Understanding Binding-Induced Disorder-To-Order and Conformational

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Binding-Induced Disorder-To-Order and Conformational UNDERSTANDING BINDING-INDUCED DISORDER-TO-ORDER AND CONFORMATIONAL TRANSITIONS IN PROTEINS THAT REGULATE AUTOPHAGY A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Karen Marie Glover In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Chemistry and Biochemistry June 2018 Fargo, North Dakota North Dakota State University Graduate School Title UNDERSTANDING BINDING-INDUCED DISORDER-TO-ORDER AND CONFORMATIONAL TRANSITIONS IN PROTEINS THAT REGULATE AUTOPHAGY By Karen Marie Glover The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Sangita Sinha Chair Dr. Gregory Cook Dr. Stuart Haring Dr. Penelope Gibbs Approved: 26 June 2018 Dr. Gregory Cook Date Department Chair ABSTRACT Autophagy, a cellular homeostasis process that degrades and recycles cytosolic contents, is regulated at various stages by protein interactions. BECN1 regulates autophagy through interactions with diverse proteins via binding-induced conformational changes in its intrinsically disordered region (IDR) and flexible domains. Understanding the structure-function relationship of conformational transitions provides a basis for understanding these interactions and may be useful for targeting therapeutics for these proteins. We devised a method to identify IDRs likely to become helical upon binding, even in the absence of known binding partners, and analyzed BECN1 interactions to further understand how binding- induced conformational changes affect BECN1-mediated autophagy regulation. We showed that the BECN1 coiled-coil domain (CCD) and β-α repeated, autophagy-specific domain (BARAD) share an overlapping helix (OH) region that transiently adopts mutually exclusive packing states and transiently packs against the CCD and BARAD, but predominantly packs against the BARAD in the homodimer, and demonstrated that mutation of OH residues that pack against both domains abrogates starvation-induced up-regulation of autophagy. Our results have important implications for the relative stability of autophagy-inactive and autophagy-active BECN1 complexes. We also attempted to establish the mechanism by which various virus-encoded proteins regulate autophagy. Nef, a critical protein for HIV pathogenesis, interacts with BECN1 BARAD regions that pack against the OH. However, we show that Nef does not appear to interact directly with the BECN1 homodimer, suggesting that packing of the OH against the BARAD may inhibit the Nef interaction. Several anti-apoptotic viral BCL2 (vBCL2) proteins down-regulate autophagy by binding the BECN1 BH3 homology domain (BH3D) and mediating binding-induced helical transitions in the BH3D. Although protein purification issues prevented analysis of Kaposi’s sarcoma herpesvirus (KSHV) vBCL2 interactions, we determined that BHRF1, an Epstein-Barr virus (EBV)-encoded vBCL2, down-regulates autophagy by binding a flexible region of BECN1 that includes the BH3D. Further, we solved the 2.6 Å crystal structure of BHRF1 bound to the BID BH3D, a pro-apoptotic BCL2, and showed that the BID BH3D binds ~400-times tighter than the BECN1 BH3D to BHRF1 and inhibits BHRF1-mediated down- regulation of autophagy. iii Together, our studies highlight the importance of binding-induced conformational changes in proteins that regulate autophagy. iv ACKNOWLEDGEMENTS To my advisor, Dr. Sangita Sinha, I express my gratitude for her generous guidance, support, and mentorship. I also thank my committee members: Dr. Gregory Cook, Dr. Stuart Haring, and Dr. Penelope Gibbs for their advice and direction. I also extend thanks to our collaborator Dr. Christopher Colbert at NDSU for generously sharing his expertise, advice, and support, and our other collaborators, especially: Dr. Srinivas Chakravarthy at Bio-CAT, APS, Argonne. I am further grateful to current and former members of the Sinha group, including Yang Mei, Minfei Su, Yue Li, Shreya Mukhopadhyay, Srinivas Dasanna, Elizabeth Bueno, and Samuel Wyatt, and the Colbert group, including Jaime Jensen, Shane Wyborny, Benjamin LeVahn, and Beau Jernberg. Thank you for constant advice, assistance, and encouragement. This research was supported an funded by NIH grants RO3 NS090939, R15 GM122035 (S.S.), P20 RR015566 (S.S), R21 AI078198 (S.S), and R15 GM113227 (C.C.); a NSF grant MCB-1413525 (S.S.); a ND Dept. of Commerce Award #14-11-J1-73 (S.S), a NDSU Graduate School doctoral dissertation award (K.G.), and a ND EPSCoR doctoral dissertation award (K.G., S.S.). Work performed at Bio-CAT was supported by NIH NIGMS 9P41 GM103622 and use of the Pilatus 3 1M detector funded by NIH NIGMS 1S10OD018090-01. Work performed at NE-CAT was supported by NIH NIGMS P41 GM103403. This research used resources of the APS, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02- 06CH11357. