 x4 Curves of genus one 31 x5 Genus two, beginnings 32 Lecture 6 9/21 x1 Differentials on smooth plane curves 34 x2 The more general problem 36 x3 Differentials on general curves 37 x4 Finding L(D) on a general curve 39 Lecture 7 9/23 x1 More on L(D) 40 x2 Riemann-Roch 41 x3 Sheaf cohomology 43 Lecture 8 9/28 x1 Divisors for g = 3; hyperelliptic curves 46 x2 g = 4 48 x3 g = 5 50 1 Lecture 9 9/30 x1 Low genus examples 51 x2 The Hurwitz bound 52 2.1 Step 1 . 53 2.2 Step 10 ................................. 54 2.3 Step 100 ................................ 54 2.4 Step 2 .