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. I also acknowledge the NDSU Core Biology Facility (funded by NIH grant P30 GM103332-01) for access to tissue culture facilities and the NDSU Advanced Imaging and Microscopy Core Laboratory for access to microscopy and imaging equipment. I also thank Dr. Pawel Borowicz for assistance with imaging and puncta quantification method development. v DEDICATION For my husband Josh, who is my favorite. For my daughter Indiana, who inspires me to be the best version of myself. For my parents, who encourage me in all things great and small. And for my daughter, who wrote this with me. vi TABLE OF CONTENTS ABSTRACT .................................................................................................................................................. iii ACKNOWLEDGEMENTS ............................................................................................................................ v DEDICATION ............................................................................................................................................... vi LIST OF TABLES ........................................................................................................................................ xii LIST OF FIGURES .................................................................................................................................... xiii LIST OF ABBREVIATIONS ...................................................................................................................... xvii CHAPTER 1. INTRODUCTION ................................................................................................................... 1 1.1. BECN1 in autophagy .......................................................................................................... 1 1.1.1. BCL2 binding to BECN1 ........................................................................................ 3 1.1.2. BECN1 in PI3KC3 complexes ............................................................................... 4 1.2. Viral evasion and subversion of autophagy ....................................................................... 5 1.3. Overview of methods used in this research ....................................................................... 6 1.3.1. Cellular autophagy assays .................................................................................... 6 1.3.2. Isothermal titration calorimetry (ITC) ..................................................................... 7 1.3.3. Circular dichroism (CD) spectroscopy ................................................................... 9 1.3.4. Small angle X-ray scattering (SAXS) .................................................................. 10 1.3.5. Protein X-ray crystallography .............................................................................. 13 1.4. Specific aims of this research .......................................................................................... 16 CHAPTER 2. IDENTIFYING INTRINSICALLY DISORDERED PROTEIN REGIONS LIKELY TO UNDERGO BINDING-INDUCED HELICAL TRANSITIONS ...................................................................... 17 2.1. Introduction ...................................................................................................................... 17 2.2. Materials and methods ..................................................................................................... 18 2.2.1. Production of IDRs .............................................................................................. 18 2.2.2. Prediction of disorder and likelihood of folding upon binding .............................. 19 2.2.3. CD spectroscopy ................................................................................................. 19 2.3. Results ............................................................................................................................. 20 2.3.1. Selection of IDRs for analysis ............................................................................. 20 vii 2.3.2. Prediction of IDRs likely to fold upon binding ...................................................... 22 2.3.3. All the selected IDRs lack α-helical structure in solution ....................................
Recommended publications
  • GOPC-ROS1 Fusion Due to Microdeletion at 6Q22 Is an Oncogenic Driver in a Subset of Pediatric Gliomas And
    J Neuropathol Exp Neurol Vol. 78, No. 12, December 2019, pp. 1089–1099 doi: 10.1093/jnen/nlz093 ORIGINAL ARTICLE GOPC-ROS1 Fusion Due to Microdeletion at 6q22 Is an Oncogenic Driver in a Subset of Pediatric Gliomas and Glioneuronal Tumors Downloaded from https://academic.oup.com/jnen/article/78/12/1089/5593615 by New York University user on 25 August 2020 Timothy E. Richardson, DO, PhD, Karen Tang, MD, Varshini Vasudevaraja, MS, Jonathan Serrano, BS, Christopher M. William, MD, PhD, Kanish Mirchia, MD, Christopher R. Pierson, MD, PhD, Jeffrey R. Leonard, MD, Mohamed S. AbdelBaki, MD, Kathleen M. Schieffer, PhD, Catherine E. Cottrell, PhD, Zulma Tovar-Spinoza, MD, Melanie A. Comito, MD, Daniel R. Boue, MD, PhD, George Jour, MD, and Matija Snuderl, MD features; the third tumor aligned best with glioblastoma and Abstract showed no evidence of neuronal differentiation. Copy number ROS1 is a transmembrane receptor tyrosine kinase proto- profiling revealed chromosome 6q22 microdeletions correspond- oncogene that has been shown to have rearrangements with sev- ingtotheGOPC-ROS1 fusion in all 3 cases and methylation pro- eral genes in glioblastoma and other neoplasms, including intra- filing showed that the tumors did not cluster together as a single chromosomal fusion with GOPC due to microdeletions at 6q22.1. entity or within known methylation classes by t-Distributed Sto- ROS1 fusion events are important findings in these tumors, as chastic Neighbor Embedding. they are potentially targetable alterations with newer tyrosine ki- nase inhibitors; however, whether these tumors represent a dis- Key Words: 6q22, Astrocytoma, Brain tumor, GOPC, Pediatric gli- tinct entity remains unknown.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Autophagy Patterns and Prognosis in Uveal Melanomas
    Modern Pathology (2011) 24, 1036–1045 1036 & 2011 USCAP, Inc. All rights reserved 0893-3952/11 $32.00 Autophagy patterns and prognosis in uveal melanomas Alexandra N Giatromanolaki1, Georgios St Charitoudis2, Nikolaos E Bechrakis3, Vassilios P Kozobolis4, Michael I Koukourakis5, Michael H Foerster2 and Efthimios L Sivridis1 1Department of Pathology, Democritus University of Thrace Medical School, Alexandroupolis, Greece; 2Department of Ophthalmology, Charite´ Medical University, Campus Benjamin Franklin, Berlin, Germany; 3Department of Ophthalmology, University of Innsbruck Medical School, Innsbruck, Austria; 4Department of Ophthalmology, Democritus University of Thrace Medical School, Alexandroupolis, Greece and 5Department of Radiotherapy/Oncology, Democritus University of Thrace Medical School, Alexandroupolis, Greece Autophagy is a self-degradation mechanism by which cells recycle their own cytoplasmic constituents. It has been claimed that, under certain conditions, such a process may be associated with tumor progression. In this study, the autophagic activity was investigated in a series of 99 uveal melanomas after immunohistochemical staining for the autophagy-associated proteins MAP1LC3A and BECN1, most commonly known as LC3A and Beclin 1, respectively. These were assessed in parallel with the hypoxia-inducible factor 1a (HIF1A) and its downstream protein lactate dehydrogenase 5 (composed by five LDHA subunits). Increased autophagic reactivity, detected by MAP1LC3A or BECN1, was associated with intense pigmentation and tumor hypoxia. Uveal melanomas with extensive overexpression of BECN1 or those with underexpression of this protein were associated with the worst prognosis, but the former manifested metastases much earlier than the latter; only 58% of patients with extensive BECN1 overexpression were alive at 4 years, compared with 80% of patients with underexpressed patterns.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Transient Unfolding and Long-Range Interactions in Viral BCL2 M11 Enable Binding to the BECN1 BH3 Domain
    biomolecules Article Transient Unfolding and Long-Range Interactions in Viral BCL2 M11 Enable Binding to the BECN1 BH3 Domain Arvind Ramanathan 1,2,*, Akash Parvatikar 3, Srinivas C. Chennubhotla 3,* and Yang Mei 4,† and Sangita C. Sinha 4,* 1 Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA 2 Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA 3 Department of Computational and Systems Biology, University of Pittsburgh, PA 15260, USA; [email protected] 4 Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (S.C.C.); [email protected] (S.C.S.); Tel.: +1-630-252-3805 (A.R.); +1-412-648-7794 (S.C.C.); +1-701-231-5658 (S.C.S.) † Current address: The Wistar Institute, Philadelphia, PA 19104, USA. Received: 27 July 2020; Accepted: 4 September 2020; Published: 11 September 2020 Abstract: Viral BCL2 proteins (vBCL2s) help to sustain chronic infection of host proteins to inhibit apoptosis and autophagy. However, details of conformational changes in vBCL2s that enable binding to BH3Ds remain unknown. Using all-atom, multiple microsecond-long molecular dynamic simulations (totaling 17 µs) of the murine g-herpesvirus 68 vBCL2 (M11), and statistical inference techniques, we show that regions of M11 transiently unfold and refold upon binding of the BH3D. Further, we show that this partial unfolding/refolding within M11 is mediated by a network of hydrophobic interactions, which includes residues that are 10 Å away from the BH3D binding cleft.
    [Show full text]
  • Mitophagy Confers Resistance to Siderophore-Mediated Killing by Pseudomonas Aeruginosa
    Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa Natalia V. Kirienkoa,b, Frederick M. Ausubela,b,1, and Gary Ruvkuna,b,1,2 aDepartment of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; and bDepartment of Genetics, Harvard Medical School, Boston, MA 02115 Contributed by Gary Ruvkun, December 31, 2014 (sent for review December 19, 2014) In the arms race of bacterial pathogenesis, bacteria produce an Results and Discussion array of toxins and virulence factors that disrupt core host Pyoverdin Enters C. elegans and Is Sufficient to Mediate Host Killing. processes. Hosts mitigate the ensuing damage by responding with Despite the presence of rich sources of iron within host cells, immune countermeasures. The iron-binding siderophore pyover- siderophores are generally assumed to scavenge iron from fer- din is a key virulence mediator of the human pathogen Pseudo- riproteins present in the extracellular milieu. However, we hy- monas aeruginosa, but its pathogenic mechanism has not been pothesize that siderophores are capable of harvesting iron from established. Here we demonstrate that pyoverdin enters Caen- intracellular sources and, consequently, function directly as orhabditis elegans and that it is sufficient to mediate host killing. toxins. We exposed worms to a pyoverdin-enriched, cell-free Moreover, we show that iron chelation disrupts mitochondrial ho- bacterial growth media for 24 h to determine whether detectable meostasis and triggers mitophagy both in C. elegans and mamma- levels of pyoverdin could be identified within the host. After lian cells. Finally, we show that mitophagy provides protection exposure, worms were washed extensively, homogenized, and both against the extracellular pathogen P.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Comparative Transcriptome Profiling of Selected Osmotic Regulatory Proteins in the Gill During Seawater Acclimation of Chum Salm
    www.nature.com/scientificreports OPEN Comparative transcriptome profling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry Sang Yoon Lee 1, Hwa Jin Lee2 & Yi Kyung Kim1,2* Salmonid fshes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fsh in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identifed. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fshes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identifed osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The fndings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species. Salinity is one of the critical factors limiting the distribution patterns of all aquatic organisms1–4. Salmonid fshes display diverse life-history traits; anadromous individuals that mature in the river from hatching through to juveniles acquire the capacity to tolerate salinity associated with parr–smolt transformation and undergo ocean migrations before returning to rivers for spawning, whereas landlocked types spend their entire life within fresh- water5,6.
    [Show full text]
  • Biology of the Caenorhabditis Elegans Germline Stem Cell System
    | WORMBOOK CELL FATE, SIGNALING, AND DEVELOPMENT Biology of the Caenorhabditis elegans Germline Stem Cell System E. Jane Albert Hubbard*,1 and Tim Schedl†,1 *Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, † New York 10016 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110 ORCID IDs: 0000-0001-5893-7232 (E.J.A.H.); 0000-0003-2148-2996 (T.S.) ABSTRACT Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans. In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environ- mental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
    [Show full text]
  • Beclin-1 Expression Is Retained in High-Grade Serous Ovarian Cancer Yet Is Not Essential for Autophagy Induction in Vitro Rohann J
    Western University Scholarship@Western Biochemistry Publications Biochemistry Department 8-2015 Beclin-1 Expression is Retained in High-Grade Serous Ovarian Cancer yet is Not Essential for Autophagy Induction In Vitro Rohann J. M. Correa Western University Yudith Ramos Valdes London Regional Cancer Program Trevor G. Shepherd Western University Gabriel E. DiMattia Western University, [email protected] Follow this and additional works at: https://ir.lib.uwo.ca/biochempub Part of the Biochemistry Commons Citation of this paper: Correa, Rohann J. M.; Valdes, Yudith Ramos; Shepherd, Trevor G.; and DiMattia, Gabriel E., "Beclin-1 Expression is Retained in High- Grade Serous Ovarian Cancer yet is Not Essential for Autophagy Induction In Vitro" (2015). Biochemistry Publications. 166. https://ir.lib.uwo.ca/biochempub/166 Correa et al. Journal of Ovarian Research (2015) 8:52 DOI 10.1186/s13048-015-0182-y RESEARCH Open Access Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro Rohann J. M. Correa1,2, Yudith Ramos Valdes1, Trevor G. Shepherd1,3,4,5† and Gabriel E. DiMattia1,2,3,4,6*† Abstract Background: Autophagy is a conserved cellular self-digestion mechanism that can either suppress or promote cancer in a context-dependent manner. In ovarian cancer, prevalent mono-allelic deletion of BECN1 (a canonical autophagy-inducer) suggests that autophagy is impaired to promote carcinogenesis and that Beclin-1 is a haploinsufficient tumor suppressor. Nonetheless, autophagy is known to be readily inducible in ovarian cancer cells. We sought to clarify whether Beclin-1 expression is in fact disrupted in ovarian cancer and whether this impacts autophagy regulation.
    [Show full text]
  • BECN1 (H-300): Sc-11427
    SANTA CRUZ BIOTECHNOLOGY, INC. BECN1 (H-300): sc-11427 The Power to Question BACKGROUND APPLICATIONS BECN1 (beclin 1) is a coiled-coil protein that has been implicated as an BECN1 (H-300) is recommended for detection of BECN1 of mouse, rat and inhibitor of tumorigenesis. BECN1, which associates with Bcl-2, plays a human origin by Western Blotting (starting dilution 1:200, dilution range significant role in autophagy. Autophagy is the degradation of cellular pro- 1:100-1:1000), immunoprecipitation [1–2 µg per 100–500 µg of total pro- teins in the lysosomes, and when this pathway is suppressed, cell growth is tein (1 ml of cell lysate)], immunofluorescence and immunohistochemistry deregulated. Autophagy is controlled by the same signal transduction path- (including paraffin-embedded sections) (starting dilution 1:50, dilution way that induces the phosphorylation of the ribosomal protein S6, and both range 1:50-1:500). are mediated via amino acids. BECN1 expression in various carcinoma cell Suitable for use as control antibody for BECN1 siRNA (h): sc-29797, BECN1 lines, such as MCF7, is low, whereas it is ubiquitously expressed in normal siRNA (h2): sc-44286 and BECN1 siRNA (m): sc-29798. breast tissue. In transfected MCF7 cells, BECN1 complements autophagocy- tosis and, subsequently, inhibits cellular proliferation. Additionally, BECN1 Molecular Weight of BECN1: 60 kDa. shares structural similarity to the yeast autophagy gene product, apg6, and Positive Controls: HeLa whole cell lysate: sc-2200, MCF7 whole cell lysate: was one of the first mammalian proteins discovered to mediate autophagy. sc-2206 or NIH/3T3 whole cell lysate: sc-2210.
    [Show full text]